1,057
Views
87
CrossRef citations to date
0
Altmetric
Review Article

A current assessment on the production of bacterial keratinases

&
Pages 372-384 | Received 31 Oct 2012, Accepted 07 Apr 2013, Published online: 13 Aug 2013

References

  • Adigüzel AC, Bitlisli BO, Yaşa I, Eriksen NT. (2009). Sequential secretion of collagenolytic, elastolytic, and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. J Appl Microbiol, 107, 226–34
  • Ahuja SK, Ferreira GM, Moreira AR. (2004). Utilization of enzymes for environmental applications. Crit Rev Biotechnol, 24, 125–54
  • Anbu P, Gopinath SCB, Hilda A, et al. (2006). Secretion of keratinolytic enzymes by Scopulariopsis brevicaulis and Trichophyton mentagrophytes: regression analysis. Can J Microbiol, 52, 1060–9
  • Anbu P, Gopinath SCB, Hilda A, et al. (2007). Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis. Bioresour Technol, 98, 1298–303
  • Anbu P, Hilda A, Sur HW, et al. (2008). Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping soil. Int Biodeterior Biodegrad, 62, 287–92
  • Arai KM, Takahashi R, Yokote Y, Akahane K. (1983). Amino-acid sequence of feather keratin from fowl. Eur J Biochem, 132, 501–7
  • Awad GEA, Esawy MA, Salam WA, et al. (2011). Keratinase production by Bacillus pumilus GHD in solid-state fermentation using sugar cane bagasse: optimization of culture conditions using a Box-Behnken experimental design. Ann Microbiol, 61, 663–72
  • Barone JR, Schmidt WF, Liebner CFE. (2005). Thermally processed keratin films. J Appl Polym Sci, 97, 1644–51
  • Bernal C, Diaz I, Coello N. (2006). Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria rosea. Can J Microbiol, 52, 445–50
  • Bertsch A, Coello N. (2005). A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour Technol, 96, 1703–8
  • Bierbaum G, Giesecke UE, Wandrey C. (1991). Analysis of nucleotide pools during protease production with Bacillus licheniformis. Appl Microbiol Biotechnol, 35, 725–30
  • Blyskal B. (2009). Fungi utilizing keratinous substrates. Int Biodeterior Biodegrad, 63, 631–53
  • Brandelli A. (2008). Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol, 1, 105–16
  • Brandelli A, Daroit DJ, Riffel A. (2010). Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol, 85, 1735–50
  • Burtt EH, Ichida JM. (1999a). Bacteria useful for degrading keratin. US Patent N° 6214676
  • Burtt EH, Ichida JM. (1999b). Keratinase produced by Bacillus licheniformis. US Patent N° 5877000
  • Cai CG, Lou BG, Zheng XD. (2008). Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis. J Zhejiang Univ Sci B, 9, 60–7
  • Cai CG, Zheng XD. (2009). Medium optimization for keratinase production in hair substrate by a new Bacillus subtilis KD-N2 using response surface methodology. J Ind Microbiol Biotechnol, 36, 875–83
  • Cai SB, Huang ZH, Zhang XQ, et al. (2011). Identification of a keratinase-producing bacterial strain and enzymatic study for its improvement on shrink resistance and tensile strength of wool- and polyester-blended fabric. Appl Biochem Biotechnol, 163, 112–26
  • Casarin F, Cladera-Olivera F, Brandelli A. (2008). Use of poultry byproduct for production of keratinolytic enzymes. Food Bioprocess Technol, 1, 301–5
  • Cedrola SML, Melo ACN, Mazotto AM, et al. (2012). Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste. World J Microbiol Biotechnol, 28, 1259–69
  • Chao YP, Xie FH, Yang J, et al. (2007). Screening for a new Streptomyces strain capable of efficient keratin degradation. J Environ Sci, 19, 1125–8
  • Corrêa APF, Daroit DJ, Coelho JG, et al. (2011). Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. J Sci Food Agric, 91, 2247–54
  • Cortezi M, Cilli EM, Contiero J. (2008). Bacillus amyloliquefaciens: a new keratinolytic feather-degrading bacteria. Curr Trends Biotechnol Pharm, 2, 170–7
  • Coulombe PA, Omary MB. (2002). “Hard” and “soft” principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol, 14, 110–22
  • Coward-Kelly G, Agbogbo FK, Holtzapple MT. (2006). Lime treatment of keratinous materials for the generation of highly digestible animal feed: 2. Animal hair. Bioresour Technol, 97, 1344–1352
