989
Views
71
CrossRef citations to date
0
Altmetric
Review Article

Potentials toward genetic engineering of drought-tolerant soybean

&
Pages 349-362 | Received 15 Aug 2011, Accepted 20 Nov 2011, Published online: 19 Dec 2011

References

  • Abdel-Haleem H, Lee GJ, Boerma RH. 2011. Identification of QTL for increased fibrous roots in soybean. Theor Appl Genet 122: 935–946.
  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. 1997. Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9: 1859–1868.
  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP. 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311: 91–94.
  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P. 2008. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20: 2117–2129.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30: 161–175.
  • Aragão FJL, Sarokin L, Vianna GR, Rech EL. 2000. Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theor Appl Genet 101: 1–6.
  • Bartels D, Sunkar R. 2005. Drought and salt tolerance in plants. Crit Rev Plant Sci 24: 23–58.
  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS. 2007. Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143: 707–719.
  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ. 2007. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353: 299–305.
  • Cheng TS, Lien TJ. 1996. Genetic transformation of soybean with the OEC16 gene (oee3) via particle bombardment of embryogenic suspension culture tissue. Plant Physiol 111: 784–784.
  • Chisti Y. 2007. Biodiesel from microalgae. Biotechnol Adv 25: 294–306.
  • Cho HJ, Farrand SK, Noel GR, Widholm JM. 2000. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210: 195–204.
  • Choudhary SP, Tran LS. 2011. Phytosterols: perspectives in human nutrition and clinical therapy. Curr Med Chem. 18:4557–4567.
  • Christou P, McCabe DE, Swain WF. 1988. Stable Transformation of Soybean Callus by DNA-Coated Gold Particles. Plant Physiol 87: 671–674.
  • Christou P, Swain WF, Yang NS, McCabe DE. 1989. Inheritance and expression of foreign genes in transgenic soybean plants. Proc Natl Acad Sci USA 86: 7500–7504.
  • Clement M, Lambert A, Herouart D, Boncompagni E. 2008. Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426: 15–22.
  • Clemente TE, Cahoon EB. 2009. Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151: 1030–1040.
  • Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743.
  • Collier R, Fuchs B, Walter N, Kevin Lutke W, Taylor CG. 2005. Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43: 449–457.
  • Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156: 466–473.
  • Dai SH, Zheng P, Marmey P, Zhang SP, Tian WZ, Chen SY, Beachy RN, Fauquet C. 2001. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breeding 7: 25–33.
  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143: 1739–1751.
  • Dang W, Wei ZM. 2007. An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173: 381–389.
  • Daniell H, Kumar S, Dufourmantel N. 2005. Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol 23: 238–245.
  • Daniell H, Lee SB, Panchal T, Wiebe PO. 2001. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J Mol Biol 311: 1001–1009.
  • De Ronde JA, Cress WA, Krüger GH, Strasser RJ, Van Staden J. 2004a. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161: 1211–1224.
  • De Ronde JA, Laurie RN, Caetano T, Greyling MM, Kerepesi I. 2004b. Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant Euphytica 138: 123–132.
  • Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung MK, Meixner AJ, Hooley R, Neill SJ, Hancock JT, Harter K. 2008. The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE 3: e2491.
  • Dogan E, Kirnak H, Copur O. 2007. Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crop Res 103: 154–159.
  • Droste A, Pasquali G, Bodanese-Zanettini MH. 2000. Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep 18: 51–59.
  • Dufourmantel N, Pelissier B, Garçon F, Peltier G, Ferullo JM, Tissot G. 2004. Generation of fertile transplastomic soybean. Plant Mol Biol 55: 479–489.
  • Earl HJ. 2002. Stomatal and non-stomatal restrictions to carbon assimilation in soybean (Glycine max) lines differing in water use efficiency. Environ Exper Bot 48: 237–246.
  • Fang Y, You J, Xie K, Xie W, Xiong L. 2008. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280: 547–563.
  • Fischer U, Dröge-Laser W. 2004. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant Microbe Interact 17: 1162–1171.
