452
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Synechocystis sp. PCC6803 metabolic models for the enhanced production of hydrogen

, , &
Pages 184-198 | Received 14 Jan 2013, Accepted 25 Jul 2013, Published online: 03 Oct 2013

References

  • Agrawal R, Singh NR, Ribeiro FH, Delgass WN. (2007). Sustainable fuel for the transportation sector. Proc Natl Acad Sci USA, 104, 4828–33
  • Akkerman I, Janssen M, Rocha J, et al. (2002). Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrogen Energy, 27, 1195--208
  • Alon U. (2003). Biological networks: the tinkerer as an engineer. Science, 301, 1866–7
  • Angermayr SA, Hellingwerf KJ, Lindblad P, De Mattos MJT. (2009). Energy biotechnology with cyanobacteria. Curr Opin Biotechnol, 20, 257–63
  • Antal TK, Lindblad P. (2005). Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol, 98, 114–20
  • Atadashi IM, Aroua MK, Aziz AA. (2010). High quality biodiesel and its diesel engine application: a review. Renew Sustainable Energy Rev, 14, 1999–2008
  • Baebprasert W, Jantaro S, Khetkorn W, et al. (2011). Increased H2 production in the cyanobacterium Synechocystis sp. strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway. Metab Eng, 13, 610–16
  • Bandyopadhyay A, Stöckel J, Min H, et al. (2010). High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun, 1, 139
  • Barstow B, Agapakis CM, Boyle PM, et al. (2011). A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism. J Biol Eng, 5, 7
  • BioModularH2. (2005). Engineered Modular Bacterial Photoproduction of Hydrogen (BioModularH2), FP6-2005-NEST-PATH-SYN, PATHFINDER STREP, contract no. 043340
  • Bonarius HPJ, Schmid G, Tramper J. (1997). Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol, 15, 308–14
  • BP p.l.c. (2011). BP statistical review of world energy, June 2011
  • Burgard AP, Nikolaev E V, Schilling CH, Maranas CD. (2004). Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res, 14, 301–12
  • Burgdorf T, Lenz O, Buhrke T, et al. (2005). [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol, 10, 181–96
  • Carty RH, Mazumder MM, Schreiber JD, Pangborn JB. (1981). Thermochemical hydrogen production, Report GRI-80/0023.4. Ed. Gas Research Institute. Chicago, IL
  • Caspi R, Foerster H, Fulcher CA, et al. (2006). MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res, 34, D511–16
  • Chou C-J, Jenney FE, Adams MWW, Kelly RM. (2008). Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng, 10, 394–404
  • Clarke BL. (1988). Stoichiometric network analysis. Cell Biophys, 12, 237–53
  • Committee on Alternatives and Strategies for Future Hydrogen Production and Use, National Research Council, National Academy of Engineering. (2004). The hydrogen economy: opportunities, costs, barriers, and R&D needs. Washington, USA: National Academy Press, 1--256
  • Cournac L, Peltier G, Vignais PM, et al. (2004). Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. Strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol, 186, 1737–46
  • Cvijovic M, Olivares-Hernández R, Agren R, et al. (2010). BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Res, 38, 144–9
  • Das D, Veziroglu TN. (2001). Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy, 26, 13–28
  • Das D, Veziroglu TN. (2008). Advances in biological hydrogen production processes. Int J Hydrogen Energy, 33, 6046–57
  • Deng MD, Coleman JR. (1999). Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol, 65, 523–8
  • Department of Energy. (2007). Hydrogen production – Hydrogen, Fuel Cells and Infrastructure Technologies Program. Department of Energy. Available from: www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/production.pdf [last accessed 19 Aug 2013]
  • Devroe EJ, Kosuri S, Berry DA, et al. (2010). Hyperphotosynthetic organisms. US Patent 7785861
  • Diamant I, Eldar YC, Rokhlenko O, et al. (2009). A network-based method for predicting gene-nutrient interactions and its application to yeast amino-acid metabolism. Mol Biosyst, 5, 1732–9
