425
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Measuring gene expression in single bacterial cells: recent advances in methods and micro-devices

, , , , &
Pages 448-460 | Received 12 Sep 2012, Accepted 13 Jan 2014, Published online: 07 Apr 2014

References

  • Altindal T, Chattopadhyay S, Wu X-L. (2011). Bacterial chemotaxis in an optical trap. PLoS ONE, 6, e18231
  • Amann RI, Ludwig W, Schleifer KH. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 59, 143–69
  • An D, Parsek MR. (2007). The promise and peril of transcriptional profiling in biofilm communities. Curr Opin Microbiol, 10, 292–6
  • Anis Y, Holl M, Meldrum D. (2010). Automated selection and placement of single cells using vision-based feedback control. IEEE Trans Automat Sci Eng, 7, 598–606
  • Anis Y, Houkal J, Holl M, et al. (2011). Diaphragm pico-liter pump for single-cell manipulation. Biomed Microdevices, 13, 651–9
  • Aoi Y. (2002). In situ identification of microorganisms in biofilm communities. J Biosci Bioeng, 94, 552–6
  • Arumugam PU, Chen H, Cassell AM, Li J. (2007). Dielectrophoretic trapping of single bacteria at carbon nanofiber nanoelectrode arrays. J Phys Chem A, 111, 12772–7
  • Ashida N, Ishii S, Hayano S, et al. (2010). Isolation of functional single cells from environments using a micromanipulator: application to study denitrifying bacteria. Appl Microbiol Biotechnol, 85, 1211–17
  • Ashkin A, Dziedzic JM. (1987). Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517–20
  • Ashkin A, Dziedzic JM, Yamane T. (1987). Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769–71
  • Babendure JR, Adams SR, Tsien RY. (2003). Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc, 125, 14716–17
  • Banaeiyan AA, Ahmadpour D, Adiels CB, Goksör M. (2013). Design and fabrication of high-throughput application-specific microfluidic devices for studying single-cell responses to extracellular perturbations. Proc SPIE, 8765, 87650K
  • Banerjee B, Balasubramanian S, Ananthakrishna G, et al. (2004). Tracking operator state fluctuations in gene expression in single cells. Biophys J, 86, 3052–9
  • Baptista M, Rodrigues P, Depardieu F, et al. (1999). Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. Mol Microbiol, 32, 17–28
  • Bardy SL, Ng SY, Jarrell KF. (2003). Prokaryotic motility structures. Microbiology, 149, 295–304
  • Becskei A, Kaufmann BB, van Oudenaarden A. (2005). Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nat Genet, 37, 937–44
  • Beer NR, Hindson BJ, Wheeler EK, et al. (2007). On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal Chem, 79, 8471–5
  • Benítez JJ, Topolancik J, Tian HC, et al. (2012). Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells. Lab Chip, 12, 4848–54
  • Bertrand E, Chartrand P, Schaefer M, et al. (1998). Localization of ASH1 mRNA particles in living yeast. Mol Cell, 2, 437–45
  • Beta C, Bodenschatz E. (2011). Microfluidic tools for quantitative studies of eukaryotic chemotaxis. Eur J Cell Biol, 90, 811–16
  • Block SM, Blair DF, Berg HC. (1989). Compliance of bacterial flagella measured with optical tweezers. Nature, 338, 514–18
  • Boedicker J, Li L, Kline T, Ismagilov R. (2008). Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab chip, 8, 1265–72
  • Brady G, Iscove NN. (1993). Construction of cDNA libraries from single cells. Meth Enzymol, 225, 611–23
  • Brehm-Stecher BF, Johnson EA. (2004). Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev, 68, 538–59
  • Broude NE. (2011). Analysis of RNA localization and metabolism in single live bacterial cells: achievements and challenges. Mol Microbiol, 80, 1137–47
  • Button DK, Schut F, Quang P, et al. (1993). Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol, 59, 881–91
  • Calapez A, Pereira HM, Calado A, et al. (2002). The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J Cell Biol, 159, 795–805
  • Cardullo RA, Agrawal S, Flores C, et al. (1988). Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc Natl Acad Sci USA, 85, 8790–4
  • Carmon G, Feingold M. (2011). Rotation of single bacterial cells relative to the optical axis using optical tweezers. Opt Lett, 36, 40–2
