729
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Animal Models for Breast Cancer Metastasis to Bone: Opportunities and Limitations

, , &
Pages 459-468 | Received 30 Nov 2015, Accepted 21 Jun 2015, Published online: 25 Aug 2015

REFERENCES

  • DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin 2014;64:52–62.
  • Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002;2:584–593.
  • Green JR. Antitumor effects of bisphosphonates. Cancer 2003;97:840–847.
  • Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;1:571–573.
  • Kovacic N, Croucher PI, McDonald MM. Signaling between tumor cells and the host bone marrow microenvironment. Calcif Tissue Int 2014;94:125–139.
  • Zheng Y, Zhou H, Dunstan CR, Sutherland RL, Seibel MJ. The role of the bone microenvironment in skeletal metastasis. Journal of Bone Oncology 2013;2:47–57.
  • Roodman GD. Mechanisms of bone metastasis. N Engl J Med 2004;350:1655–1664.
  • Castle WE, Little CC. The peculiar inheritance of pink eyes among colored mice. Science 1909;30:313–314.
  • Jaenisch R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc Natl Acad Sci U S A 1976;73:1260–1264.
  • Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature 1983;301:527–530.
  • Wang CY, Chang YW. A model for osseous metastasis of human breast cancer established by intrafemur injection of the MDA-MB-435 cells in nude mice. Anticancer Res 1997;17:2471–2474.
  • Arguello F, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res 1988;48:6876–6881.
  • Lelekakis M, Moseley JM, Martin TJ, et al. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 1999;17:163–170.
  • Hardisty JF. Factors influencing laboratory animal spontaneous tumor profiles. Toxicol Pathol 1985;13:95–104.
  • Bishayee A, Mandal A. Trianthema portulacastrum Linn. exerts chemoprevention of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in rats. Mutat Res 2014;768:107–118.
  • Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM. A transgenic mouse model for mammary carcinogenesis. Oncogene 1998;16:997–1007.
  • Ottewell PD, Coleman RE, Holen I. From genetic abnormality to metastases: murine models of breast cancer and their use in the development of anticancer therapies. Breast Cancer Res Treat 2006;96:101–113.
  • Cardiff RD, Kenney N. Mouse mammary tumor biology: a short history. Adv Cancer Res 2007;98:53–116.
  • Hansen K, Khanna C. Spontaneous and genetically engineered animal models, use in preclinical cancer drug development. Eur J Cancer 2004;40:858–880.
  • Derksen PW, Liu X, Saridin F, et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 2006;10:437–449.
  • Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer 2007;7:645–658.
  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992;89:10578–10582.
  • Green JE, Hudson T. The promise of genetically engineered mice for cancer prevention studies. Nat Rev Cancer 2005;5:184–198.
  • Wagner KU. Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res 2004;6:31–38.
  • Mehta RR, Graves JM, Hart GD, Shilkaitis A, Das Gupta TK. Growth and metastasis of human breast carcinomas with Matrigel in athymic mice. Breast Cancer Res Treat 1993;25:65–71.
  • Zheng Y, Seibel MJ, Zhou H. Methods in bone biology: cancer and bone. Oesteoporo Res 2011;83–91.
  • Scepansky E, Goldstein R, Rosenblatt M. Preclinical orthotopic and intracardiac injection models of human breast cancer metastasis to bone and their use in drug discovery. Curr Protoc Pharmacol 2011; Chapter 14: Unit 14.18.
  • Moreau JE, Anderson K, Mauney JR, Nguyen T, Kaplan DL, Rosenblatt M. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res 2007;67:10304–10308.
  • Castillo-Pichardo L, Martinez-Montemayor MM, Martinez JE, Wall KM, Cubano LA, Dharmawardhane S. Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clin Exp Metastasis 2009;26:505–516.
  • Bibby MC. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 2004;40:852–857.
  • Hoffman RM. Orthotopic metastatic (MetaMouse) models for discovery and development of novel chemotherapy. Methods Mol Med 2005;111:297–322.
  • Robinson BD, Sica GL, Liu YF, et al. Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 2009;15:2433–2441.
  • Casimiro S, Guise TA, Chirgwin J. The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 2009;310:71–81.
  • Coleman RE, Gregory W, Marshall H, Wilson C, Holen I. The metastatic microenvironment of breast cancer: clinical implications. Breast 2013;22 Suppl 2, S50–56.
  • Ooi LL, Zheng Y, Zhou H, et al. Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone 2010;47:795–803.