  • Douglas SE. (1998). Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev, 8, 655–61
  • Ducat DC, Sachdeva G, Silver PA. (2011a). Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci USA, 108, 3941–6
  • Ducat DC, Way JC, Silver PA. (2011b). Engineering cyanobacteria to generate high-value products. Trends Biotechnol, 29, 95–103
  • Edwards JS, Palsson BØ. (1999). Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem, 274, 17410–16
  • Edwards JS, Palsson BØ. (2000). The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA, 97, 5528–33
  • Elam CC, Gregoire-Padró C, Sandrock G, et al. (2003). Realizing the hydrogen future: the International Energy Agency’s efforts to advance hydrogen energy technologies. Int J Hydrogen Energy, 28, 601–7
  • Eriksen NT, Riis ML, Holm NK, Iversen N. (2010). H2 synthesis from pentoses and biomass in Thermotoga spp. Biotechnol Lett, 33, 293–300
  • European Commission. (2011a). Energy and transport factsheets 2010. Available from: http://ec.europa.eu/energy/observatory/statistics/statistics_en.htm [last accessed 19 Aug 2013]
  • European Commission. (2011b). Europe 2020: a strategy for competitive, sustainable and secure energy. Luxembourg: Publications Office of the European Union
  • Fabiano B, Perego P. (2002). Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int J Hydrogen Energy, 27, 149–56
  • Famili I, Forster J, Nielsen J, Palsson BØ. (2003). Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc Natl Acad Sci USA, 100, 13134–9
  • Feist AM, Herrgård MJ, Thiele I, et al. (2009). Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol, 7, 129–43
  • Fell DA, Small JR. (1986). Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem J, 238, 781–6
  • Förster J, Famili I, Fu P, et al. (2003). Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res, 13, 244–53
  • Foster JS, Singh AK, Rothschild LJ, Sherman LA. (2007). Growth-phase dependent differential gene expression in Synechocystis sp. strain PCC 6803 and regulation by a group 2 sigma factor. Arch Microbiol, 187, 265–79
  • Fu P. (2008). Genome-scale modeling of Synechocystis sp. PCC 6803 and prediction of pathway insertion. J Chem Technol Biot, 84, 473–83
  • Fujishima A, Honda K. (1972). Electrochemical photolysis of water at a semiconductor elctrode. Nature, 238, 37–8
  • Gamermann D, Montagud A, Jaime Infante RA, et al. (2012). PyNetMet: Python tools for efficient work with networks and metabolic models. Molecular Networks. arXiv preprint arXiv:1211.7196, 1–19
  • Gill RT, Katsoulakis E, Schmitt W, et al. (2002). Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. Strain PCC 6803. J Bacteriol, 184, 3671–81
  • Greene SR, Flanagan GF, Borole AP. (2009). Integration of biorefineries and nuclear cogeneration power plants – a preliminary analysis. ORNL/TM-2008/102. Oak Ridge, TN: Oak Ridge National Laboratory
  • Gugger M, Biological Resource Center of Institut Pasteur. (2011). Catalogue data sheet of Synechocystis PCC 6803. Available from: http://www.crbip.pasteur.fr/fiches/fichecata.jsp?crbip=PCC%206803[last accessed 19 Aug 2013]
  • Gutthann F, Egert M, Marques A, Appel J. (2007). Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim Biophys Acta, 1767, 161–9
  • Hallenbeck P, Benemann JR. (2002). Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy, 27, 1185–93
  • Hamilton JJ, Reed JL. (2012). Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. Ed. Franca Fraternali. PLoS One, 7, e34670
  • Hihara Y, Kamei A, Kanehisa M, et al. (2001). DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell, 13, 793–806
  • Hihara Y, Sonoike K, Kanehisa M, Ikeuchi M. (2003). DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol, 185, 1719–25
  • Hill J, Nelson E, Tilman D, et al. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA, 103, 11206–10
  • Houchins JP. (1984). The physiology and biochemistry of hydrogen metabolism in cyanobacteria. BBA Bioenergetics, 768, 227–55
