377
Views
52
CrossRef citations to date
0
Altmetric
Review Article

Ca2+ signals: The versatile decoders of environmental cues

, , &
Pages 97-109 | Received 27 Oct 2011, Accepted 01 Mar 2012, Published online: 09 May 2012

References

  • Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S. 2004. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55: 541–552.
  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. 2012. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 30: 524–540.
  • Ahmad P, Jeleel, CA, Azooz MM. 2011a. Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S, eds. Oxidative stress: role of antioxidats in plants. New Delhi, India: Studium Press Pvt. Ltd., 19–53.
  • Ahmad P, Nabi G, Ashraf M. 2011b. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77: 36–44.
  • Ahmad P, Bhardwaj R, Tuteja N. 2011c. Plant signaling under abiotic stress environment. In: Ahmad P, Prasad MNV, eds. Environmental adaptations and stress tolerance of plants in the era of climate change. New York: Springer, 498 p.
  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. 2010a. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30: 161–175.
  • Ahmad P, Prasad MNV. 2011a. Environmental adaptations and stress tolerance of plants in the era of climate change. New York: Springer.
  • Ahmad P, Prasad MNV. 2011b. Abiotic stress responses in plants-metabolism, productivity and sustainability. New York: Springer.
  • Ahmad P, Sarwat M, Sharma S. 2008. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51: 167–173.
  • Ahmad P, Umar S, Sharma S. 2010b. Mechanism of free radical scavenging and role of phytohormones in plants under abiotic stresses. In: Ashraf M, Ozturk M, & Ahmad MSA, eds. Plant adaptation and phytoremediation. New York: Springer, 99–108.
  • Ahmad P. 2010. Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agro Soil Sci 56: 575–588.
  • Ahmad P, Umar S. 2011. Antioxidants: Oxidative stress management in plants. New Delhi, India: Studium Press (India) Pvt. Ltd, 369 p.
  • Akaboshi M, Hashimoto H, Ishida H, Saijo S, Koizumi N, Sato M, Shimizu T. 2008. The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14. J Mol Biol 377: 246–257.
  • Albrecht V, Ritz O, Linder S, Harter K, Kudla J. 2001. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J 20: 1051–1063.
  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA. 2007. Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel2 and innate immunity. Plant Cell 19: 1081–1095.
  • Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF. 2000. Alternation of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289: 2338–2342.
  • Apse MP, Aharon GS, Snedden WA, Blumwald E. 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256–1258.
  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R. 2012. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69: 26–36.
  • Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S. 2005. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46: 356–366.
  • Bai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y, Wu Z, Song CP. 2009. Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J 60: 314–327.
  • Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu JK. 2007. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27: 7781–7790.
  • Batistic O, Waadt R, Steinhorst L, Held K, Kudla J. 2010. CBL-mediated targeting of CIPKs facilitates the decoding of calcium signals emanating from distinct cellular stores. Plant J 61: 211–222.
  • Benjamins R, Ampudia CS, Hooykaas PJ, Offringa R. 2003. PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132: 1623–1630.
  • Boonburapong B, Buaboocha T. 2007. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol 7: 4.
  • Botella JR, Arteca JM, Somodevilla M, Arteca RN. 1996. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata). Plant Mol Biol 30: 1129–1137.
  • Bouché N, Yellin A, Snedden WA, Fromm H. 2005. Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56: 435–466.
  • Bussemer J, Chigri F, Vothknecht UC. 2009. Arabidopsis ATPase family gene 1-like protein 1 is a calmodulin-binding AAA+-ATPase with a dual localization in chloroplasts and mitochondria. FEBS J 276: 3870–3880.
  • Chehab EW, Patharkar OR, Hegeman AD, Taybi T, Cushman JC. 2004. Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol 135: 1430–1446.
  • Chen C, Gao M, Liu J, Zhu H. 2007. Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant Physiol 145: 1619–1628.
  • Chen YL, Huang R, Xiao YM, Lü P, Chen J, Wang XC. 2004. Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2. Plant Physiol 136: 4096–4103.
  • Cheng NH, Pittman JK, Zhu JK, Hirschi KD. 2004. The protein kinase SOS2 activates the Arabidopsis H(+)/Ca(2+) antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279: 2922–2926.
  • Cheng SH, Willmann MR, Chen HC, Sheen J. 2002. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129: 469–485.
  • Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S. 2007. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52: 223–239.
  • Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S. 2010. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells 29: 159–165.
  • Chigri F, Hörmann F, Stamp A, Stammers DK, Bölter B, Soll J, Vothknecht UC. 2006. Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proc Natl Acad Sci USA 103: 16051–16056.
  • Chin D, Means AR. 2000. Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10: 322–328.
  • Choe S, Dilkes BP, Gregory BD, Ross AS, Yuan H, Noguchi T, Fujioka S, Takatsuto S, Tanaka A, Yoshida S, Tax FE, Feldmann KA. 1999. The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiol 119: 897–907.
  • Choi HI, Park HJ, Park JH, Kim S, Im MY, Seo HH, Kim YW, Hwang I, Kim SY. 2005. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139: 1750–1761.
  • Clapham DE. 2007. Calcium signaling. Cell 131: 1047–1058.
  • D’Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. 2006. Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J 48: 857–872.
  • Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF. 2003. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132: 1840–1848.
  • Davletova S, Mészáros T, Miskolczi P, Oberschall A, Török K, Magyar Z, Dudits D, Deák M. 2001. Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot 52: 215–221.
  • Day IS, Reddy VS, Shad Ali G, Reddy AS. 2002. Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3: RESEARCH0056. 0056.1–0056.24.
  • de Silva K, Laska B, Brown C, Sederoff HW, Khodakovskaya M. 2011. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. J Exp Bot 62: 2679–2689.
  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. 2009. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21: 972–984.
  • Du L, Poovaiah BW. 2005. Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437: 741–745.
  • Finkler A, Ashery-Padan R, Fromm H. 2007a. CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS Lett 581: 3893–3898.
  • Finkler A, Kaplan B, Fromm H. 2007b. Ca-Responsive cis-elements in Plants. Plant Signal Behav 2: 17–19.
  • Franz S, Ehlert B, Liese A, Kurth J, Cazalé AC, Romeis T. 2011. Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 4: 83–96.
  • Fujii H, Zhu JK. 2009. An autophosphorylation site of the protein kinase SOS2 is important for salt tolerance in Arabidopsis. Mol Plant 2: 183–190.
  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103: 1988–1993.
  • Galon Y, Finkler A, Fromm H. 2010a. Calcium-regulated transcription in plants. Mol Plant 3: 653–669.
  • Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouché N, Knight MR, Fromm H. 2010b. Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232: 165–178.
  • Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H. 2008. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett 582: 943–948.
  • Gargantini PR, Giammaria V, Grandellis C, Feingold SE, Maldonado S, Ulloa RM. 2009. Genomic and functional characterization of StCDPK1. Plant Mol Biol 70: 153–172.
  • Gifford JL, Walsh MP, Vogel HJ. 2007. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405: 199–221.
  • Godfroy O, Debellé F, Timmers T, Rosenberg C. 2006. A rice calcium- and calmodulin-dependent protein kinase restores nodulation to a legume mutant. Mol Plant Microbe Interact 19: 495–501.
  • Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H. 2008. Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene 415: 1–12.
  • Guo Y, Halfter U, Ishitani M, Zhu JK. 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13: 1383–1400.
  • Halfter U, Ishitani M, Zhu JK. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 97: 3735–3740.
  • Harper JF, Breton G, Harmon A. 2004. Decoding Ca(2+) signals through plant protein kinases. Annu Rev Plant Biol 55: 263–288.
  • Hashimoto K, Kudla J. 2011. Calcium decoding mechanisms in plants. Biochimie 93: 2054–2059.
  • Hwang YS, Bethke PC, Cheong YH, Chang HS, Zhu T, Jones RL. 2005. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol 138: 1347–1358.
  • Ikura M, Ames JB. 2006. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: two ways to promote multifunctionality. Proc Natl Acad Sci USA 103: 1159–1164.
  • Ishida H, Rainaldi M, Vogel HJ. 2009. Structural studies of soybean calmodulin isoform 4 bound to the calmodulin-binding domain of tobacco mitogen-activated protein kinase phosphatase-1 provide insights into a sequential target binding mode. J Biol Chem 284: 28292–28305.
  • Ishida S, Fukazawa J, Yuasa T, Takahashi Y. 2004. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell 16: 2641–2651.
