1,439
Views
145
CrossRef citations to date
0
Altmetric
Review Article

Systems biology-based approaches toward understanding drought tolerance in food crops

, &
Pages 23-39 | Received 25 Sep 2011, Accepted 17 Jan 2012, Published online: 25 Feb 2012

References

  • Agrawal GK, Rakwal R. 2011. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics 11: 1630–1649.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. 2010. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30: 161–175.
  • Alam I, Sharmin SA, Kim KH, Yang JK, Choi MS, Lee BH. 2010. Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil 333: 491–505.
  • Allwood JW, Ellis DI, Goodacre R. 2008. Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plant 132: 117–135.
  • Almeida AM, Cardoso LA, Santos DM, Torne JM, Fevereiro PS. 2007. Trehalose and its applications in plant biotechnology. In Vitro Cell Dev Pl 43: 167–177.
  • Amudha J, Balasubramani G. 2011. Recent molecular advances to combat abiotic stress tolerance in crop plants. Biotech Mol Biol Rev 6: 31–58.
  • Arabidopsis Interactome Mapping Consortium. 2011. Evidence for network evolution in an Arabidopsis interactome map. Science 333: 601–607.
  • Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S. 2011. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62: 111–123.
  • Ashraf M. 2010. Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28: 169–183.
  • Avery SV. 2011. Molecular targets of oxidative stress. Biochem J 434: 201–210.
  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R. 2009. NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37: D885–D890.
  • Bartels D. 2005. Desiccation Tolerance Studied in the Resurrection Plant Craterostigma plantagineum. Integr Comp Biol 45: 696–701.
  • Bartels D, Hussain SS. 2011. Resurrection plants: physiology and molecular biology in plants desiccation tolerance. Lüttge U, Beck E, Bartels D, eds. Heidelberg: Springer, 339–364.
  • Bartels D, Salamini F. 2001. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127: 1346–1353.
  • Bertocchi F, Paci M. 2008. Applications of high-resolution solid-state NMR spectroscopy in food science. J Agric Food Chem 56: 9317–9327.
  • Bhushan D, Jaiswal DK, Ray D, Basu D, Datta A, Chakraborty S, Chakraborty N. 2011. Dehydration-responsive reversible and irreversible changes in the extracellular matrix: comparative proteomics of chickpea genotypes with contrasting tolerance. J Proteome Res 10: 2027–2046.
  • Bogoslavsky L, Neumann PM. 1998. Rapid regulation by acid pH of cell wall adjustment and leaf growth in maize plants responding to reversal of water stress. Plant Physiol 118: 701–709.
  • Bond DM, Finnegan EJ. 2007. Passing the message on: inheritance of epigenetic traits. Trends Plant Sci 12: 211–216.
  • Cooper T, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbühl P, Ellero C, Goff SA, Glazebrook J. 2003. A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci U S A 100: 4945–4950.
  • Chazen O, Neumann PM. 1994. Hydraulic Signals from the Roots and Rapid Cell-Wall Hardening in Growing Maize (Zea mays L.) Leaves Are Primary Responses to Polyethylene Glycol-Induced Water Deficits. Plant Physiol 104: 1385–1392.
  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP. 2008. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30: 2191–2198.
  • Chinnusamy V, Zhu JK. 2009. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12: 133–139.
  • Ciftci-Yilmaz S, Mittler R. 2008. The zinc finger network of plants. Cell Mol Life Sci 65: 1150–1160.
  • Cooper K, Farrant JM. 2002. Recovery of the resurrection plant Craterostigma wilmsii from desiccation: protection versus repair. J Exp Bot 53: 1805–1813.
  • Crowe JH, Oliver AE, Hoekstra FA, Crowe LM. 1997. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35: 20–30.
  • Dai AG. 2011. Drought under global warming: a review. Wires Clim Change 2: 45–65.
  • Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC. 2009. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 9: 3580–3608.
  • Dinakar C, Djilianov D, Bartels D. 2012. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Sci 182: 29–41.
  • Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M, Zheng X, Kanrar S, Stevenson RA, Dardick C, Li Y, Jiang H, Zhang Y, Yu F, Bartley LE, Chern M, Bart R, Chen X, Zhu L, Farmerie WG, Gribskov M, Zhu JK, Fromm ME, Ronald PC, Song WY. 2009. A rice kinase-protein interaction map. Plant Physiol 149: 1478–1492.
  • Dong J, Wu F, Zhang G. 2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64: 1659–1666.
  • Donovan WP, Zhang Y, Howell MD. 2011. Large-scale sequencing of plant small RNAs. Methods Mol Biol 744: 159–173.
  • Dortay H, Gruhn N, Pfeifer A, Schwerdtner M, Schmülling T, Heyl A. 2008. Toward an interaction map of the two-component signaling pathway of Arabidopsis thaliana. J Proteome Res 7: 3649–3660.
  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM. 2006. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140: 603–612.
  • Fan L, Neumann PM. 2004. The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiol 135: 2291–2300.
  • Fang Y, You J, Xie K, Xie W, Xiong L. 2008. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280: 547–563.
  • Farnham PJ. 2009. Insights from genomic profiling of transcription factors. Nat Rev Genet 10: 605–616.
  • Farrant AG. 2007. Mechanisms of desiccation tolerance in angiosperm resurrection plants. In: Jenks MA, Wood AJ, eds. Blackwell Publishing Ltd, Oxford, UK Plant Desiccation Tolerance. Blackwell, 51–90.
  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. 2000. Metabolite profiling for plant functional genomics. Nat Biotechnol 18: 1157–1161.
  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124: 509–525.
  • Fukushima A, Kusano M, Redestig H, Arita M, Saito K. 2009. Integrated omics approaches in plant systems biology. Curr Opin Chem Biol 13: 532–538.
  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103: 1988–1993.
  • Gao J, Agrawal GK, Thelen JJ, Xu D. 2009. P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37: D960–D962.
  • Georgieva K, Szigeti Z, Sarvari E, Gaspar L, Maslenkova L, Peeva V, Peli E, Tuba Z. 2007. Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. Planta 225: 955–964.
  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812–818.
  • Golldack D, Lüking I, Yang O. 2011. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30: 1383–1391.
  • Gómez-Porras JL, Riaño-Pachón DM, Dreyer I, Mayer JE, Mueller-Roeber B. 2007. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics 8: 260.
  • Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ané JM, Coon JJ. 2010. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. Plant Physiol 152: 19–28.
  • Gstaiger M, Aebersold R. 2009. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10: 617–627.
  • Hadiarto T, Tran LS. 2011. Progress studies of drought-responsive genes in rice. Plant Cell Rep 30: 297–310.
  • Heazlewood JL. 2011. The Green proteome: challenges in plant proteomics. Front Plant Sci 2: 6.
  • Heazlewood JL, Durek P, Hummel J, Selbig J, Weckwerth W, Walther D, Schulze WX. 2008. PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res 36: D1015–D1021.
  • Hilbricht T, Varotto S, Sgaramella V, Bartels D, Salamini F, Furini A. 2008. Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum. New Phytol 179: 877–887.
  • Hirano H, Islam N, Kawasaki H. 2004. Technical aspects of functional proteomics in plants. Phytochemistry 65: 1487–1498.
  • Hirayama T, Shinozaki K. 2007. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12: 343–351.
  • Hoekstra FA, Golovina EA. 2002. The role of amphiphiles. Comp Biochem Physiol, Part A Mol Integr Physiol 131: 527–533.
  • Hoekstra FA, Golovina EA, Buitink J. 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci 6: 431–438.
  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P. 2008. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008: 420747.
  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103: 12987–12992.
  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. 2008. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: 169–181.
  • Huang J, Sun SJ, Xu DQ, Yang X, Bao YM, Wang ZF, Tang HJ, Zhang H. 2009a. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389: 556–561.
  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, et al. 2009b. High-throughput genotyping by whole-genome resequencing. Genome Res 19: 1068–1076.
  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX. 2009c. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23: 1805–1817.
  • Illing N, Denby KJ, Collett H, Shen A, Farrant JM. 2005. The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues. Integr Comp Biol 45: 771–787.
  • Irsigler AS, Costa MD, Zhang P, Reis PA, Dewey RE, Boston RS, Fontes EP. 2007. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways. BMC Genomics 8: 431.
