258
Views
17
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLECellular and Molecular Biology

CRH and SRIF Have Opposite Effects on the Wnt/β-Catenin Signalling Pathway Through PKA/GSK-3β in Corticotroph Pituitary Cells

, , , &
Pages 797-805 | Published online: 06 Aug 2010

REFERENCES

  • Eastman, Q.; Grosschedl, R. Regulation of LEF-1/TCF transcription factor by Wnt and other signals. Cur Opi Cell Biol 1999, 11, 233–240.
  • Cadigan, K.M.; Nusse, R. Wnt signalling: a common theme in animal development. Genes Dev 1997, 11, 3286–3305.
  • Wodarz, A.; Nusse, R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998, 14, 59–88.
  • Morin, P.J. Beta-catenin signaling and cancer. Bioessays 1999, 21, 1021–1030.
  • Hobmayer, B.; Rentzsch, F.; Kuhn, K.; Happel, C.M.; von Laue, C.C.; Snyder, P.; Rothbächer, U.; Holstein, T.W. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 2000, 407, 186–189.
  • Peifer, M.; Polakis, P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 2000, 287, 1606–1609.
  • Kikuchi, A. Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 2000, 268, 243–248.
  • Helmbrecht, K.; Kispert, A.; von Wasielewski, R.; Brabant, G. Identification of a Wnt/beta-catenin signaling pathway in human thyroid cells. Endocrinology 2001, 142, 5261–5266.
  • Björklund, P.; Akerströrn, G.; Westin, G. Activated beta-catenin in the novel human parathyroid tumor cell line sHPT-1. Biochem Biophys Res Commun 2007, 352, 532–536.
  • Boerboom, D.; Paquet, M.; Hsieh, M.; Liu, J.; Jamin, S.P.; Behringer, R.R.; Sirois, J.; Taketo, M.M.; Richards, J.S. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Cancer Res 2005, 65, 9206–9215.
  • Oikonomou, E.; Barrette, D.C.; Soares, B.; De Marco, L.; Buchfelder, M.; Adam, E.F. Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol 2005, 73, 205–209.
  • Sun, C.; Yamato, T.; Kondo, E.; Furukawa, T.; Ikeda, H.; Horii, A. Infrequent mutation of APC, AXIN1, and GSK3B in human pituitary adenomas with abnormal accumulation of CTNNB1. J Neurooncol 2005, 73, 131–134.
  • Elston, M.S.; Gill, A.J.; Conaglen, J.V.; Clarkson, A.; Shaw, J.M.; Law, A.J.; Cook, R.J.; Little, N.S.; Clifton-Bligh, R.J.; Robinson, B.G.; McDonald, K.L. Wnt pathway inhibitors are strongly downregulated in pituitary tumors. Endocrinology 2008, 149, 1235–1242.
  • Kageyama, K.; Hanada, K.; Moriyama, T.; Imaizumi, T.; Satoh, K.; Suda, T. Differential regulation of CREB and ERK phosphorylation through corticotropin-releasing factor receptors type 1 and 2 in AtT-20 and A7r5 cells. Mol Cell Endocrinol 2007, 263, 90–102.
  • Ben-shlomo, A.; Wawrowsky, K.A.; Proekt, I.; Wolkenfeld, N.M.; Ren, S.G.; Taylor, J.; Culler, M.D.; Melmed, S. Somatostatin receptor type 5 modulates somatostatin receptor type 2 regulation of adrenocorticotropin secretion. J Biol Chem 2005, 280, 24011–24021.
  • Ishigaki, K.; Namba, H.; Nakashima, M.; Nakayama, T.; Mitsutake, N.; Hayashi, T.; Maeda, S.; Ichinose, M.; Kanematsu, T.; Yamashita, S. Aberrant localization of β-catenin correlates with overexpression of its target gene in human papillary thyroid cancer. J Clin Endocrinol Metabol 2002, 87, 3433–3440.
  • Mohinta, S.; Wu, H.; Chaurasia, P.; Watabe, K. Wnt pathway and breast cancer. Front Biosci 2007, 12, 4020–4033.