  • Halpern J, Lynch CC, Fleming J, et al. The application of a murine bone bioreactor as a model of tumor: bone interaction. Clin Exp Metastasis 2006;23:345–356.
  • Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res 2005;7:R444–454.
  • Harms JF, Welch DR. MDA-MB-435 human breast carcinoma metastasis to bone. Clin Exp Metastasis 2003;20:327–334.
  • Hibberd C, Cossigny DA, Quan GM. Animal cancer models of skeletal metastasis. Cancer Growth Metastasis 2013;6:23–34.
  • Wetterwald A, van der Pluijm G, Que I, et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol 2002;160:1143–1153.
  • Goodale D, Phay C, Postenka CO, Keeney M, Allan AL. Characterization of tumor cell dissemination patterns in preclinical models of cancer metastasis using flow cytometry and laser scanning cytometry. Cytometry A 2009;75:344–355.
  • Neudert M, Fischer C, Krempien B, Bauss F, Seibel MJ. Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. Int J Cancer 2003;107:468–477.
  • Biesalski B, Yilmaz B, Buchholz HG, Bausbacher N, Schreckenberger M, Thews O. An allogenic site-specific rat model of bone metastases for nuclear medicine and experimental oncology. Nucl Med Biol 2012;39:502–508.
  • Schubert A, Hawighorst T, Emons G, Grundker C. Agonists and antagonists of GnRH-I and -II reduce metastasis formation by triple-negative human breast cancer cells in vivo. Breast Cancer Res Treat 2011;130:783–790.
  • Zadnik P, Sarabia-Estrada R, Groves ML, et al. A novel animal model of human breast cancer metastasis to the spine: a pilot study using intracardiac injection and luciferase-expressing cells. J Neurosurg Spine 2013;18:217–225.
  • Hojjat SP, Won E, Hardisty MR, Akens MK, Wise-Milestone LM, Whyne CM. Non-destructive evaluation of the effects of combined bisphosphonate and photodynamic therapy on bone strain in metastatic vertebrae using image registration. Ann Biomed Eng 2011;39:2816–2822.
  • Kang Y, Siegel PM, Shu W, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003;3:537–549.
  • Kuperwasser C, Dessain S, Bierbaum BE, et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res 2005;65:6130–6138.
  • Holzapfel BM, Thibaudeau L, Hesami P, et al. Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Rev 2013;32:129–145.
  • Thibaudeau L, Taubenberger AV, Holzapfel BM, et al. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis Model Mech 2014;7: 299–309.
  • Holzapfel BM, Wagner F, Thibaudeau L, Levesque JP, Hutmacher DW. Humanized models of tumour immunology in the 21 century: convergence of cancer research and tissue engineering. Stem Cells 2015;33(6):1696–1704.
  • Lee J, Li M, Milwid J, et al. Implantable microenvironments to attract hematopoietic stem/cancer cells. Proc Natl Acad Sci USA 2012;109:19638–19643.
  • Thibaudeau L, Quent VM, Holzapfel BM, Taubenberger AV, Straub M, Hutmacher DW. Mimicking breast cancer-induced bone metastasis in vivo: current transplantation models and advanced humanized strategies. Cancer Metastasis Rev 2014;33: 721–735.
  • de Plater L, Lauge A, Guyader C, et al. Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br J Cancer 2010;103:1192–1200.
  • Zheng Y, Zhou H, Fong-Yee C, Modzelewski JR, Seibel MJ, Dunstan CR. Bone resorption increases tumour growth in a mouse model of osteosclerotic breast cancer metastasis. Clin Exp Metastasis 2008;25:559–567.
  • Engel LW, Young NA. Human breast carcinoma cells in continuous culture: a review. Cancer Res 1978;38:4327–4339.
  • Yoneda T, Williams PJ, Hiraga T, Niewolna M, Nishimura R. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 2001;16:1486–1495.
  • Garcia T, Jackson A, Bachelier R, et al. A convenient clinically relevant model of human breast cancer bone metastasis. Clin Exp Metastasis 2008;25:33–42.
  • Lunardi A, Nardella C, Clohessy JG, Pandolfi PP. Of model pets and cancer models: an introduction to mouse models of cancer. Cold Spring Harb Protoc 2014;2014:17–31.
  • Pearson HB, Pouliot N, Burrows A. Modeling metastases in vivo. In: Jandial R, editor. Metastatic cancer: clinical and biological perspectives. Austin (TX): Landes Bioscience;2013.
  • Belizario JE. Immunodeficient mouse models: an overview. The Open Immunoloy Journal 2009;2:7.
  • Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis Model Mech 2008;1:78–82.
  • Flanagan SP. ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966;8:295–309.
  • Xia TS, Wang GZ, Ding Q, et al. Bone metastasis in a novel breast cancer mouse model containing human breast and human bone. Breast Cancer Res Treat 2012;132:471–486.
  • Taghian A, Budach W, Zietman A, et al. Quantitative comparison between the transplantability of human and murine tumors into the subcutaneous tissue of NCr/Sed-nu/nu nude and severe combined immunodeficient mice. Cancer Res 1993;53:5012–5017.
  • Shultz LD, Schweitzer PA, Christianson SW, et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995;154:180–191.
  • de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006;6:24–37.
  • Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012;12:786–798.
  • Liang H, Ma SY, Mohammad K, Guise TA, Balian G, Shen FH. The reaction of bone to tumor growth from human breast cancer cells in a rat spine single metastasis model. Spine (Phila Pa 1976) 2011;36:497–504.
  • Bauerle T, Adwan H, Kiessling F, Hilbig H, Armbruster FP, Berger MR. Characterization of a rat model with site-specific bone metastasis induced by MDA-MB-231 breast cancer cells and its application to the effects of an antibody against bone sialoprotein. Int J Cancer 2005;115:177–186.
  • Misdorp W, den Herder BA. Bone metastasis in mammary cancer. A report of 10 cases in the female dog and some comparison with human cases. Br J Cancer 1966;20:496–503.
  • Goedegebuure SA. Secondary bone tumours in the dog. Vet Pathol 1979;16:520–529.
  • Kurth AH, Wang C, Hayes WC, Shea M. The evaluation of a rat model for the analysis of densitometric and biomechanical properties of tumor-induced osteolysis. J Orthop Res 2001;19:200–205.
  • Lewis JS, Achilefu S, Garbow JR, Laforest R, Welch MJ. Small animal imaging. current technology and perspectives for oncological imaging. Eur J Cancer 2002;38:2173–2188.
  • Koo V, Hamilton PW, Williamson K. Non-invasive in vivo imaging in small animal research. Cell Oncol 2006;28:127–139.
  • Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 2001;27:165–176.
  • Klerk CP, Overmeer RM, Niers TM, et al. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 2007;43:7–13:30.
  • Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008;452:580–589.
  • Kim JB, Urban K, Cochran E, et al. Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS One 2010;5:e9364.
  • O'Neill K, Lyons SK, Gallagher WM, Curran KM, Byrne AT. Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol 2010;220:317–327.
  • Snoeks TJ, van Beek E, Que I, Kaijzel EL, Lowik CW. Bioluminescence imaging of bone metastasis in rodents. Methods Mol Biol 2012;816:507–515.
  • Lyons SK. Advances in imaging mouse tumour models in vivo. J Pathol 2005;205:194–205.
  • Edinger M, Cao YA, Hornig YS, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 2002;38:2128–2136.
  • Kaijzel EL, Snoeks TJ, Buijs JT, van der Pluijm G, Lowik CW. Multimodal imaging and treatment of bone metastasis. Clin Exp Metastasis 2009;26:371–379.
  • Snoeks TJ, Khmelinskii A, Lelieveldt BP, Kaijzel EL, Lowik CW. Optical advances in skeletal imaging applied to bone metastases. Bone 2011;48:106–114.
  • El Hilali N, Rubio N, Martinez-Villacampa M, Blanco J. Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest 2002;82:1563–1571.
  • Brutkiewicz S, Mendonca M, Stantz K, et al. The expression level of luciferase within tumour cells can alter tumour growth upon in vivo bioluminescence imaging. Luminescence 2007;22:221–228.
  • Song H, Shahverdi K, Huso DL, et al. An immunotolerant HER-2/neu transgenic mouse model of metastatic breast cancer. Clin Cancer Res 2008;14:6116–6124.
  • Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 2008;8:228.
  • Ellenbroek SI, van Rheenen J. Imaging hallmarks of cancer in living mice. Nat Rev Cancer 2014;14:406–418.
  • Lok C. Imaging: cancer caught in the act. Nature 2014;509: 148–149.
  • Sckell A, Klenke FM. The cranial bone window model: studying angiogenesis of primary and secondary bone tumors by intravital microscopy. Methods Mol Biol 2009;467:343–355.
  • Conklin MW, Provenzano PP, Eliceiri KW, Sullivan R, Keely PJ. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem Biophys 2009;53:145–157.
  • Junankar S, Shay G, Jurczyluk J, et al. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov 2015;5:35–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.