  • Daroit DJ, Corrêa APF, Brandelli A. (2009). Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int Biodeterior Biodegrad, 63, 358–63
  • Daroit DJ, Corrêa APF, Segalin J, Brandelli A. (2010). Characterization of a keratinolytic protease produced by the feather-degrading Amazonian bacterium Bacillus sp. P45. Biocatal Biotransform, 28, 370–9
  • Daroit DJ, Sant’Anna V, Brandelli A. (2011a). Kinetic stability modelling of keratinolytic protease P45: influence of temperature and metal ions. Appl Biochem Biotechnol, 165, 1740–53
  • Daroit DJ, Corrêa APF, Brandelli A. (2011b). Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. Int Biodeterior Biodegrad, 65, 45–51
  • Daroit DJ, Corrêa APF, Canales MM, et al. (2012). Physicochemical properties and biological activities of ovine caseinate hydrolysates. Dairy Sci Technol, 92, 335–51
  • Duarte TR, Oliveira SS, Macrae A, et al. (2011). Increased expression of keratinase and other peptidases by Candida parapsilosis mutants. Braz J Med Biol Res, 44, 212–16
  • El-Bondkly AM, El-Gendy MMA. (2010). Keratinolytic activity from new recombinant fusant AYA2000, derived from endophytic Micromonospora strains. Can J Microbiol, 56, 748–60
  • El-Gendy MMA. (2010). Keratinase production by endophytic Penicillium spp. Morsy1 under solid-state fermentation using rice straw. Appl Biochem Biotechnol, 162, 780–94
  • Embaby AM, Zaghloul TI, Elmahdy AR. (2010). Optimizing the biodegradation of two keratinous wastes through a Bacillus subtilis recombinant strain using a response surface methodology. Biodegradation, 21, 1077–92
  • Fakhfakh N, Kanoun S, Manni L, Nasri M. (2009). Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading Bacillus licheniformis RPk. Can J Microbiol, 55, 427–36
  • Fakhfakh N, Ktari N, Haddar A, et al. (2011). Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochem, 46, 1731–7
  • Fakhfakh-Zouari N, Haddar A, Hmidet N, et al. (2010). Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Process Biochem, 45, 617–26
  • Fisher SH. (1999). Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence! Mol Microbiol, 32, 223–32
  • Fisher KE, Ruan B, Alexander PA, et al. (2007). Mechanism of the kinetically-controlled folding reaction of subtilisin. Biochemistry, 46, 640–51
  • Fraser RDB, Parry DAD. (2008). Molecular packing in the feather keratin filament. J Struct Biol, 162, 1–13
  • Giongo JL, Lucas FS, Casarin F, et al. (2007). Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J Microbiol Biotechnol, 23, 375–82
  • Gioppo NMR, Moreira-Gasparin FG, Costa AM, et al. (2009). Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J Ind Microbiol Biotechnol, 36, 705–11
  • Görke B, Stülke J. (2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Rev Microbiol, 6, 613–24
  • Gradisar H, Friedrich J, Krizaj I, Jerala R. (2005). Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol, 71, 3420–6
  • Grazziotin A, Pimentel FA, De Jong EV, Brandelli A. (2008). Poultry feather hydrolysate as a protein source for growing rats. Braz J Vet Res Anim Sci, 45, 61–7
  • Gupta R, Beg QK, Lorenz P. (2002a). Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol, 59, 15–32
  • Gupta R, Beg QK, Khan S, Chauhan B. (2002b). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol, 60, 381–95
  • Gupta R, Ramnani P. (2006). Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol, 70, 21–33
  • Gupta R, Sharma R, Beg QK. (2012). Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol, 33, 216--228
  • Haddar HO, Zaghloul TI, Saeed HM. (2009). Biodegradation of native feather keratin by Bacillus subtilis recombinant strains. Biodegradation, 20, 687–94
  • Hidalgo ME, Daroit DJ, Corrêa APF, et al. (2012). Physicochemical and antioxidant properties of bovine caseinate hydrolysates obtained through microbial protease treatment. Int J Dairy Technol, 65, 342–52
  • Jan J, Valle F, Bolivar F, Merino E. (2000). Characterization of the 5’ subtilisin (aprE) regulatory region from Bacillus subtilis. FEMS Microbiol Lett, 183, 9–14
  • Jaouadi B, Ellouz-Chaabouni S, Ben Ali M, et al. (2009). Excellent laundry detergent compatibility and high dehairing ability of the Bacillus pumilus CBS alkaline proteinase (SAPB). Biotechnol Bioprocess Eng, 14, 503–12