  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17: 3470–3488.
  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124: 509–525.
  • Gao SQ, Chen M, Xu ZS, Zhao CP, Li L, Xu HJ, Tang YM, Zhao X, Ma YZ. 2011. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75: 537–553.
  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99: 15898–15903.
  • Golldack D, Lüking I, Yang O. 2011. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30: 1383–1391.
  • Graham PH, Vance CP. 2003. Legumes: importance and constraints to greater use. Plant Physiol 131: 872–877.
  • Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H. 2006. Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16: 277–286.
  • Hadiarto T, Tran LS. 2011. Progress studies of drought-responsive genes in rice. Plant Cell Rep 30: 297–310.
  • Hao YJ, Song QX, Chen HW, Zou HF, Wei W, Kang XS, Ma B, Zhang WK, Zhang JS, Chen SY. 2010. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta 232: 1033–1043.
  • Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY. 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68: 302–313.
  • Hoa TTC, Hai TV, Thang LC. 2008. Transformation efficiencies of the soybean variety PC 19 [Glycine max (L.) Merrill] using Agrobacterium tumefaciens and the cotyledonary node method. Omonrice 16: 1–8.
  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103: 12987–12992.
  • Hu ZB, Du M. 2006. Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48: 121–127.
  • Huang BR, Fry JD. 1998. Root anatomical, physiological, and morphological responses to drought stress for tall fescue cultivars. Crop Sci 38: 1017–1022.
  • Huang JG, Yang M, Liu P, Yang GD, Wu CA, Zheng CC. 2009. GhDREB1 enhances abiotic stress tolerance, delays GA-mediated development and represses cytokinin signalling in transgenic Arabidopsis. Plant Cell Environ 32: 1132–1145.
  • Hussain SS, Ali M, Ahmad M, Siddique KH. 2011. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29: 300–311.
  • Hwang I, Chen HC, Sheen J. 2002. Two-component signal transduction pathways in Arabidopsis. Plant Physiol 129: 500–515.
  • Ishida K, Niwa Y, Yamashino T, Mizuno T. 2009. A genome-wide compilation of the two-component systems in Lotus japonicus. DNA Res 16: 237–247.
  • Islam MA, Du H, Ning J, Ye H, Xiong L. 2009. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70: 443–456.
  • Iwama A, Yamashino T, Tanaka Y, Sakakibara H, Kakimoto T, Sato S, Kato T, Tabata S, Nagatani A, Mizuno T. 2007. AHK5 histidine kinase regulates root elongation through an ETR1-dependent abscisic acid and ethylene signaling pathway in Arabidopsis thaliana. Plant Cell Physiol 48: 375–380.
  • Jain M, Tyagi AK, Khurana JP. 2006. Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol 6: 1.
  • Jain M, Tyagi AK, Khurana JP. 2008. Differential gene expression of rice two-component signaling elements during reproductive development and regulation by abiotic stress. Funct Integr Genomics 8: 175–180.
  • Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J. 2010. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285: 23371–23386.
  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X. 2010. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32: 1173–1179.
  • Karan R, Singla-Pareek SL, Pareek A. 2009. Histidine kinase and response regulator genes as they relate to salinity tolerance in rice. Funct Integr Genomics 9: 411–417.
  • Kaspar TC, Taylor HM, Shibles RM. 1984. Taproot-elongation rates of soybean cultivars in the glasshouse and their relation to field rooting depth. Crop Sci 24: 916–920.
  • Kereszt A, Li D, Indrasumunar A, Nguyen CD, Nontachaiyapoom S, Kinkema M, Gresshoff PM. 2007. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2: 948–952.
  • Ko TS, Korban SS, Somers DA. 2006. Soybean (Glycine max) transformation using immature cotyledon explants. Methods Mol Biol 343: 397–405.
  • Ko TS, Lee S, Farrand SK, Korban SS. 2004. A partially disarmed vir helper plasmid, pKYRT1, in conjunction with 2,4-dichlorophenoxyactic acid promotes emergence of regenerable transgenic somatic embryos from immature cotyledons of soybean. Planta 218: 536–541.