  • Islam MM, Hoque MA, Okuma E, Banu MN, Shimoishi Y, Nakamura Y, Murata Y. 2009. Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166: 1587–1597.
  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47: 141–153.
  • Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J. 2010. A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285: 23371–23386.
  • Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L, Holford M, Zhang HY, Zhao H, Deng XW, Nelson T. 2009. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41: 258–263.
  • Jones L, McQueen-Mason S. 2004. A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum. FEBS Lett 559: 61–65.
  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I. 2009. Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72: 285–314.
  • Joshi T, Yan Z, Libault M, Jeong DH, Park S, Green PJ, Sherrier DJ, Farmer A, May G, Meyers BC, Xu D, Stacey G. 2010. Prediction of novel miRNAs and associated target genes in Glycine max. BMC Bioinformatics 11 Suppl 1: S14.
  • Karpova OV, Kuzmin EV, Elthon TE, Newton KJ. 2002. Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14: 3271–3284.
  • Kim C, Meskauskiene R, Apel K, Laloi C. 2008. No single way to understand singlet oxygen signalling in plants. EMBO Rep 9: 435–439.
  • Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH, Heu S, Park SY, Lee YH, Jwa NS. 2003. Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun 300: 868–876.
  • Kim JM, To TK, Nishioka T, Seki M. 2010a. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ 33: 604–611.
  • Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H. 2010b. MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51: 1079–1083.
  • Kirch HH, Nair A, Bartels D. 2001. Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J 28: 555–567.
  • Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. 2005. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44: 939–949.
  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T. 2004. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16: 1163–1177.
  • Komatsu S, Ahsan N. 2009. Soybean proteomics and its application to functional analysis. J Proteomics 72: 325–336.
  • Kondou Y, Higuchi M, Takahashi S, Sakurai T, Ichikawa T, Kuroda H, Yoshizumi T, Tsumoto Y, Horii Y, Kawashima M, Hasegawa Y, Kuriyama T, Matsui K, Kusano M, Albinsky D, Takahashi H, Nakamura Y, Suzuki M, Sakakibara H, Kojima M, Akiyama K, Kurotani A, Seki M, Fujita M, Enju A, Yokotani N, Saitou T, Ashidate K, Fujimoto N, Ishikawa Y, Mori Y, Nanba R, Takata K, Uno K, Sugano S, Natsuki J, Dubouzet JG, Maeda S, Ohtake M, Mori M, Oda K, Takatsuji H, Hirochika H, Matsui M. 2009. Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant J 57: 883–894.
  • Kosová K, Vítámvás P, Prášil IT, Renaut J. 2011. Plant proteome changes under abiotic stress–contribution of proteomics studies to understanding plant stress response. J Proteomics 74: 1301–1322.
  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G. 2010. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42: 1053–1059.
  • Langridge P, Paltridge N, Fincher G. 2006. Functional genomics of abiotic stress tolerance in cereals. Brief Funct Genomic Proteomic 4: 343–354.
  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2011a. Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress. DNA Res 18: 17–29.
  • Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. 2011b. Genome-wide survey and expression analysis of the plant-specific nac transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276.
  • Le TN, Blomstedt CK, Kuang JB, Tenlen J, Gaff DF, Hamill JD, Neale AD. 2007. Desiccation-tolerance specific gene expression in leaf tissue of the resurrection plant Sporobolus stapfianus. Functional Plant Biology 34: 589–600.
  • Le TN, McQueen-Mason SJ. 2006. Desiccation-tolerant plants in dry environments. Funct Plant Biol 5: 269–279.
  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW. 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19: 731–749.
  • Lee J, Jiang W, Qiao Y, Cho YI, Woo MO, Chin JH, Kwon SW, Hong SS, Choi IY, Koh HJ. 2011. Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Proteomics 11: 455–468.
  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20: 2238–2251.
  • Liu X, Hong L, Li XY, Yao Y, Hu B, Li L. 2011. Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75: 443–450.
  • Luo M, Liu J, Lee RD, Scully BT, Guo B. 2010. Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integr Plant Biol 52: 1059–1074.