  • Houmard J, Tandeau de Marsac N. (1988). Cyanobacterial genetic tools: current status. Methods Enzymol, 167, 808–47
  • Huang L, McCluskey MP, Ni H, LaRossa RA. (2002). Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol, 184, 6845–58
  • Hübschmann T, Yamamoto H, Gieler T, et al. (2005). Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC 6803: impact of cyanobacterial phytochromes. FEBS Lett, 579, 1613–18
  • Kalia VC, Jain SR, Kumar A, Joshi AP. (1994). Frementation of biowaste to H2 by Bacillus licheniformis. World J Microbiol Biotechnol, 10, 224–7
  • Kaneko T, Sato S, Kotani H, et al. (1996). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res, 3, 185–209
  • Kaneko T, Tanaka A, Sato S, et al. (1995). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res, 2, 153–66, 191–8
  • Kanesaki Y, Suzuki I, Allakhverdiev SI, et al. (2002). Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun, 290, 339–48
  • Kim W-Y, Kang S, Kim B-C, et al. (2008). SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803. BMC Bioinf, 9, S20
  • Kitano H. (2002). Computational systems biology. Nature, 420, 206–10
  • Klanchui A, Khannapho C, Phodee A, et al. (2012). iAK692: a genome-scale metabolic model of Spirulina platensis C1. BMC Syst Biol, 6, 71
  • Knoop H, Zilliges Y, Lockau W, Steuer R. (2010). The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol, 154, 410–22
  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML. (2002). Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: Effects of culture parameters. Biotechnol Bioeng. 78, 731--40
  • Krieger CJ, Zhang P, Mueller LA, et al. (2004). MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res, 32, D438–42
  • Kroposki B, Levene J, Harrison K, et al. (2006). Electrolysis: information and opportunities for electric power utilities. NREL – Technical report
  • Kufryk GI, Sachet M, Schmetterer G, Vermaas WFJ. (2002). Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol Lett, 206, 215–19
  • Kumar N, Das D. (2001). Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol, 29, 280--87
  • Kun A, Papp B, Szathmáry E. (2008). Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biol, 9, R51
  • Laguna-Bercero MA. (2012). Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J Power Sources, 203, 4–16
  • Latendresse M, Krummenacker M, Trupp M, Karp PD. (2012). Construction and completion of flux balance models from pathway databases. Bioinformatics, 28, 388--96
  • Levin D, Pitt L, Love M. (2004). Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy, 29, 173--85
  • Lindberg P, Park S, Melis A. (2010). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng, 12, 70–9
  • Liu X, Brune D, Vermaas W, Curtiss R. (2010). Production and secretion of fatty acids in genetically engineered cyanobacteria. Proc Natl Acad Sci USA, 6803, 2–7
  • Llaneras F, Picó J. (2008). Stoichiometric modelling of cell metabolism. J Biosci Bioeng, 105, 1–11
  • Lopes Pinto F, Troshina O, Lindblad P. (2002). A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrogen Energy, 27, 1209–15
  • Maniatis K. (2010). Biofuels from algae: results of the 2010 FP7 Call. Available from: http://www.biofuelstp.eu/downloads/presentations/2010_KM_Algae_BTP.pdf [last accessed 19 Aug 2013]
  • Mavrovouniotis ML, Stephanopoulos G, Stephanopoulos G. (1992). Synthesis of biochemical production routes. Comput Chem Eng, 16, 605–19
  • Melis A. (1991). Dynamics of photosynthetic membrane composition and function. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1058, 87–106
  • Melis A. (2011). Maximizing light utilization efficiency and hydrogen production in microalgal cultures. Department of Energy – Hydrogen Program
  • Melis A, Melnicki M. (2006). Integrated biological hydrogen production. Int J Hydrogen Energy, 31, 1563–73
  • Melis A, Zhang L, Forestier M, et al. (2000). Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol, 122, 127–36
  • Metzker ML. (2010). Sequencing technologies – the next generation. Nat Rev Genet, 11, 31–46