  • Jeong JH, Jeon YD, Lee OM, et al. (2010a). Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil. Biodegradation, 21, 1029–40
  • Jeong JH, Lee OM, Jeon YD, et al. (2010b). Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity. Process Biochem, 45, 1738–45
  • Jeong JH, Park KH, Oh DJ, et al. (2010c). Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5. Polym Degrad Stabil, 95, 1969–77
  • Johannes TW, Zhao H. (2006). Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol, 9, 261–67
  • Joo HS, Chang CS. (2005). Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem, 40, 1263–70
  • Kalil SJ, Maugeri F, Rodrigues MI. (2000). Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem, 35, 539–50
  • Khardenavis AA, Kapley A, Purohit HJ. (2009). Processing of poultry feathers by alkaline keratin hydrolyzing enzyme from Serratia sp. HPC 1383. Waste Manage, 29, 1409–15
  • Kim JM, Choi YM, Suh HJ. (2005). Preparation of feather digests as fertilizer with Bacillus pumilis KHS-1. J Microbiol Biotechnol, 15, 472–76
  • Kita DA, Routien JB. (1965). Process of producing keratinase. US Patent N° 3173847
  • Kolkman MAB, van der Ploeg R, Bertels M, et al. (2008). The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway. Appl Environ Microbiol, 74, 7507–13
  • Korniłłowicz-Kowalska T. (1997). Studies on the decomposition of keratin wastes by saprotrophic microfungi: I: criteria for evaluating keratinolytic activity. Acta Mycol, 32, 51–79
  • Korniłłowicz-Kowalska T, Bohacz J. (2011). Biodegradation of keratin waste: theory and practical aspects. Waste Manage, 31, 1689–701
  • Kumar A, Singh S. (2012). Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol, doi:10.3109/07388551.2012.716810
  • Kumar CG, Takagi H. (1999). Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv, 17, 561–94
  • Kumar R, Balaji S, Uma TS, Mandal AB, Sehgal PK. (2010). Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal – a biowaste management. Appl Biochem Biotechnol, 160, 30–9
  • Lee YJ, Kim JH, Kim HK, Lee JS. (2004). Production and characterization of keratinase from Paracoccus sp. WJ-98. Biotechnol Bioprocess Eng, 9, 17–22
  • Li J, Shi PJ, Han XY, et al. (2007). Functional expression of the keratinolytic serine protease gene sfp2 from Streptomyces fradiae var. k11 in Pichia pastoris. Protein Expres Purif, 54, 79–86
  • Liang X, Bian Y, Tang XF, et al. (2010). Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions. Appl Microbiol Biotechnol, 87, 999–1006
  • Liang JD, Han YF, Zhang JW, et al. (2011). Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIFR-H49-1. J Appl Microbiol, 110, 871–80
  • Lin X, Kelemen DW, Miller ES, Shih JCH. (1995). Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Appl Environ Microbiol, 61, 1469–74
  • Lin X, Wong SL, Miller ES, Shih JCH. (1997). Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Ind Microbiol Biotechnol, 19, 134–8
  • Lin HH, Yin LJ, Jiang ST. (2009a). Cloning, expression, and purification of Pseudomonas aeruginosa keratinase in Escherichia coli AD494(DE3)pLysS expression system. J Agric Food Chem, 57, 3506–11
  • Lin HH, Yin LJ, Jiang ST. (2009b). Expression and purification of Pseudomonas aeruginosa keratinase in Bacillus subtilis DB104 expression system. J Agric Food Chem, 57, 7779–84
  • Lin HH, Yin LJ, Jiang ST. (2009c). Functional expression and characterization of keratinase from Pseudomonas aeruginosa in Pichia pastoris. J Agric Food Chem, 57, 5321–5
  • Lin HH, Yin LJ. (2010). Feather meal and rice husk enhanced keratinases production by Bacillus licheniformis YJ4 and characters of produced keratinases. J Mar Sci Technol, 18, 458–65
  • Lopes FC, Silva LAD, Tichota DM, et al. (2011). Production of proteolytic enzymes by a keratin-degrading Aspergillus niger. Enzyme Res 2011: article ID 487093, 9 pp
  • Lv LX, Sim MH, Li YD, et al. (2010). Production, characterization and application of a keratinase from Chryseobacterium L99 sp. nov. Process Biochem, 45, 1236–44
  • Mabrouk MEM. (2008). Feather degradation by a new keratinolytic Streptomyces sp. MS-2. World J Microbiol Biotechnol, 24, 2331–8