  • Ko TS, Lee S, Krasnyanski S, Korban SS. 2003. Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet 107: 439–447.
  • Koberg M, Abu-Much R, Gedanken A. 2011. Optimization of bio-diesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst. Bioresour Technol 102: 1073–1078.
  • Kocsy K, Laurie R, Szalai G, Szilágyi V, Simon-Sarkadi L, Galiba G, De Ronde JA. 2005. Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses. Physiol Planta 124: 277–235.
  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW. 2002. Revival of a resurrection plant correlates with its antioxidant status. Plant J 31: 13–24.
  • Kumar S, Dhingra A, Daniell H. 2004a. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56: 203–216.
  • Kumar S, Dhingra A, Daniell H. 2004b. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136: 2843–2854.
  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2011a. Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res 18: 17–29.
  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2011b. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18: 263–276.
  • Li J, Todd TC, Trick HN. 2010. Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29: 113–123.
  • Li Q, Du W, Liu D. 2008. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80: 749–756.
  • Li Z, Mu P, Li C, Zhang H, Li Z, Gao Y, Wang X. 2005. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet 110: 1244–1252.
  • Liao Y, Zhang JS, Chen SY, Zhang WK. 2008a. Role of soybean GmbZIP132 under abscisic acid and salt stresses. J Integr Plant Biol 50: 221–230.
  • Liao Y, Zou HF, Wang HW, Zhang WK, Ma B, Zhang JS, Chen SY. 2008b. Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res 18: 1047–1060.
  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY. 2008c. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228: 225–240.
  • Liener IE. 1994. Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 34: 31–67.
  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R. 2004. RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55: 983–992.
  • Lin MH, Gresshoff PM, Indrasumunar A, Ferguson BJ. 2011. pHairyRed: a novel binary vector containing the DsRed2 reporter gene for visual selection of transgenic hairy roots. Mol Plant 4: 537–545.
  • Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z. 2011. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genomics. 11:431–443.
  • Liu HK, Yang C, Wei ZM. 2004. Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219: 1042–1049.
  • Liu J, Su Q, An L, Yang A. 2009a. Transfer of a minimal linear marker-free and vector-free smGFP cassette into soybean via ovary-drip transformation. Biotechnol Lett 31: 295–303.
  • Liu JX, Howell SH. 2010. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell 22: 782–796.
  • Liu M, Yang J, Cheng YQ, An LJ. 2009b. Optimization of soybean (Glycine max (L.) Merrill) in planta ovary transformation using a linear minimal gus gene cassette. J Zhejiang Univ Sci B 10: 870–876.
  • Liu SJ, Wei ZM, Huang JQ. 2008. The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Rep 27: 489–498.
  • Liu Y, Gai JY, Lü HN, Wang YJ, Chen SY. 2005. [Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean (Glycine max (L.) Merr.)]. Yi Chuan Xue Bao 32: 855–863.
  • Manavalan LP, Guttikonda SK, Nguyen VT, Shannon JG, Nguyen HT. 2010. Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil 330: 503–514.
  • Manavalan LP, Guttikonda SK, Tran LS, Nguyen HT. 2009. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50: 1260–1276.
  • Mccabe DE, Swain WF, Martinell BJ, Christou P. 1988. Stable transformation of soybean (Glycine-Max) by particle-acceleration. Nat Biotechnol 6: 923–926.
  • Meng Q, Zhang C, Gai J, Yu D. 2007. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol 164: 1002–1012.
  • Miura K, Hasegawa PM. 2010. Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 20: 223–232.
  • Miyata S, Urao T, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Lett 437: 11–14.
  • Mizuno T. 2005. Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms. Biosci Biotechnol Biochem 69: 2263–2276.
  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2009. In silico analysis of transcription factor repertoire and prediction of stress responsive transcription factors in soybean. DNA Res 16: 353–369.