  • Manavalan LP, Guttikonda SK, Nguyen VT, Shannon JG, Nguyen HT. 2010. Evaluation of diverse soybean germplasm for root growth and architecture. Plant Soil 330: 503–514.
  • Manavalan LP, Guttikonda SK, Tran LS, Nguyen HT. 2009. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50: 1260–1276.
  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M. 2008. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49: 1135–1149.
  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K. 2010. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283: 185–196.
  • Matts J, Jagadeeswaran G, Roe BA, Sunkar R. 2010. Identification of microRNAs and their targets in switchgrass, a model biofuel plant species. J Plant Physiol 167: 896–904.
  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2011. AP2/ERF family transcription factors in plant abiotic stress responses. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Biochim Biophys Acta. 2011 Aug 16. [Epub ahead of print] PMID: 21867785.
  • Mochida K, Shinozaki K. 2010. Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51: 497–523.
  • Mochida K, Uehara-Yamaguchi Y, Yoshida T, Sakurai T, Shinozaki K. 2011. Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52: 785–803.
  • Moore JP, Hearshaw M, Ravenscroft N, Lindsey GG, Farrant JM, Brandt WF. 2007. Desiccation-induced ultrastructural and biochemical changes in the leaves of the resurrection plant Myrothamnus flabellifolia. Aust J Bot 55: 482–491.
  • Moore JP, Le NT, Brandt WF, Driouich A, Farrant JM. 2009. Towards a systems-based understanding of plant desiccation tolerance. Trends Plant Sci 14: 110–117.
  • Moore JP, Vicré-Gibouin M, Farrant JM, Driouich A. 2008. Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134: 237–245.
  • Morsy M, Gouthu S, Orchard S, Thorneycroft D, Harper JF, Mittler R, Cushman JC. 2008. Charting plant interactomes: possibilities and challenges. Trends Plant Sci 13: 183–191.
  • Mowla SB, Thomson JA, Farrant JM, Mundree SG. 2002. A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215: 716–726.
  • Nakagami H, Pitzschke A, Hirt H. 2005. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10: 339–346.
  • Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y, Toyoda T, Tomita M, Ishihama Y, Shirasu K. 2010. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol 153: 1161–1174.
  • Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. 2009a. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50: 1345–1363.
  • Nakashima K, Ito Y, Yamaguchi-Shinozaki, K. 2009b. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149: 88–95.
  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2011. NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta. 2011 Oct 19. [Epub ahead of print] PMID: 22037288.
  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51: 617–630.
  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE. 2007. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104: 16450–16455.
  • Newton RP, Brenton AG, Smith CJ, Dudley E. 2004. Plant proteome analysis by mass spectrometry: principles, problems, pitfalls and recent developments. Phytochemistry 65: 1449–1485.
  • Ning J, Li X, Hicks LM, Xiong L. 2010. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152: 876–890.
  • Ning J, Liu S, Hu H, Xiong L. 2008. Systematic analysis of NPK1-like genes in rice reveals a stress-inducible gene cluster co-localized with a quantitative trait locus of drought resistance. Mol Genet Genomics 280: 535–546.
  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK. 2009. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150: 1368–1379.
  • Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR. 2004. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5: 89.
  • Oliver MJ, Guo L, Alexander DC, Ryals JA, Wone BW, Cushman JC. 2011. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus. Plant Cell 23: 1231–1248.
  • Pan Y, Wang D, Zhu LH, Fu BY, Li ZK. 2009. Differential expression of rice two-component element genes under drought stress. Acta Agronomica Sinica 35: 1628–1636
  • Pandey V, Ranjan S, Deeba F, Pandey AK, Singh R, Shirke PA, Pathre UV. 2010. Desiccation-induced physiological and biochemical changes in resurrection plant, Selaginella bryopteris. J Plant Physiol 167: 1351–1359.
  • Parkinson H, Sarkans U, Kolesnikov N, Abeygunawardena N, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Holloway E, Kurbatova N, Lukk M, Malone J, Mani R, Pilicheva E, Rustici G, Sharma A, Williams E, Adamusiak T, Brandizi M, Sklyar N, Brazma A. 2011. ArrayExpress update--an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res 39: D1002–D1004.
  • Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H. 2009. A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166: 1934–1945.
  • Phillips JR, Dalmay T, Bartels D. 2007. The role of small RNAs in abiotic stress. FEBS Lett 581: 3592–3597.
  • Poroyko V, Hejlek LG, Spollen WG, Springer GK, Nguyen HT, Sharp RE, Bohnert HJ. 2005. The maize root transcriptome by serial analysis of gene expression. Plant Physiol 138: 1700–1710.
  • Proctor MCF, Oliver MJ, Wood AJ, Alpert P, Stark LR, Cleavitt NL, Mishler BD. 2007. Desiccation-tolerance in bryophytes: a review. Bryologist 110: 595–621.
  • Ramautar R, Mayboroda OA, Somsen GW, de Jong GJ. 2011. CE-MS for metabolomics: Developments and applications in the period 2008-2010. Electrophoresis 32: 52–65.
  • Ricardi MM, González RM, Iusem ND. 2010. Protocol: fine-tuning of a Chromatin Immunoprecipitation (ChIP) protocol in tomato. Plant Methods 6: 11.
  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie A. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11–29.
  • Rohila JS, Yang YN. 2007. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol 49: 751–759.
  • Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrín JV. 2006. Plant proteome analysis: a 2004-2006 update. Proteomics 6: 5529–5548.
  • Ruan CJ, Teixeira da Silva JA. 2011. Metabolomics: creating new potentials for unraveling the mechanisms in response to salt and drought stress and for the biotechnological improvement of xero-halophytes. Crit Rev Biotechnol 31: 153–169.
  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23: 319–327.
  • Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136: 2734–2746.
  • Schmelzle K, White FM. 2006. Phosphoproteomic approaches to elucidate cellular signaling networks. Curr Opin Biotechnol 17: 406–414.
  • Schripsema J. 2010. Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochem Anal 21: 14–21.
  • Seki M, Umezawa T, Urano K, Shinozaki K. 2007. Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10: 296–302.
  • Sekiyama Y, Kikuchi J. 2007. Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochemistry 68: 2320–2329.
  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT. 2004. Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55: 2343–2351.
  • Shen J, Xie K, Xiong L. 2010. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Mol Genet Genomics 284: 477–488.
  • Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. J Exp Bot 58: 221–227.
  • Shou H, Bordallo P, Wang K. 2004. Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55: 1013–1019.
  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK. 2007. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12: 301–309.
  • Sunkar R, Zhu JK. 2004. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16: 2001–2019.
  • Takác T, Pechan T, Samaj J. 2011. Differential proteomics of plant development. J Proteomics 74: 577–588.
  • Tardif G, Kane NA, Adam H, Labrie L, Major G, Gulick P, Sarhan F, Laliberté JF. 2007. Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol Biol 63: 703–718.
  • Tester M, Langridge P. 2010. Breeding technologies to increase crop production in a changing world. Science 327: 818–822.
  • Thao NP, Tran LS. 2011. Potentials toward genetic engineering of drought-tolerant soybean. Crit Rev Biotechnol. 2011 Dec 19. [Epub ahead of print] PMID: 22181694.
  • Toldi O, Tuba Z, Scott P. 2009. Vegetative desiccation tolerance: Is it a goldmine for bioengineering crops? Plant Science 176: 187–199.
  • Toorchi M, Yukawa K, Nouri MZ, Komatsu S. 2009. Proteomics approach for identifying osmotic-stress-related proteins in soybean roots. Peptides 30: 2108–2117.
  • Tran LS, Mochida K. 2010a. Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10: 447–462.
  • Tran LS, Mochida K. 2010b. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean. Plant Signal Behav 5: 255–257.
  • Tran LS, Mochida K. 2010c. A platform for functional prediction and comparative analyses of transcription factors of legumes and beyond. Plant Signal Behav 5: 550–552
  • Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. 2007a. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49: 46–63.
  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16: 2481–2498.
  • Tran LS, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. 2007b. Plant gene networks in osmotic stress response: from genes to regulatory networks. Methods Enzymol 428: 109–128.
  • Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki, K. 2010a. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1: 32–39.