  • Robinson, D.R.; Zylstra, C.R.; Williams, B.O. Wnt signalling and prostate cancer. Curr Drug Taregts 2008, 9, 571–580.
  • Sun, J.; Jin, T. Both Wnt and mTOR signaling pathways are involved in insulin-stimulated proto-oncogene expression in intestinal cells. Cell Signal 2008, 20, 219–229.
  • Yi, F.; Sun, J.; Lim, G.E.; Fantus, I.G.; Brubaker, P.L.; Jin, T. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology 2008, 149, 2341–2351.
  • Perrin, M.H.; Vale, W.W. Corticotropin releasing factor receptors and their ligand family. Ann N Y Acad Sci 1999, 885, 312–328.
  • Grammatopoulos, D.K.; Chrouses, G.P. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 2002, 13, 436–444.
  • Reul, J.M.; Holsboer, F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2002, 2, 23–33.
  • Bale, T.L.; Vale, W.W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004, 44, 525–557.
  • Kovalovsky, D.; Refojo, D.; Liberman, A.C.; Hochbaum, D.; Pereda, M.P.; Coso, O.A.; Stalla, G.K.; Holsboer, F.; Arzt, E. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. Mol Endocrinol 2002, 16, 1638–1651.
  • Yusta, B.; Estall, J.; Drucker, D.J. Glucagon-like peptide-2 receptor activation engages bad and glycogen synthase kinase-3 in a protein kinase A-dependent manner and prevents apoptosis following inhibition of phosphatidylinositol 3-kinase. J Biol Chem 2002, 277, 24896–24906.
  • Jensen, J.; Brennesvik, E.O.; Lai, Y.C.; Shepherd, P.R. GSK-3beta regulation in skeletal muscles by adrenaline and insulin: evidence that PKA and PKB regulate different pools of GSK-3. Cell Signal 2007, 19, 204–210.
  • Suzuki, A.; Ozono, K.; Kubota, T.; Kondou, H.; Tachikawa, K.; Michigami, T. PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase-3beta in osteoblastic Saos-2 cells. J Cell Biochem 2008, 104, 304–317.
  • Fang, X.; Yu, S.X.; Lu, Y.; Bast, R.C., Jr.; Woodgett, J.R.; Mills, G.B. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 2000, 97, 11960–11965.
  • Hino, S.; Tanji, C.; Nakayama, K.I.; Kikuchi, A. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 2005, 25, 9063–9072.
  • Yamada, Y.; Reisine, T.; Law, S.F.; Ihara, Y.; Kubota, A., Kagimoto, S.; Seino, M.; Seino, Y.; Bell, G.L.; Seino, S. Somatostatin receptors, an expanding gene family: cloning and functional characterization of human SSTR3, a protein coupled to adenylyl cyclase. Mol Endocrinol 1992, 6, 2136–2142.
  • Weckbecker, G.; Raulf, F.; Stolz, B.; Bruns, C. Somatostatin analogs for diagnosis and treatment of cancer. Pharmacol Ther 1993, 60, 245–264.
  • Gillies, G. Somatostatin: the neuroendocrine story. Trends Pharmacol Sci 1997, 18, 87–95.
  • Richardson, U.I.; Schonbrunn, A. Inhibition of adrenocorticotropin secretion by somatostatin in pituitary cells in culture. Endocrinology 1981, 108, 281–290.
  • Theodoropoulou, M.; Zhang, J.; Laupheimer, S.; Paez-Pereda, M.; Erneux, C.; Florio, T.; Pagotto, U.; Stalla, G.K. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res 2006, 66, 1576–1582.
  • Olias, G.; Viollet, C.; Kusserow, H.; Epelbaum, J.; Meyerhof, W. Regulation and function of somatostatin receptors. J Neurochem 2004, 89, 1057–1091.
  • Tagliati, F.; Zatelli, M.C.; Bottoni, A.; Piccin, D.; Luchin, A.; Culler, M.D.; Degli Uberti, E.C. Role of complex cyclin d1/cdk4 in somatostatin subtype 2 receptor-mediated inhibition of cell proliferation of a medullary thyroid carcinoma cell line in vitro. Endocrinology 2006, 147, 3530–3538.