  • Milne TA, Elam CC, Evans RJ. (2002). Hydrogen from biomass – state of the art and research challenges. IEA/H2/TR-02/001. Golden, USA: National Renewable Energy Laboratory Golden
  • Milo R, Shen-Orr S, Itzkovitz S, et al. (2002). Network motifs: simple building blocks of complex networks. Science, 298, 824–7
  • Momirlan M, Veziroglu TN. (2005). The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrogen Energy, 30, 795–802
  • Montagud A, Navarro E, Fernández de Córdoba P, et al. (2010). Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Syst Biol, 4, 156
  • Montagud A, Zelezniak A, Navarro E, et al. (2011). Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium Synechocystis sp. PCC6803. Biotechnol J, 6, 330–42
  • Navarro E, Montagud A, Fernández de Córdoba P, Urchueguía JF. (2009). Metabolic flux analysis of the hydrogen production potential in Synechocystis sp. PCC6803. Int J Hydrogen Energy, 34, 8828–38
  • Nielsen J, Oliver S. (2005). The next wave in metabolome analysis. Trends Biotechnol, 23, 544–6
  • Nogales J, Gudmundsson S, Knight EM, et al. (2012). Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci USA, 109, 2678--83
  • Nogales J, Gudmundsson S, Thiele I. (2013). Toward systems metabolic engineering in cyanobacteria: opportunities and bottlenecks. Bioengineered, 4, 5–4
  • Nookaew I, Olivares-Hernández R, Bhumiratana S, Nielsen J. (2011). Genome-scale metabolic models of Saccharomyces cerevisiae. Methods Mol Biol, 759, 445–63
  • Oh Y-K, Seol E-H, Lee EY, Park S. (2002). Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas Palustris P4. Int J Hydrogen Energy, 27, 1373–9
  • Oliveira AP, Patil KR, Nielsen J. (2008). Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks. BMC Syst Biol, 2, 17
  • Orth JD, Thiele I, Palsson BØ. (2010). What is flux balance analysis? Nat Biotechnol, 28, 245–8
  • Palsson B. (2000). The challenges of in silico biology. Nat Biotechnol, 18, 1147–50
  • Patil KR, Akesson M, Nielsen J. (2004). Use of genome-scale microbial models for metabolic engineering. Curr Opin Biotechnol, 15, 64–9
  • Patil KR, Nielsen J. (2005). Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci USA, 102, 2685–9
  • Patil KR, Rocha I, Förster J, Nielsen J. (2005). Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinf, 6, 308
  • Pérez-Escudero A, Rivera-Alba M, De Polavieja GG. (2009). Structure of deviations from optimality in biological systems. Proc Natl Acad Sci USA, 106, 20544–9
  • Perret R. (2005). Solar hydrogen generation research -- high-temperature thermochemical. Department of Energy – Hydrogen Program. Available from: http://www.hydrogen.energy.gov/pdfs/progress05/iv_i_1_perret.pdf [last accessed 19 Aug 2013]
  • Postgate JR. (1970). Biological nitrogen fixation. Nature, 226, 25–7
  • Pregger T, Graf D, Krewitt W, et al. (2009). Prospects of solar thermal hydrogen production processes. Int J Hydrogen Energy, 34, 4256–67
  • Raven JA, Allen JF. (2003). Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol, 4, 209
  • Reed JL, Vo TD, Schilling CH, Palsson BO. (2003). An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol, 4, R54
  • Rippka R, Deruelles J, Waterbury JB, et al. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J General Microbiol, 111, 1–61
  • Rocha I, Maia P, Evangelista P, et al. (2010). OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol, 4, 45
  • Saha R, Verseput AT, Berla BM, et al. (2012). Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. Ed. John Parkinson. PLoS One, 7, e48285
  • Sauer U, Heinemann M, Zamboni N. (2007). Getting closer to the whole picture. Science, 316, 550–1
  • Savinell JM, Palsson BØ. (1992a). Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism. J Theor Biol, 154, 421–54
  • Savinell JM, Palsson BØ. (1992b). Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J Theor Biol, 154, 421–54
  • Schellenberger J, Que R, Fleming RMT, et al. (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc, 6, 1290–307