  • Tran LS, Quach TN, Guttikonda SK, Aldrich DL, Kumar R, Neelakandan A, Valliyodan B, Nguyen HT. 2009. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genomics 281: 647–664.
  • Tran LS, Shinozaki K, Yamaguchi-Shinozaki K. 2010b. Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signal Behav 5: 148–150.
  • Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. 2007c. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104: 20623–20628.
  • Umbach AL, Fiorani F, Siedow JN. 2005. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol 139: 1806–1820.
  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. 2006. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17: 113–122.
  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. 2010. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51: 1821–1839.
  • Urano K, Kurihara Y, Seki M, Shinozaki K. 2010. ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13: 132–138.
  • Valliyodan B, Nguyen HT. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9: 189–195.
  • Vander Willigen C, Pammenter NW, Jaffer MA, Mundree SG, Farrant JM. 2003. An ultrastructural study using anhydrous fixation of Eragrostis nindensis, a resurrection grass with both desiccation-tolerant and -sensitive tissues. Funct Plant Biol 30: 281–290.
  • Vierstra RD. 2003. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8: 135–142.
  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. 2008. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67: 589–602.
  • Weckwerth W. 2011. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75: 284–305.
  • Weigel D, Mott R. 2009. The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10: 107.
  • Werner E, Heilier JF, Ducruix C, Ezan E, Junot C, Tabet JC. 2008. Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 871: 143–163.
  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. 2007. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2: e718.
  • Wu Y, Cosgrove DJ. 2000. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51: 1543–1553.
  • Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS. 2010. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol Biol Rep 37: 3703–3712.
  • Xiang Y, Huang Y, Xiong L. 2007. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144: 1416–1428.
  • Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ. 2009. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2: 73–83.
  • Xiong L, Yang Y. 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15: 745–759.
  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS. 2008. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582: 1037–1043.
  • Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57: 781–803.
  • Yamaguchi M, Valliyodan B, Zhang J, Lenoble ME, Yu O, Rogers EE, Nguyen HT, Sharp RE. 2010. Regulation of growth response to water stress in the soybean primary root. I. Proteomic analysis reveals region-specific regulation of phenylpropanoid metabolism and control of free iron in the elongation zone. Plant Cell Environ 33: 223–243.
  • Yang JH, Seo HH, Han SJ, Yoon EK, Yang MS, Lee WS. 2008. Phytohormone abscisic acid control RNA-dependent RNA polymerase 6 gene expression and post-transcriptional gene silencing in rice cells. Nucleic Acids Res 36: 1220–1226.
  • Yang R, Deng C, Ouyang B, Ye Z. 2011. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38: 857–863.
  • Yang S, Vanderbeld B, Wan J, Huang Y. 2010. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3: 469–490.
  • Ye S, Wang L, Xie W, Wan B, Li X, Lin Y. 2009. Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica). Plant Mol Biol 70: 311–325.
  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. 2009. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229: 1065–1075.
  • Yuan JS, Galbraith DW, Dai SY, Griffin P, Stewart CNJr. 2008. Plant systems biology comes of age. Trends Plant Sci 13: 165–171.
  • ZhangH, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J. 2011. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39: D1114–D1117.
  • Zhang M, Li G, Huang W, Bi T, Chen G, Tang Z, Su W, Sun W. 2010a. Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10: 3117–3129.
  • Zhang Y, Gao P, Yuan JS. 2010b. Plant protein-protein interaction network and interactome. Curr Genomics 11: 40–46.
  • Zhao B, Ge L, Liang R, Li W, Ruan K, Lin H, Jin Y. 2009. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10: 29.
  • Zhao L, Hu Y, Chong K, Wang T. 2010. ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot 105: 401–409.
  • Zhao MR, Li F, Fang Y, Gao Q, Wang W. 2011. Expansin-regulated cell elongation is involved in the drought tolerance in wheat. Protoplasma 248: 313–323.
  • Zheng X, Chen B, Lu G, Han B. 2009a. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379: 985–989.
  • Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE. 2009b. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21: 2563–2577.
  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q, Fan L, Deng XW. 2007. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63: 591–608.
  • Zhu JK. 2008. Reconstituting plant miRNA biogenesis. Proc Natl Acad Sci USA 105: 9851–9852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.