  • Ishida S, Yuasa T, Nakata M, Takahashi Y. 2008. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor repression of shoot growth in response to gibberellins. Plant Cell 20: 3273–3288.
  • Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H. 2006. Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18: 2733–2748.
  • Kato M, Nagasaki-Takeuchi N, Ide Y, Maeshima M. 2010. An Arabidopsis hydrophilic Ca2+-binding protein with a PEVK-rich domain, PCaP2, is associated with the plasma membrane and interacts with calmodulin and phosphatidylinositol phosphates. Plant Cell Physiol 5: 366–379.
  • Katou S, Kuroda K, Seo S, Yanagawa Y, Tsuge T, Yamazaki M, Miyao A, Hirochika H, Ohashi Y. 2007. A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol 48: 332–344.
  • Kiegle E, Moore CA, Haseloff J, Tester MA, Knight MR. 2000. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23: 267–278.
  • Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schültke S, Lee SC, Kudla J, Luan S. 2007. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52: 473–484.
  • Kim KN, Cheong YH, Gupta R, Luan S. 2000. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol 124: 1844–1853.
  • Kim MC, Chung WS, Yun DJ, Cho MJ. 2009. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2: 13–21.
  • Klimecka M, Muszynska G. 2007. Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54: 219–233.
  • Knight H, Trewavas AJ, Knight MR. 1996. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8: 489–503.
  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. 2004. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134: 43–58.
  • Komatsu S, Yang G, Khan M, Onodera H, Toki S, Yamaguchi M. 2007. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol Genet Genomics 277: 713–723.
  • Laohavisit A, Davies JM. 2011. Annexins. New Phytol 189: 40–53.
  • Lee K, Song EH, Kim HS, Yoo JH, Han HJ, Jung MS, Lee SM, Kim KE, Kim MC, Cho MJ, Chung WS. 2008. Regulation of MAPK phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J Biol Chem 283: 23581–23588.
  • Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F. 2004. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303: 1361–1364.
  • Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ, Mao L. 2008. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol 66: 429–443.
  • Li JH, Liu YQ, Lü P, Lin HF, Bai Y, Wang XC, Chen YL. 2009. A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol 150: 114–124.
  • Li Z, Onodera H, Ugaki M, Tanaka H, Komatsu S. 2003. Characterization of calreticulin as a phosphoprotein interacting with cold-induced protein kinase in rice. Biol Pharm Bull 26: 256–261.
  • Liang L, Flury S, Kalck V, Hohn B, Molinier J. 2006. CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. Plant Mol Biol 61: 345–356.
  • Lindberg S, Kader MA, Yemelyanov V. 2011. Calcium signalling in plant cells under environmental stress. In: Ahmad P& Prasad MNV, eds Environmental adaptations and stress tolerance of plants in the era of climate change. New York: Springer: pp. 325–360.
  • Liu G, Chen J, Wang X. 2006. VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant Cell Environ 29: 2091–2099.
  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG. 2008. The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55: 760–773.
  • Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B. 2007. Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30: 156–164.
  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97: 3730–3734.
  • Liu J, Zhu JK. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280: 1943–1945.
  • Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. 2002. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14 Suppl: S389–S400.
  • Luan S. 2009. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14: 37–42.
  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T. 2005. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102: 10736–10741.
  • Ma SY, Wu WH. 2007. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65: 511–518.
  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D. 2008. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56: 575–589.
  • Mahajan S, Sopory SK, Tuteja N. 2006. Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J 273: 907–925.
  • Mall TK, Dweikat I, Sato SJ, Neresian N, Xu K, Ge Z, Wang D, Elthon T, Clemente T. 2011. Expression of the rice CDPK-7 in sorghum: molecular and phenotypic analyses. Plant Mol Biol 75: 467–479.
  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143: 1001–1012.
  • McCormack E, Braam J. 2003. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159: 585–598.
  • McCormack E, Tsai YC, Braam J. 2005. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10: 383–389.
  • McCubbin AG, Ritchie SM, Swanson SJ, Gilroy S. 2004. The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant J 39: 206–218.
  • Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M. 2010. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63: 484–498.
  • Milla MA, Townsend J, Chang IF, Cushman JC. 2006a. The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways. Plant Mol Biol 61: 13–30.
  • Rodriguez Milla MA, Uno Y, Chang IF, Townsend J, Maher EA, Quilici D, Cushman JC. 2006b. A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Lett 580: 904–911.