  • Schilling CH, Schuster S, Palsson BØ, Heinrich R. (1999). Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog, 15, 296–303
  • Schmitt WA, Stephanopoulos G. (2003). Prediction of transcriptional profiles of Synechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnol Bioeng, 84, 855–63
  • Schopf JW. (2000). The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M, eds. The ecology of cyanobacteria. Dordrecht, The Netherlands: Kluwer Academic Publishers, 13–35
  • Schröder C, Selig M, Schönheit P. (1994). Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch Microbiol, 161, 460–70
  • Schuster R, Schuster S. (1993). Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed. CABIOS, 9, 79–85
  • Segrè D, Vitkup D, Church GM. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA, 99, 15112–17
  • Shastri AA, Morgan JA. (2005). Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog, 21, 1617–26
  • Singh AK, Bhattacharyya-Pakrasi M, Elvitigala T, et al. (2009). A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiol, 151, 1596–608
  • Singh AK, McIntyre LM, Sherman LA. (2003). Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol, 132, 1825–39
  • Snoep JL, Westerhoff HV. (2005). From isolation to integration, a systems biology approach for building the Silicon Cell. Top Curr Gen, 13, 13–30
  • Soanes C, Stevenson A. (2010). The New Oxford Dictionary of English. 3rd ed. Oxford: Oxford University Press
  • Solazyme Inc. (2012). Web page: http://www.solazyme.com/technology
  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev, 35, 171–205
  • Stapleton JA, Swartz JR. (2010). Development of an in vitro compartmentalization screen for high-throughput directed evolution of [FeFe] hydrogenases. PLoS ONE, 5, e15275
  • Stelling J, Klamt S, Bettenbrock K, et al. (2002). Metabolic network structure determines key aspects of functionality and regulation. Nature, 420, 190–3
  • Stephanopoulos G, Aristidou A, Nielsen J. (1998). Metabolic engineering: principles and methodologies. San Diego: Academic Press
  • Stephanopoulos G, Stafford DE. (2002). Metabolic engineering: a new frontier of chemical reaction engineering. Chem Eng Sci, 57, 2595–602
  • Stripp S, Sanganas O, Happe T, Haumann M. (2009a). The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy. Biochemistry, 48, 5042–9
  • Stripp ST, Goldet G, Brandmayr C, et al. (2009b). How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci USA, 106, 17331–6
  • Summerfield TC, Sherman LA. (2008). Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. Appl Environ Microbiol, 74, 5276–84
  • Suzuki I, Kanesaki Y, Mikami K, et al. (2001). Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol, 40, 235–44
  • Suzuki I, Simon WJ, Slabas AR. (2006). The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot, 57, 1573–8
  • Sveshnikov DA, Sveshnikova NV, Rao KK, Hall DO. (1997). Hydrogen metabolism of mutant forms of Anabaena variabilis in continuous cultures and under nutritional stress. FEMS Microbiol Lett, 147, 297--301
  • Swingley WD, Blankenship RE. (2008). Insights into cyanobacterial evolution from comparative genomics. In: Herrero A, Flores E, eds. The cyanobacteria: molecular biology, genomics, and evolution. Norfolk, UK: Horizon Scientific Press, 21–43
  • Szallasi Z, Stelling J, Periwal V. (2006). System modeling in cellular biology: from concepts to nuts and bolts. Cambridge, USA: The MIT Press
  • Taguchi F, Yamada K, Hasegawa K, et al. (1996). Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system. J Ferment Bioeng, 82, 80–3
  • Tamagnini P, Axelsson R, Lindberg P, et al. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev, 66, 1–20
  • Tamagnini P, Leitão E, Oliveira P, et al. (2007). Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev, 31, 692–720
  • Thauer R. (1976). Limitation of microbial H2-formation via fermentation. In: Schlegel HG, Barnea J, eds. Microbial energy conversion. Göttingen: E. Goltze KG, 201–14