  • Mäder U, Antelmann H, Buder T, et al. (2002). Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Genet Genomics, 268, 455–67
  • Manczinger L, Rozs M, Cs V, Kevei F. (2003). Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J Microbiol Biotechnol, 19, 35–9
  • Mandenius CF, Brundin A. (2008). Bioprocess optimization using design-of-experiments methodology. Biotechnol Prog, 24, 1191–203
  • Mazotto AM, Cedrola SML, Lins U, et al. (2010). Keratinolytic activity of Bacillus subtilis AMR using human hair. Lett Appl Microbiol, 50, 89–96
  • Meng K, Li J, Cao Y, et al. (2007). Gene cloning and heterologous expression of a serine protease from Streptomyces fradiae var. k11. Can J Microbiol, 53, 186–95
  • Mitola G, Escalona F, Salas R, et al. (2002). Morphological characterization of in-vitro human hair keratinolysis, produced by identified wild strains of Chrysosporium species. Mycopathologia, 156, 163–9
  • Mitsuiki S, Sakai M, Moriyama Y, et al. (2002). Purification and some properties of keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem, 66, 164–7
  • Mitsuiki S, Hui Z, Matsumoto D, et al. (2006). Degradation of PrPSc by keratinolytic protease from Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem, 70, 1246–8
  • Mohorcic M, Torkar A, Friedrich J, et al. (2007). An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int J Pharm, 332, 196–201
  • Moreno MS, Schneider BL, Maile RR, et al. (2001). Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol, 39, 1366–81
  • Mukherjee AK, Rai SK, Bordoloi NK. (2011). Biodegradation of waste chicken-feathers by an alkaline b-keratinase (Mukartinase) purified from a mutant Brevibacillus sp. strain AS-S10-II. Int Biodeterior Biodegrad, 65, 1229–37
  • Ni H, Chen QH, Chen F, et al. (2011). Improved keratinase production for feather degradation by Bacillus licheniformis ZJUEL31410 in submerged cultivation. Afr J Biotechnol, 10, 7236–44
  • Noronha EF, Lima BD, Sá CM, Felix CR. (2002). Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris. World J Microbiol Biotechnol, 18, 563–8
  • Noval JJ, Nickerson WJ. (1959). Decomposition of native keratin by Streptomyces fradiae. J Bacteriol, 77, 251–63
  • Odetallah NH, Wang JJ, Garlich JD, Shih JCH. (2003). Keratinase in starter diets improves growth of broiler chicks. Poultry Sci, 82, 664–70
  • Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S. (1998). A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol, 66, 1–11
  • Park GT, Son HJ. (2009). Keratinolytic activity of Bacillus megaterium F7-1, a feather-degrading mesophilic bacterium. Microbiol Res, 164, 478–85
  • Pillai P, Mandge S, Archana G. (2011). Statistical optimization of production and tannery applications of a keratinolytic serine protease from Bacillus subtilis P13. Process Biochem, 46, 1110–17
  • Poole AJ, Church JS, Huson MG. (2009). Environmentally sustainable fibers from regenerated protein. Biomacromolecules, 10, 1–8
  • Porres JM, Benito MJ, Lei XG. (2002). Functional expression of keratinase (kerA) gene from Bacillus licheniformis in Pichia pastoris. Biotechnol Lett, 24, 631–6
  • Prakash P, Jayalakshmi SK, Sreeramulu K. (2010a). Production of keratinase by free and immobilized cells of Bacillus halodurans strain PPKS-2: partial characterization and its application in feather degradation and dehairing of the goat skin. Appl Biochem Biotechnol, 160, 1909–20
  • Prakash P, Jayalakshmi S, Sreeramulu K. (2010b). Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl Microbiol Biotechnol, 87, 625–33
  • Priest FG. (1977). Extracellular enzyme synthesis in the genus Bacillus. Bacteriol Rev, 41, 711–53
  • Radha S, Gunasekaran P. (2007). Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. J Appl Microbiol, 103, 1301–10
  • Radha S, Gunasekaran P. (2008). Sustained expression of keratinase gene under PxylA and PamyL promoters in the recombinant Bacillus megaterium MS941. Bioresour Technol, 99, 5528–37
  • Radha S, Gunasekaran P. (2009). Purification and characterization of keratinase from recombinant Pichia and Bacillus strains. Protein Expres Purif, 64, 24–31