  • Chalfie M, Tu Y, Euskirchen G, et al. (1994). Green fluorescent protein as a marker for gene expression. Science, 263, 802–5
  • Clausell-Tormos J, Lieber D, Baret J-C, et al. (2008). Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol, 15, 427–37
  • Colman-Lerner A, Gordon A, Serra E, et al. (2005). Regulated cell-to-cell variation in a cell-fate decision system. Nature, 437, 699–706
  • Daigle N, Ellenberg J. (2007). λN-GFP: an RNA reporter system for live-cell imaging. Nat Methods, 4, 633–6
  • Di Carlo D, Wu LY, Lee LP. (2006). Dynamic single cell culture array. Lab Chip, 6, 1445–9
  • Dupont CL, Rusch DB, Yooseph S, et al. (2012). Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J, 6, 1186–99
  • Enger J, Goksör M, Ramser K, et al. (2004). Optical tweezers applied to a microfluidic system. Lab Chip, 4, 196–200
  • Eun YJ, Utada AS, Copeland MF, et al. (2011). Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol, 6, 260–6
  • Fritzsch FS, Rosenthal K, Kampert A, et al. (2013). Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments. Lab Chip, 13, 397–408
  • Fu AY, Spence C, Scherer A, et al. (1999). A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol, 17, 1109–11
  • Fuchs P, Weichel W, Dübel S, et al. (1996). Separation of E. coli expressing functional cell-wall bound antibody fragments by FACS. Immunotechnology, 2, 97–102
  • Furutani S, Nagai H, Takamura Y, Kubo I. (2010). Compact disk (CD)-shaped device for single cell isolation and PCR of a specific gene in the isolated cell. Anal Bioanal Chem, 398, 2997–3004
  • Gao W, Navarroli D, Naimark J, et al. (2013). Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota. Microbiome, 1, 1--8
  • Gao W, Zhang W, Meldrum DR. (2011). RT-qPCR based quantitative analysis of gene expression in single bacterial cells. J Microbiol Methods, 85, 221–7
  • Goetz JJ, Trimarchi JM. (2012). Transcriptome sequencing of single cells with Smart-Seq. Nat Biotech, 30, 763–5
  • Golding I, Cox EC. (2004). RNA dynamics in live Escherichia coli cells. Proc Natl Acad Sci USA, 101, 11310–15
  • Golding I, Paulsson J, Zawilski SM, Cox EC. (2005). Real-time kinetics of gene activity in individual bacteria. Cell, 123, 1025–36
  • Grate D, Wilson C. (1999). Laser-mediated, site-specific inactivation of RNA transcripts. Proc Natl Acad Sci USA, 96, 6131–6
  • Grünberger A, Paczia N, Probst C, et al. (2012). A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip, 12, 2060–8
  • Guo MT, Rotem A, Heyman JA, Weitz DA. (2012). Droplet microfluidics for high-throughput biological assays. Lab Chip, 12, 2146–55
  • Heinemann M, Zenobi R. (2011). Single cell metabolomics. Curr Opin Biotechnol, 22, 26–31
  • Hodson RE, Dustman WA, Garg RP, Moran MA. (1995). In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl Environ Microbiol, 61, 4074–82
  • Huang B, Wu H, Bhaya D, et al. (2007). Counting low-copy number proteins in a single cell. Science, 315, 81–4
  • Ibrahim SF, van den Engh G. (2003). High-speed cell sorting: fundamentals and recent advances. Curr Opin Biotechnol, 14, 5–12
  • Kang Y, Norris MH, Zarzycki-Siek J, et al. (2011). Transcript amplification from single bacterium for transcriptome analysis. Genome Res, 21, 925–35
  • Kelly CD, Rahn O. (1932). The growth rate of individual bacterial cells. J. Bacteriol, 23, 147–53
  • Kerppola TK. (2006). Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol, 7, 449–56
  • Kitano H. (2002). Computational systems biology. Nature, 420, 206–10
  • Kuang Y, Biran I, Walt DR. (2004). Simultaneously monitoring gene expression kinetics and genetic noise in single cells by optical well arrays. Anal Chem, 76, 6282–6
  • Kubista M, Andrade JM, Bengtsson M, et al. (2006). The real-time polymerase chain reaction. Mol Aspects Med, 27, 95–125
  • Kühn S, Measor P, Lunt EJ, et al . (2009). Loss-based optical trap for on-chip particle analysis. Lab Chip, 9, 2212–16
  • Kurimoto K, Yabuta Y, Ohinata Y, Saitou M. (2007). Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis. Nat Protoc, 2, 739–52