  • Steták, A.; Lankenau, A.; Vántus, T.; Csermely, P.; Ullrich, A.; Kéri, G. The antitumor somatostatin analogue TT-232 induces cell cycle arrest through PKCdelta and c-Src. Biochem Biophys Res Commun 2001, 285, 483–488.
  • Garcia, P.D.; Myers, R.M. Pituitary cell line GH3 expresses two somatostatin receptor subtypes that inhibit adenylyl cyclase: functional expression of rat somatostatin receptor subtypes 1 and 2 in human embryonic kidney 293 cells. Mol Pharmacol 1994, 45, 402–409.
  • Westphal, N.J.; Evans, R.T.; Seasholtz, A.F. Novel expression of type 1 corticotropin-releasing hormone receptor in multiple endocrine cell types in the murine anterior pituitary. Endocrinology 2009, 150, 260–267.
  • Eglen, R.M. Emerging concepts in GPCR function—the influence of cell phenotype on GPCR pharmacology. Proc West Pharmacol Soc 2005, 48, 31–34.
  • Van Wijk, P.A.; van Neck, J.W.; Rijnberk, A.; Croughs, R.J.; Mol, J.A. Proliferation of the murine corticotropic tumour cell line AtT-20 is affected by hypophysiotrophic hormones, growth factors and glucocorticoids. Mol Cell Endocrinol. 1995, 111, 13– 19.
  • Stefana, B.; Ray, D.W.; Melmed, S. Leukemia inhibitory factor induces differentiation of pituitary corticotroph function: an immuno-neuroendocrine phenotypic switch. Proc Natl Acad Sci USA 1996, 93, 12502–12506.
  • Batista, D.L.; Zhang, X.; Gejman, R.; Ansell, P.J.; Zhou, Y.; Johnson, S.A.; Swearingen, B.; Hedley-Whyte, E.T.; Stratakis, C.A.; Klibanski, A. The effects of SOM230 on cell proliferation and adrenocorticotropin secretion in human corticotroph pituitary adenomas. J Clin Endocrinol Metab 2006, 91, 4482–4488.
  • Zatelli, M.C.; Piccin, D.; Ambrosio, M.R.; Bondanelli, M.; degli Uberti, E.C. Antiproliferative effects of somatostatin analogs in pituitary adenomas. Pituitary 2006, 9, 27–34.
  • Takayasu, H.; Horie, H.; Hiyama, E.; Matsunaga, T.; Hayashi, Y.; Watanabe, Y.; Suita, S.; Kaneko, M.; Sasaki, F.; Hashizume, K.; Ozaki, T.; Furuuchi, K.;Tada, M.; Ohnuma, N.; Nakagawara, A. Frequent deletions and mutations of the beta-catenin gene are associated with overexpression of cyclin D1 and fibronectin and poorly differentiated histology in childhood hepatoblastoma. Clin Cancer Res 2001, 7, 901–908.
  • Qiao, Q.; Ramadani, M.; Gansauge, S.; Gansuage, F.; Leder, G.; Beger, H.G. Reduced membranous and ectopic cytoplasmic expression of beta-catenin correlate with cyclin D1 overexpression and poor prognosis in pancreatic cancer. Int J Cancer 2001, 95, 194–197.
  • Turner, H.E.; Nagy, Z.; Sullivan, N.; Esiri, M.M.; Wass, J.A. Expression analysis of cyclins in pituitary adenomas and the normal pituitary gland. Clin Endocrinol (Oxf) 2000, 53, 337–3344.
  • Jordan, S.; Lidhar, K.; Korbonits, M.; Lowe, D.G.; Grossman, A.B. Cyclin D and cyclin E expression in normal and adenomatous pituitary. Eur J Endocrinoll 2000, 143, R1–R6.
  • Gotoh, J.; Obata, M.; Yoshie, M.; Kasai, S.; Ogawa, K. Cyclin D1 over-expression correlates with β-catenin activation, but not with the H-ras and phosphorylation of Akt, GSK-3β and ERK1/2 in mouse hepatic carcinogenesis. Carcinogenesis 2003, 24, 435–442.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.