  • Rahayu S, Syah D, Suhartono MT. (2012). Degradation of keratin by keratinase and disulfide reductase from Bacillus sp. MTS of Indonesian origin. Biocatal Agric Biotechnol, 1, 152–8
  • Rai SK, Konwarh R, Mukherjee AK. (2009). Purification, characterization and biotechnological application of an alkaline β-keratinase produced by Bacillus subtilis RM-01 in solid-state fermentation using chicken-feather as substrate. Biochem Eng J, 45, 218–25
  • Rai SK, Mukherjee AK. (2011). Optimization of production of an oxidant and detergent-stable alkaline β-keratinase from Brevibacillus sp. strain AS-S10-II: application of enzyme in laundry detergent formulations and in leather industry. Biochem Eng J, 54, 47–56
  • Rajput R, Sharma R, Gupta R. (2011). Cloning and characterization of a thermostable detergent-compatible recombinant keratinase from Bacillus pumilus KS12. Biotechnol Appl Biochem, 58, 109–18
  • Rajput R, Tiwary E, Sharma R, Gupta R. (2012). Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability. Enzyme Microb Technol, 51, 131–8
  • Ramnani P, Singh R, Gupta R. (2005). Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol, 51, 191–6
  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev, 62, 597–635
  • Riffel A, Daroit DJ, Brandelli A. (2011). Nutritional regulation of protease production by the feather–degrading bacterium Chryseobacterium sp. kr6. New Biotechnol, 28, 153–7
  • Rondon MR, August PR, Bettermann AD, et al. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol, 66, 2541–7
  • Rouse JG, Van Dyke ME. (2010). A review of keratin-based biomaterials for biomedical applications. Materials, 3, 999–1014
  • Saber WIA, El-Metwally MM, El-Hersh MS. (2010). Keratinase production and biodegradation of some keratinous wastes by Alternaria tenuissima and Aspergillus nidulans. Res J Microbiol, 5, 21–35
  • Sanchez S, Demain AL. (2011). Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev, 15, 224–30
  • Sharma R, Gupta R. (2010a). Substrate specificity characterization of a thermostable keratinase from Pseudomonas aeruginosa KS-1. J Ind Microbiol Biotechnol, 37, 785–92
  • Sharma R, Gupta R. (2010b). Extracellular expression of keratinase Ker P from Pseudomonas aeruginosa in E. coli. Biotechnol Lett, 32, 1863–8
  • Sharma R, Gupta R. (2012). Coupled action of γ-glutamyl transpeptidase-glutathione and keratinase effectively degrades feather keratin and surrogate prion protein, Sup 35NM. Bioresour Technol, 120, 314–17
  • Shih JCH. (2003). Composition and method for destruction of infectious prion proteins. US Patent N° 6613505
  • Shih JCH, Williams CM. (1992). Purified Bacillus licheniformis PWD-1 keratinase. US Patent N° 5171682
  • Shih JCH, Wang JJ. (2006). Keratinase technology: from feather degradation and feed additive, to prion destruction. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour, 1, article 042, 6 pp
  • Shrinivas D, Naik GR. (2011). Characterization of alkaline thermostable keratinolytic protease from thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Int Biodeterior Biodegrad, 65, 29–35
  • Singh CJ. (2002). Optimization of an extracellular protease of Chrysosporium keratinophilum and its potential in bioremediation of keratinic wastes. Mycopathologia, 156, 151–6
  • Singh BK. (2010). Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol, 28, 111–16
  • Son HJ, Park HC, Kim HS, Lee CY. (2008). Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol Lett, 30, 461–5
  • Sonenshein AL. (2005). CodY, a global regulator of stationary phase and virulence in Gram–positive bacteria. Curr Opin Microbiol, 8, 203–7
  • Strauch MA, Hoch JA. (1993). Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol, 7, 337–42
  • Sumantha A, Larroche C, Pandey A. (2006). Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol, 44, 211–20
  • Suntornsuk W, Suntornsuk L. (2003). Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Bioresour Technol, 86, 239–43
  • Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K. (2006). Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng, 102, 73–81