  • Molinier J, Ramos C, Fritsch O, Hohn B. 2004. Centrin2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell 16: 1633–1643.
  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, et al. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLOS Biol 4: 1749–1762.
  • Moscatiello R, Mariani P, Sanders D, Maathuis FJ. 2006. Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides. J Exp Bot 57: 2847–2865.
  • Nagae M, Nozawa A, Koizumi N, Sano H, Hashimoto H, Sato M, Shimizu T. 2003. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. J Biol Chem 278: 42240–42246.
  • Oh SI, Park J, Yoon S, Kim Y, Park S, Ryu M, Nam MJ, Ok SH, Kim JK, Shin JS, Kim KN. 2008. The Arabidopsis calcium sensor calcineurin B-like 3 inhibits the 5′-methylthioadenosine nucleosidase in a calcium-dependent manner. Plant Physiol 148: 1883–1896.
  • Ohta M, Guo Y, Halfter U, Zhu JK. 2003. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 100: 11771–11776.
  • Ozturk ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ. 2002. Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48: 551–573.
  • Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S. 2004. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16: 1912–1924.
  • Pandey GK, Grant JJ, Cheong YH, Kim BG, Li le G, Luan S. 2008. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant 1: 238–248.
  • Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH, Lee SM, Kim HS, Kang KY, Chung WS, Lim CO, Cho MJ. 2005. WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579: 1545–1550.
  • Perochon A, Aldon D, Galaud JP, Ranty B. 2011. Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93: 2048–2053.
  • Plieth C, Hansen, UP, Knight H, Knight MR. 1999. Temperature sensing by plants: The primary characteristics of signal perception and calcium response. Plant J 18: 491–497.
  • Poutrain P, Mazars C, Thiersault M, Rideau M, Pichon O. 2009. Two distinct intracellular Ca2+-release components act in opposite ways in the regulation of the auxin-dependent MIA biosynthesis in Catharanthus roseus cells. J Exp Bot 60: 1387–1398.
  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y. 2007. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19: 1415–1431.
  • Ramachandiran S, Takezawa D, Wang W, Poovaiah BW. 1997. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains. J Biochem 121: 984–990.
  • Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK. 2007. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics 278: 493–505.
  • Reddy AS, Ali GS, Celesnik H, Day IS. 2011. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23: 2010–2032.
  • Reddy AS, Ben-Hur A, Day IS. 2011. Experimental and computational approaches for the study of calmodulin interactions. Phytochemistry 72: 1007–1019.
  • Reddy VS, Reddy AS. 2004. Proteomics of calcium-signaling components in plants. Phytochemistry 65: 1745–1776.
  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23: 319–327.
  • Sánchez-Barrena MJ, Fujii H, Angulo I, Martínez-Ripoll M, Zhu JK, Albert A. 2007. The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell 26: 427–435.
  • Sánchez-Barrena MJ, Martínez-Ripoll M, Zhu JK, Albert A. 2005. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345: 1253–1264.
  • Sanders D, Pelloux J, Brownlee C, Harper JF. 2002. Calcium at the crossroads of signaling. Plant Cell 14 Suppl: S401–S417.
  • Sarwat M, Tuteja N. 2007. Calnexin: A versatile calcium binding integral membrane-bound chaperone of endoplasmic reticulum. Calcium-Binding Proteins 2: 36–50.
  • Sarwat M. 2011a. Calnexin: a candidate for crosstalk of ER-stress and abiotic stress in plants. In: Society for Experimental Biology Annual Meeting, Glasgow, July 1–4, 4.26 p.
  • Sarwat M. 2011b. Agrobacterium mediated genetic transformation to produce rice varieties tolerant to abiotic stress conditions. In: Indo-German workshop in the frame of the program “Initiation and Intensification of Bilateral Cooperation, March 22–24, 149 p.
  • Schiøtt M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF. 2004. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101: 9502–9507.
  • Hernández Sebastià C, Hardin SC, Clouse SD, Kieber JJ, Huber SC. 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428: 81–91.
  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31: 279–292.
  • Sheen J. 1996. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274: 1900–1902.
  • Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J. 1999. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11: 2393–2405.
  • Shishova M, Lindberg S. 2010. A new perspective on auxin perception. J Plant Physiol 167: 417–422.
  • Snedden WA, Fromm H. 2001. Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151: 35–66.