  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2010a. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 17: 303–324.
  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2010b. LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors. Bioinformatics 26: 290–291.
  • Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T. 2009. Transcript profiling of an Arabidopsis pseudo response regulator arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50: 447–462.
  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149: 88–95.
  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51: 617–630.
  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE. 2007. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104: 16450–16455.
  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS. 2011. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic Acid responses, and abscisic Acid biosynthesis. Plant Cell 23: 2169–2183.
  • Nogueira FTS, Schlogl PS, Camargo SR, Fernandez JH, De Rosa VE, Pompermayer P, Arruda P. 2005. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane. Plant Sci 169: 93–106.
  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene 465: 30–44.
  • Olhoft PM, Donovan CM, Somers DA. 2006. Soybean (Glycine max) transformation using mature cotyledonary node explants. Methods Mol Biol 343: 385–396.
  • Olhoft PM, Flagel LE, Donovan CM, Somers DA. 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216: 723–735.
  • Olhoft PM, Somers DA 2001. L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20: 706–711.
  • Olsen AN, Ernst HA, Leggio LL, Skriver K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10: 79–87.
  • Oñate-Sánchez L, Singh KB. 2002. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128: 1313–1322.
  • Ososki AL, Kennelly EJ. 2003. Phytoestrogens: a review of the present state of research. Phytother Res 17: 845–869.
  • Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL. 2006. Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142: 380–397.
  • Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB. 1989. Recovery of primary transformants of soybean. Plant Cell Rep 7: 615–617.
  • Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K. 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25: 206–213.
  • Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K. 2004a. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136: 167–179.
  • Paz MM, Shou HX, Guo ZB, Zhang ZY, Banerjee AK, Wang K. 2004b. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136: 167–179.
  • Pils B, Heyl A. 2009. Unraveling the evolution of cytokinin signaling. Plant Physiol 151: 782–791.
  • Pinheiro GL, Marques CS, Costa MD, Reis PA, Alves MS, Carvalho CM, Fietto LG, Fontes EP. 2009. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene 444: 10–23.
  • Potters G, Pasternak TP, Guisez Y, Jansen MA. 2009. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ 32: 158–169.
  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA. 2007. Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12: 98–105.
  • Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. 2008. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20: 1693–1707.
  • Rech EL, Vianna GR, Aragão FJ. 2008. High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3: 410–418.
  • Reddy MS, Dinkins RD, Collins GB. 2003. Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep 21: 676–683.
  • Riechmann JL, Ratcliffe OJ. 2000. A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3: 423–434.
  • Sakai T, Kogiso M. 2008. Soy isoflavones and immunity. J Med Invest 55: 167–173.
  • Sato Y, Yokoya S. 2008. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27: 329–334.
  • Schaller GE, Kieber JJ, Shiu SH. 2008. Two-component signaling elements and histidyl-aspartyl phosphorelays. In: Somerville C and Meyerowitz EM. eds. The Arabidopsis Book 6: e0112. doi/10.1199/tab.0112. Rockville, MD: The American Society of Plant Biologists.
  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463: 178–183.
  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT. 2004. Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55: 2343–2351.
  • Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. J Exp Bot 58: 221–227.
  • Shou HX, Frame BR, Whitham SA, Wang K. 2004. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breeding 13: 201–208.
  • Silverstein KA, Graham MA, VandenBosch KA. 2006. Novel paralogous gene families with potential function in legume nodules and seeds. Curr Opin Plant Biol 9: 142–146.
  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2003. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33: 259–270.
  • Sinclair TR, Ludlow MM. 1986. Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13: 29–41.
  • Somers DA, Samac DA, Olhoft PM. 2003. Recent advances in legume transformation. Plant Physiol 131: 892–899.
  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. 1996. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159–170.
  • Stacey G, Libault M, Brechenmacher L, Wan J, May GD. 2006. Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9: 110–121.
  • Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu Rev Biochem 69: 183–215.