  • Lange M, Tolker-Nielsen T, Molin S, Ahring BK. (2000). In situ reverse transcription-PCR for monitoring gene expression in individual Methanosarcina mazei S-6 cells. Appl Environ. Microbiol, 66, 1796–800
  • Le TT, Harlepp S, Guet CC, et al. (2005). Real-time RNA profiling within a single bacterium. Proc Natl Acad Sci USA, 102, 9160–4
  • Lenz AP, Williamson KS, Pitts B, et al. (2008). Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol, 74, 4463–71
  • Leung K, Zahn H, Leaver T, et al. (2012). A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci USA, 109, 7665–70
  • Li Q, Luan G, Guo Q, Liang J. (2002). A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res, 30, E5
  • Lian M, Collier CP, Doktycz MJ, Retterer ST. (2012). Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator. Biomicrofluidics, 6, 044108
  • Lidstrom ME, Meldrum DR. (2003). Life-on-a-chip. Nat Rev Microbiol, 1, 158–64
  • Lin L.-I., Chao S.-H., Meldrum DR. (2009). Practical, microfabrication-free device for single-cell isolation. PLoS ONE, 4, e6710
  • Lindqvist N, Vidal-Sanz M, Hallböök F. (2002). Single cell RT-PCR analysis of tyrosine kinase receptor expression in adult rat retinal ganglion cells isolated by retinal sandwiching. Brain Res Protoc, 10, 75–83
  • Lomas MW, Bronk DA, Van den Engh G. (2011). Use of flow cytometry to measure biogeochemical rates and processes in the ocean. Ann Rev Mar Sci, 3, 537--66
  • Lutz BR, Chen J, Schwartz DT. (2006a). Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal Chem, 78, 5429–35
  • Lutz BR, Chen J, Schwartz DT. (2006b). Characterizing homogeneous chemistry using well-mixed microeddies. Anal Chem, 78, 1606–12
  • Macfarlane S, Dillon JF. (2007). Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol, 102, 1187–96
  • Magliery TJ, Wilson CG, Pan W, et al. (2005). Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc, 127, 146–57
  • Maloney PC, Rotman B. (1973). Distribution of suboptimally induces β-D-galactosidase in Escherichia coli. The enzyme content of individual cells. J Mol Biol, 73, 77–91
  • McAdams HH, Arkin A. (1997). Stochastic mechanisms in gene expression. Proc Natl Acad Sci USA, 94, 814–9
  • Mckenna BK, Selim AA, Richard Bringhurst F, Ehrlich DJ. (2009). 384-Channel parallel microfluidic cytometer for rare-cell screening. Lab Chip, 9, 305–10
  • Meldrum DR, Holl MR. (2002). Microscale bioanalytical systems. Science, 297, 1197–8
  • Min TL, Mears PJ, Chubiz LM, et al. (2009). High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods, 6, 831–5
  • Mirsaidov U, Timp W, Timp K, et al. (2008). Optimal optical trap for bacterial viability. Phys Rev E, 78, 021910
  • Molter TW, Holl MR, Dragavon JM, et al. (2008). A new approach for measuring single-cell oxygen consumption rates. IEEE Trans Automat Sci Eng, 5, 32–42
  • Molter TW, McQuaide SC, Suchorolski MT, et al. (2009). A microwell array device capable of measuring single-cell oxygen consumption rates. Sensors Actuators B: chemical, 135, 678–86
  • Montero Llopis P, Jackson AF, Sliusarenko O, et al. (2010). Spatial organization of the flow of genetic information in bacteria. Nature, 466, 77–81
  • Morrison LE, Halder TC, Stols LM. (1989). Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Anal Biochem, 183, 231–44
  • Munce NR, Li J, Herman PR, Lilge L. (2004). Microfabricated system for parallel single-cell capillary electrophoresis. Anal Chem, 76, 4983–9
  • Neuman KC, Chadd EH, Liou GF, et al. (1999). Characterization of photodamage to Escherichia coli in optical traps. Biophys J, 77, 2856–63
  • Nevo-Dinur K, Nussbaum-Shochat A, Ben-Yehuda S, Amster-Choder O. (2011). Translation-independent localization of mRNA in E. coli. Science, 331, 1081–4
  • Newman JR, Ghaemmaghami S, Ihmels J, et al. (2006). Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature, 441, 840–6
  • Nolan T, Hands RE, Bustin SA. (2006). Quantification of mRNA using real-time RT-PCR. Nat Protoc, 1, 1559–82
  • Nossal GJ, Szenberg A, Ada GL, Austin CM. (1964). Single cell studies on 19S antibody production. J Exp Med, 119, 485–502
  • Ottesen EA, Hong JW, Quake SR, Leadbetter JR. (2006). Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science, 314, 1464–7