  • Thiel T. (1994). Genetic analysis of cyanobacteria. In: Bryant DA, ed. Molecular biology of cyanobacteria, Chapter 19. Dordrecht, Netherlands: Kluwer Academic Publishers, 581–611
  • Thiele I, Palsson BØ. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc, 5, 93–121
  • Turner J, Sverdrup G, Mann MK, et al. (2008). Renewable hydrogen production. Int J Energ Res, 32, 379–407
  • U.S. Energy Information Administration. (2011a). webpage [http://www.eia.gov/]
  • U.S. Energy Information Administration. (2011b). August 2011 monthly energy review
  • United Nations. (1998). Kyoto Protocol to the United Nations framework convention on climate change. Available from: http://unfccc.int/resource/docs/convkp/kpeng.pdf [last accessed 19 Aug 2013]
  • United States Government. (2011). Hydrogen and Fuel Cells Interagency Working Group [http://www.hydrogen.gov/]
  • Varma A, Boesch BW, Palsson BØ. (1993a). Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng, 42, 59–73
  • Varma A, Boesch BW, Palsson BØ. (1993b). Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol, 59, 2465–73
  • Varma A, Palsson BØ. (1993a). Metabolic capabilities of E. coli I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol, 165, 477–502
  • Varma A, Palsson BØ. (1993b). Metabolic capabilities of E. coli II. Optimal growth patterns. J Theor Biol, 165, 503–22
  • Varma A, Palsson BØ. (1994a). Metabolic flux balancing: basic concepts, scientific and practical use. Nature, 12, 994–8
  • Varma A, Palsson BØ. (1994b). Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol, 60, 3724–31
  • Vitkin E, Shlomi T. (2012). MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks. Genome Biol, 13, R111
  • Vu TT, Stolyar SM, Pinchuk GE, et al. (2012). Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142. Ed. Daniel Segrè. PLoS Comput Biol, 8, e1002460
  • Wang H-L, Postier BL, Burnap RL. (2004). Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem, 279, 5739–51
  • Wang WG, Lyons DW, Clark NN, et al. (2000). Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environ Sci Technol, 34, 933–9
  • Wetterstrand K. (2012). DNA sequencing costs: data from the NHGRI large-scale genome sequencing program. Available from: www.genome.gov/sequencingcosts [last accessed 21 Jan 2012]
  • Wu GF, Wu QY, Shen ZY. (2001). Accumulation of poly-beta-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803. Bioresour Technol, 76, 85–90
  • Yamaguchi K, Suzuki I, Yamamoto H, et al. (2002). A two-component Mn 2-sensing system negatively regulates expression of the mntCAB Operon in Synechocystis. Plant Cell, 14, 2901–13
  • Yang C, Hua Q, Shimizu K. (2002a). Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis. Appl Microbiol Biotechnol, 58, 813–22
  • Yang C, Hua Q, Shimizu K. (2002b). Metabolic flux analysis in synechocystis using isotope distribution from 13C-Labeled glucose. Metab Eng, 4, 202–16
  • Yang C, Hua Q, Shimizu K. (2002c). Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy. J Biosci Bioeng, 93, 78–87
  • Yokthongwattana K, Melis A. (2008). Photoinhibition and recovery in oxygenic photosynthesis: mechanism of a photosystem II damage. In: Demmig-Adams B, Adams WW, Mattoo AK, eds. Photoprotection, photoinhibition, gene regulation, and environment. Berlin: Springer Science, 175–91
  • Yoshikawa K, Kojima Y, Nakajima T, et al. (2011). Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Appl Microbiol Biotechnol, 92, 1–5
  • Zhang S, Bryant D. (2011). The tricarboxylic acid cycle in cyanobacteria. Science, 334, 1551–3
  • Zhang Z, Pendse ND, Phillips KN, et al. (2008). Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genom, 9, 344
  • Zucchetto J, (ed.), National Research Council. (2006). Trends in oil supply and demand, potential for peaking of conventional oil production, and possible mitigation options: a summary report of the workshop. Washington, USA: National Academy Press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.