  • Stolf-Moreira R, Medri ME, Neumaier N, Lemos NG, Brogin RL, Marcelino FC, de Oliveira MC, Farias JR, Abdelnoor RV, Nepomuceno AL. 2010. Cloning and quantitative expression analysis of drought-induced genes in soybean. Genet Mol Res 9: 858–867.
  • Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latché A, Pech JC, Bouzayen M. 2003. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett 550: 149–154.
  • Tran LS, Mochida K. 2010a. Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10: 447–462.
  • Tran LS, Mochida K. 2010b. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean. Plant Signal Behav 5: 255–257.
  • Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. 2007a. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49: 46–63.
  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481–2498.
  • Tran LS, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. 2007b. Plant gene networks in osmotic stress response: from genes to regulatory networks. Meth Enzymol 428: 109–128.
  • Tran LS, Nguyen HT. 2009. Future biotechnology of legumes. In: Emerich WD and Krishnan H, eds. Nitrogen Fixation in Crop Production. Madison, WI: ASA-CSA-SSSA. pp. 265–307
  • Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K. 2010. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1: 32–39.
  • Tran LS, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT. 2009. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics 281: 647–664.
  • Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. 2007c. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104: 20623–20628.
  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ. 2000. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22: 531–541.
  • Turner NC, Wright GC, Siddique KHH. 2001. Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71: 193–231.
  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. 2006. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17: 113–122.
  • Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K. 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11: 1743–1754.
  • Urao T, Yamaguchi-Shinozaki K, Shinozaki K. 2000. Two-component systems in plant signal transduction. Trends Plant Sci 5: 67–74.
  • Urao T, Yamaguchi-Shinozaki K, Shinozaki K. 2001. Plant histidine kinases: an emerging picture of two-component signal transduction in hormone and environmental responses. Sci STKE 2001: re18.
  • Valliyodan B, Nguyen HT. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9: 189–195.
  • Vasquez-Robinet C, Mane SP, Ulanov AV, Watkinson JI, Stromberg VK, De Koeyer D, Schafleitner R, Willmot DB, Bonierbale M, Bohnert HJ, Grene R. 2008. Physiological and molecular adaptations to drought in Andean potato genotypes. J Exp Bot 59: 2109–2123.
  • Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S. 1998. Transgene-induced gene silencing in plants. Plant J 16: 651–659.
  • Vianna GR, Aragão FJ, Rech EL. 2011. A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max). Genet Mol Res 10: 382–390.
  • Wang G, Xu Y. 2008. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep 27: 1177–1184.
  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T. 2010. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22: 3905–3920.
  • Wohlbach DJ, Quirino BF, Sussman MR. 2008. Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20: 1101–1117.
  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28: 21–30.
  • Xue GP, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL. 2011. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4: 697–712.
  • Xue RG, Xie HF, Zhang B. 2006. A multi-needle-assisted transformation of soybean cotyledonary node cells. Biotechnol Lett 28: 1551–1557.
  • Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57: 781–803.
  • Yan B, Srinivasa Reddy MS, Collins GB, Dinkins RD. 2000. Agrobacterium tumefaciens- mediated transformation of soybean [Glycine max (L.) Merrill.] using immature zygotic cotyledon explants. Plant Cell Rep 19: 1090–1097.
  • Yang S, Vanderbeld B, Wan J, Huang Y. 2010. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3: 469–490.
  • Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH. 2007. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS ONE 2: e642.
  • Zeng P, Vadnais DA, Zhang Z, Polacco JC. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep 22: 478–482.
  • Zhang G, Chen M, Chen X, Xu Z, Guan S, Li LC, Li A, Guo J, Mao L, Ma Y. 2008. Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J Exp Bot 59: 4095–4107.
  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. 2009. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60: 3781–3796.
  • Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J. 2011. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39: D1114–D1117.
  • Zhou GA, Chang RZ, Qiu LJ. 2010. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Mol Biol 72: 357–367.
  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY. 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6: 486–503.
  • Zolla G, Heimer YM, Barak S. 2010. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. J Exp Bot 61: 211–224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.