  • Song WY, Zhang ZB, Shao HB, Guo XL, Cao HX, Zhao HB, Fu ZY, Hu XJ. 2008. Relationship between calcium decoding elements and plant abiotic-stress resistance. Int J Biol Sci 4: 116–125.
  • Sugiyama K, Mori IC, Takahashi K, Muto S, Shihira-Ishikawa I. 2000. A calcium-dependent protein kinase functions in wound healing in Ventricaria ventricosa (Chlorophyta). J Phycol 36: 1145–1152.
  • Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K. 2011. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41: 649–660.
  • Takezawa D, Ramachandiran S, Paranjape V, Poovaiah BW. 1996. Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin. J Biol Chem 271: 8126–8132.
  • Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J. 2006. Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441: 1153–1156.
  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D. 2009. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58: 778–790.
  • Tuteja N, Sopory SK. 2008. Plant signaling in stress: G-protein coupled receptors, heterotrimeric G-proteins and signal coupling via phospholipases. Plant Signal Behav 3: 79–86.
  • Vanderbeld B, Snedden WA. 2007. Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Mol Biol 64: 683–697.
  • Virdi AS, Thakur A, Dutt S, Kumar S, Singh P. 2009. A sorghum 85kDa heat stress-modulated protein shows calmodulin-binding properties and cross-reactivity to anti-Neurospora crassa Hsp 80 antibodies. FEBS Lett 583: 767–770.
  • Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J. 2008. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56: 505–516.
  • Wan B, Lin Y, Mou T. 2007. Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett 581: 1179–1189.
  • Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G. 2007. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 65: 733–746.
  • Wang Q, Chen B, Liu P, Zheng M, Wang Y, Cui S, Sun D, Fang X, Liu CM, Lucas WJ, Lin J. 2009. Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem 284: 12000–12007.
  • Weinl S, Kudla J. 2009. The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol 184: 517–528.
  • Witte CP, Keinath N, Dubiella U, Demoulière R, Seal A, Romeis T. 2010. Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. J Biol Chem 285: 9740–9748.
  • Wurzinger B, Mair A, Pfister B, Teige M. 2011. Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav 6: 8–12.
  • Xiang Y, Huang Y, Xiong L. 2007. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144: 1416–1428.
  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, Gao F, Fu XY, Hou XL, Yao QH. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231: 1251–1260.
  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E. 2005. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA 102: 16107–16112.
  • Yamakawa H, Katou S, Seo S, Mitsuhara I, Kamada H, Ohashi Y. 2004. Plant MAPK phosphatase interacts with calmodulins. J Biol Chem 279: 928–936.
  • Yang T, Shad Ali G, Yang L, Du L, Reddy AS, Poovaiah BW. 2010a. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. Plant Signal Behav 5: 991–994.
  • Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW. 2010b. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285: 7119–7126.
  • Yang T, Poovaiah BW. 2000a. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein. Biochem Biophys Res Commun 275: 601–607.
  • Yang T, Poovaiah BW. 2000b. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275: 3137–3143.
  • Yang T, Poovaiah BW. 2002. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277: 45049–45058.
  • Ye S, Wang L, Xie W, Wan B, Li X, Lin Y. 2009. Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica). Plant Mol Biol 70: 311–325.
  • Yoon GM, Cho HS, Ha HJ, Liu JR, Lee HS. 1999. Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol Biol 39: 991–1001.
  • Yu XC, Li MJ, Gao GF, Feng HZ, Geng XQ, Peng CC, Zhu SY, Wang XJ, Shen YY, Zhang DP. 2006. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol 140: 558–579.
  • Yu Y, Xia X, Yin W, Zhang H. 2007. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul 52: 101–110.
  • Zhang H, Yin W, Xia X. 2008. Calcineurin B-like family in Populus: Comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regul 56: 129–140.
  • Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY. 2009. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149: 1773–1784.
  • Zhao Y, Kappes B, Franklin RM. 1993. Gene structure and expression of an unusual protein kinase from Plasmodium falciparum homologous at its carboxyl terminus with the EF hand calcium-binding proteins. J Biol Chem 268: 4347–4354.
  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP. 2007. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19: 3019–3036.
  • Zong XJ, Li DP, Gu LK, Li DQ, Liu LX, Hu XL. 2009. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta 229: 485–495.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.