  • Paige JS, Wu KY, Jaffrey SR. (2011). RNA mimics of green fluorescent protein. Science, 333, 642–6
  • Pamp SJ, Harrington ED, Quake SR, et al. (2012). Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res, 22, 1107–19
  • Pedraza JM, van Oudenaarden A. (2005). Noise propagation in gene networks. Science, 307, 1965–9
  • Peitz I, van Leeuwen R. (2010). Single-cell bacteria growth monitoring by automated DEP-facilitated image analysis. Lab Chip, 10, 2944–51
  • Pijper A, Discombe G. (1946). Shape and motility of bacteria. J Pathol Bacteriol, 58, 325–42
  • Pohl HA, Kaler K, Pollock K. (1981). The continuous positive and negative dielectrophoresis of microorganisms. J Biol Phys, 9, 67–86
  • Rackham O, Brown CM. (2004). Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J, 23, 3346–55
  • Raj A, van den Bogaard P, Rifkin SA, et al. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nat Meth, 5, 877–9
  • Rajilić-Stojanović, M., Smidt H, De Vos WM. (2007). Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol, 9, 2125–36
  • Ramsköld D, Luo S, Wang Y-C, et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotech, 30, 777–82
  • Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. (2002). Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature, 418, 630–3
  • Rasmussen MB, Oddershede LB, Siegumfeldt H. (2008). Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl Environ Microbiol, 74, 2441–6
  • Roeder B, Wagner M, Rossmanith P. (2010). Autonomous growth of isolated single Listeria monocytogenes and Salmonella enterica serovar typhimurium cells in the absence of growth factors and intercellular contact. Appl Environ Microbiol, 76, 2600–6
  • Roman GT, Chen Y, Viberg P, et al. (2007). Single-cell manipulation and analysis using microfluidic devices. Anal Bioanal Chem, 387, 9–12
  • Rosenfeld N, Young JW, Alon U, et al. (2005). Gene regulation at the single-cell level. Science, 307, 1962–5
  • Sando S, Kool ET. (2002). Imaging of RNA in bacteria with self-ligating quenched probes. J Am Chem Soc, 124, 9686–7
  • Sando S, Narita A, Aoyama Y. (2007). Light-up Hoechst-DNA aptamer pair: generation of an aptamer-selective fluorophore from a conventional DNA-staining dye. Chembiochem, 8, 1795–803
  • Santangelo PJ, Nix B, Tsourkas A, Bao G. (2004). Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res, 32, e57
  • Schmid A, Kortmann H, Dittrich PS, Blank LM. (2010). Chemical and biological single cell analysis. Curr Opin Biotechnol, 21, 12–20
  • Schneider J, Buness A, Huber W, et al. (2004). Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments. BMC Genomics, 5, 29
  • Schut F, de Vries EJ, Gottschal JC, et al. (1993). Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol, 59, 2150–60
  • Sezonov G, Joseleau-Petit D, D’Ari R. (2007). Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol, 189, 8746–9
  • Shi X, Gao W, Chao S, et al. (2013). Monitoring the single-cell stress response of the diatom Thalassiosira pseudonana by quantitative real-time reverse transcription-PCR. Applied and environmental microbiology, 79, 1850–8
  • Shi X, Lin L-I, Chen S-Y, et al. (2011). Real-time PCR of single bacterial cells on an array of adhering droplets. Lab Chip, 11, 2276–81
  • Shim J, Olguin LF, Whyte G, et al. (2009). Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J Am Chem Soc, 131, 15251–6
  • Siegele DA, Hu JC. (1997). Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci USA, 94, 8168–72
  • Singh R, Maganti RJ, Jabba SV, et al. (2005). Microarray-based comparison of three amplification methods for nanogram amounts of total RNA. Am J Physiol, Cell Physiol, 288, C1179–89
  • Sixou S, Szoka FC Jr, Green GA, et al. (1994). Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucleic Acids Res, 22, 662–8
  • Sizova MV, Hohmann T, Hazen A, et al. (2012). New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol, 78, 194–203
  • Spits C, Le Caignec C, De Rycke M, et al. (2006). Whole-genome multiple displacement amplification from single cells. Nat Protocols, 1, 1965–70