  • Takahashi K, Yamamoto H, Yokote Y, Hattori M. (2004). Thermal behavior of fowl feather keratin. Biosci Biotechnol Biochem, 68, 1875–81
  • Tang WL, Zhao H. (2009). Industrial biotechnology: tools and applications. Biotechnol J, 4, 1725–39
  • Tatineni R, Doddapaneni KK, Potumarthi RC, Mangamoori LN. (2007). Optimization of keratinase production and enzyme activity using response surface methodology with Streptomyces sp7. Appl Biochem Biotechnol, 141, 187–201
  • Thys RCS, Guzzon SO, Cladera-Olivera F, Brandelli A. (2006). Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process Biochem, 41, 67–73
  • Tiwary E, Gupta R. (2010a). Extracellular expression of keratinase from Bacillus licheniformis ER-15 in Escherichia coli. J Agric Food Chem, 58, 8380–5
  • Tiwary E, Gupta R. (2010b). Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: biochemical characterization and application in feather degradation and dehairing of hides. Bioresour Technol, 101, 6103–10
  • Van Beilen JB, Li Z. (2002). Enzyme technology: an overview. Curr Opin Biotechnol, 13, 338–44
  • Vasconcelos A, Freddi G, Cavaco-Paulo A. (2008). Biodegradable materials based on silk fibroin and keratin. Biomacromolecules, 9, 1299–305
  • Vasileva-Tonkova E, Gousterova A, Neshev G. (2009). Ecologically safe method for improved feather wastes biodegradation. Int Biodeterior Biodegrad, 63, 1008–12
  • Veselá M, Friedrich J. (2009). Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. Biotechnol Bioprocess Eng, 14, 84–90
  • Vignardet C, Guillaume YC, Michel L, et al. (2001). Comparison of two hard keratinous substrates submitted to the action of a keratinase using an experimental design. Int J Pharm, 224, 115–22
  • Voigt B, Schweder T, Sibbald MJJB, et al. (2006). The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics, 6, 268–81
  • Voigt B, Hoi LT, Jürgen B, et al. (2007). The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics, 7, 413–23
  • Wang JJ, Rojanatavorn K, Shih JCH. (2004). Increased production of Bacillus keratinase by chromosomal integration of multiple copies of the kerA gene. Biotechnol Bioeng, 87, 459–64
  • Wang JJ, Greenhut WB, Shih JCH. (2005). Development of an asporogenic Bacillus licheniformis for the production of keratinase. J Appl Microbiol, 98, 761–7
  • Wang JJ, Garlich JD, Shih JCH. (2006). Beneficial effects of Versazyme, a keratinase feed additive, on body weight, feed conversion, and breast yield of broiler chickens. J Appl Poultry Res, 15, 544–50
  • Wang H, Guo Y, Shih JCH. (2008a). Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals. Anim Feed Sci Technol, 140, 376–84
  • Wang SL, Hsu WT, Liang TW, et al. (2008b). Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour Technol, 99, 5679–86
  • Xie F, Chao Y, Yang X, et al. (2010). Purification and characterization of four keratinases produced by Streptomyces sp. strain 16 in native human foot skin medium. Bioresour Technol, 101, 344–50
  • Yamamura S, Morita Y, Hasan Q, et al. (2002a). Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun, 294, 1138–43
  • Yamamura S, Morita Y, Hasan Q, et al. (2002b). Characterization of a new keratin-degrading bacterium isolated from deer fur. J Biosci Bioeng, 93, 595–600
  • Yang JI, Kuo JM, Chen WM, et al. (2011). Feather keratin hydrolysis by an aquatic bacterium Meiothermus I40 from hot spring water. Int J Food Eng, 7, article 17, 23 pp
  • Yoshioka M, Miwa T, Horii H, et al. (2007). Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. J Appl Microbiol, 102, 509–15
  • Zaghloul TI. (1998). Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity. Appl Biochem Biotechnol, 70–2, 199–205
  • Zeng YH, Shen FT, Tan CC, et al. (2011). The flexibility of UV-inducible mutation in Deinococcus ficus as evidenced by the existence of the imuB.dnaE2 gene cassette and generation of superior feather degrading bacteria. Microbiol Res, 167, 40–7
  • Zhang B, Jiang DD, Zhou WW, et al. (2009). Isolation and characterization of a new Bacillus sp. 50-3 with highly alkaline keratinase activity from Calotes versicolor faeces. World J Microbiol Biotechnol, 25, 583–90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.