  • Spudich J, Koshland D. (1976). Non-genetic individuality: chance in single cell. Nature, 262, 467–71
  • Stewart PS, Franklin MJ. (2008). Physiological heterogeneity in biofilms. Nat Rev Microbiol, 6, 199–210
  • Strovas TJ, Lidstrom ME. (2009). Population heterogeneity in Methylobacterium extorquens AM1. Microbiology, 155, 2040–8
  • Strovas TJ, Sauter LM, Guo X, Lidstrom ME. (2007). Cell-to-cell heterogeneity in growth rate and gene expression in Methylobacterium extorquens AM1. J Bacteriol, 189, 7127–33
  • Tang F, Barbacioru C, Wang Y, et al. (2009). mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods, 6, 377–82
  • Tang F, Lao K, Surani MA. (2011). Development and applications of single-cell transcriptome analysis. Nat Methods, 8, S6–11
  • Taniguchi K, Kajiyama T, Kambara H. (2009). Quantitative analysis of gene expression in a single cell by qPCR. Nat Methods, 6, 503–6
  • Taniguchi Y, Choi PJ, Li G-W, et al. (2010). Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–8
  • Tanyeri M, Johnson-Chavarria EM, Schroeder CM. (2010). Hydrodynamic trap for single particles and cells. Appl Phys Lett, 96, 224101
  • Tanyeri M, Schroeder CM. (2013). Manipulation and confinement of single particles using fluid flow. Nano Lett, 13, 2357–64
  • Teramoto J, Yamanishi Y, Magdy E-SH, et al. (2010). Single live-bacterial cell assay of promoter activity and regulation. Genes Cells, 15, 1111–22
  • Tischler J, Surani MA. (2013). Investigating transcriptional states at single-cell-resolution. Curr Opin Biotechnol, 24, 69–78
  • Tolker-Nielsen T, Holmstrøm K, Molin S. (1997). Visualization of specific gene expression in individual Salmonella typhimurium cells by in situ PCR. Appl Environ Microbiol, 63, 4196–203
  • Tsang PH, Li G, Brun YV, et al. (2006). Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci USA, 103, 5764–8
  • Tyagi S. (2009). Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods, 6, 331–8
  • Tyagi S, Kramer FR. (1996). Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol, 14, 303–8
  • Um E, Rha E, Choi S-L, et al. (2012). Mesh-integrated microdroplet array for simultaneous merging and storage of single-cell droplets. Lab Chip, 12, 1594–7
  • Valencia-Burton M, McCullough RM, Cantor CR, Broude NE. (2007). RNA visualization in live bacterial cells using fluorescent protein complementation. Nat Methods, 4, 421–7
  • Wacker MJ, Tehel MM, Gallagher PM. (2008). Technique for quantitative RT-PCR analysis directly from single muscle fibers. J Appl Physiol, 105, 308–15
  • Wang D, Bodovitz S. (2010). Single cell analysis: the new frontier in “omics”. Trends Biotechnol, 28, 281–90
  • Wang E, Miller LD, Ohnmacht GA, et al. (2000). High-fidelity mRNA amplification for gene profiling. Nat Biotechnol, 18, 457–9
  • White AK, VanInsberghe M, Petriv OI, et al. (2011). High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci USA, 108, 13999–4004
  • Wijgerde M, Grosveld F, Fraser P. (1995). Transcription complex stability and chromatin dynamics in vivo. Nature, 377, 209–13
  • Wood TH. (1967). Genetic recombination in Escherichia coli: clone heterogeneity and the kinetics of segregation. Science, 157, 319–21
  • Woyke T, Xie G, Copeland A, et al. (2009). Assembling the marine metagenome: one Cell at a Time. PLoS One, 4, E5299
  • Xie C, Mace J, Dinno MA, et al. (2005). Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal Chem, 77, 4390–7
  • Yang SW, Vosch T. (2011). Rapid detection of MicroRNA by a silver nanocluster DNA Probe. Anal Chem, 83, 6935–9
  • Yi WC, Hsiao S, Liu JH, et al. (1998). Use of fluorescein labelled antibody and fluorescence activated cell sorter for rapid identification of Mycobacterium species. Biochem Biophys Res Commun, 250, 403–8
  • Zeng Y, Novak R, Shuga J, et al. (2010). High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal Chem, 82, 3183–90
  • Zhang H, Liu K-K. (2008). Optical tweezers for single cells. J R Soc Interface, 5, 671–90
  • Zhu H, Tian Y, Bhushan S, et al. (2012). High throughput micropatterning of optical oxygen sensor for single cell analysis. IEEE Sensors J, 12, 1668–72

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.