1,731
Views
40
CrossRef citations to date
0
Altmetric
Review Article

Fungal genome sequencing: basic biology to biotechnology

Pages 743-759 | Received 13 May 2014, Accepted 11 Jan 2015, Published online: 27 Feb 2015

References

  • Almeida AJ, Matute DR, Carmona JA, et al. (2007). Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: flow cytometry and GP43 sequence analysis. Fungal Genet Biol, 44, 25–31
  • Annaluru N, Muller H, Mitchell LA, et al. (2014). Total synthesis of a functional designer eukaryotic chromosome. Science, 344, 55–8
  • Battaglia E, Benoit I, van den Brink J, et al. (2011). Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genomics, 12, 38
  • Berg MA, Albang R, Albermann K, et al. (2008). Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol, 26, 1161–8
  • Bittinger K, Charlson ES, Loy E, et al. (2014). Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol, 15, 487
  • Blandin G, Llorente B, Malpertuy A, et al. (2000). Genomic exploration of the hemiascomycetous yeasts: 13. Pichia angusta. FEBS Lett, 487, 76–81
  • Borneman AR, Desany BA, Riches D, et al. (2011). Whole genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet, 7, e1001287
  • Brakhage AA. (2013). Regulation of fungal secondary metabolism. Nat Rev Microbiol, 11, 21–32
  • Breitkreutz B-J, Stark C, Reguly T, et al. (2008). The BioGRID Interaction Database: 2008 update. Nucleic Acids Res, 36, D637–40
  • Burmester A, Shelest E, Glöckner G, et al. (2011). Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol, 12, R7
  • Butler G, Rasmussen MD, Lin MF, et al. (2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 459, 657–62
  • Cai J, Zhao R, Jiang H, et al. (2008). De Novo origination of a new protein coding gene in Saccharomyces cerevisiae. Genetics, 179, 487–96
  • Cantarel BL, Coutinho PM, Rancurel C, et al. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 37, D233–8
  • Cantu D, Segovia V, MacLean D, et al. (2013). Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. Tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics, 14, 270
  • Cheeseman K, Ropars J, Renault P, et al. (2014). Multiple recent horizontal transfers of a large genomic region in cheese making fungi. Nat Commun, 5, 2876
  • Chen S, Xu J, Liu C, et al. (2012). Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nature Commun, 3, 913
  • Cherry JM, Adler C, Ball C, et al. (1998). SGD: Saccharomyces Genome Database. Nucleic Acids Res, 26, 73–9
  • Cherry JM, Hong EL, Amundsen C, et al. (2012). Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res, 40, D700–5
  • Christie KR, Weng S, Balakrishnan R, et al. (2004). Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res, 32, D311–4
  • Cowen LE, Anderson JB, Kohn LM. (2002). Evolution of drug resistance in Candida albicans. Annu Rev Microbiol, 56, 139–65
  • Crawford JM, Townsend CA. (2010). New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol, 8, 879–89
  • Cullen D. (2007). The genome of an industrial workhorse. Nat Biotechnol, 25, 189–90
  • Cuomo CA, Güldener U, Xu JR, et al. (2007). The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 317, 1400–2
  • Dean R, Van Kan JAL, Pretorius ZA, et al. (2012). The top 10 fungal pathogens in molecular plant pathology. Plant Mol Pathol, 13, 414–30
  • Dean RA, Talbot NJ, Ebbole DJ, et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434, 980–6
  • Denning DW, Ribaud P, Milpied N, et al. (2002). Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis, 34, 563–71
  • Dietrich FS, Voegeli S, Brachat S, et al. (2004). The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science, 304, 304–7
  • Dix NJ, Webster J. (1995). Fungal ecology. London: Chapman and Hall
  • Doddapaneni H, Subramanian V, Fu B, Cullen D. (2013). A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus. Fungal Genet Biol, 55, 22–31
  • Duplessisa S, Cuomob CA, Linc Y-C, et al. (2011). Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci USA, 108, 9166–71
  • Dupree JC, Vanderwalt JP. (1983). Fermentation of xylose to ethanol by a strain of Candida shehatae. Biotech Lett, 5, 357–62
  • Eastwood DC, Floudas D, Binder M, et al. (2011). The plant cell wall decomposing machinery underlies the functional diversity of forest fungi. Science, 333, 762
  • Endy D. (2008). Reconstruction of the genomes. Science, 319, 1196–7
  • Engel SR, Balakrishnan R, Binkley G, et al. (2010). Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res, 38, D433–6
  • Engel SR, Cherry JM. (2013). The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces genome database 2013. doi:10.1093/database/bat012
  • Engelthaler DM, Hicks ND, Gillece JD, et al. (2014). Cryptococcus gattii in North American Pacific Northwest: whole population genome analysis provides insights into species evolution and dispersal. mBio, 5, e01464–14
  • Espagne E, Lespinet O, Malagnac F, et al. (2008). The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol, 9, R77
  • Etienne KA, Chibucos MC, Su Q, et al. (2014). Draft genome sequence of Mortierella alpina isolate CDC-B6842. Genome Announc, 2, e01180–13
  • Fedorova ND, Khaldi N, Joardar VN, et al. (2008). Genomic Islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet, 4, e1000046
  • Fernández-Fueyo E, Ruiz-Dueñas FJ, Miki Y, et al. (2012). Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora. J Biol Chem, 287, 16903–16
  • Floudas D, Binder M, Riley R, et al. (2012). The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336, 1715
  • Frazier ME, Johnson GM, Thomassen DG, et al. (2003). Realizing the potential of the genome revolution: the genomes to life program. Science, 300, 290–3
  • Gajendran K, Gonzales MD, Farmer A, et al. (2006). Phytophthora functional genomics database (PFGD): functional genomics of phytophthora–plant interactions. Nucleic Acids Res, 34, D465–70
  • Galagan JE, Calvo SE, Borkovich KA, et al. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422, 859–68
  • Galagan JE, Henn MR, Ma L-J, et al. (2005). Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res, 15, 1620–31
  • Galazka JM, Tian C, Beeson WT, et al. (2010). Cellodextrin transport in yeast for improved biofuel production. Science, 330, 84–6
  • Gao Q, Jin K, Ying S-H, et al. (2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet, 7, e1001264
  • Gattiker A, Rischatsch R, Demougin P, et al. (2007). Ashbya Genome Database 3.0: a cross-species genome and transcriptome browser for yeast biologists. BMC Genomics, 8, 9
  • Gibson DG, Benders GA, Axelrod KC, et al. (2008). One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA, 105, 20404–9
  • Gilsenan JM, Cooley J, Bowyer P. (2012). CADRE: the Central Aspergillus Data Repository. Nucleic Acids Res, 40, D660–6
  • Goffeau A, Barrell BG, Bussey H, et al. (1996). Life with 6000 genes. Science, 274, 563–7
  • Goodwin SB, Ben M’Barek S, Dhillon B, et al. (2011). Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet, 7, e1002070
  • Grigoriev IV, Cullen D, Goodwin SB, et al. (2011). Fueling the future with fungal genomics. Mycology, 2, 192–209
  • Grigoriev IV, Nikitin R, Haridas S, et al. (2014). MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res, 42, D699–704
  • Gunde-Cimerman N, Ramos J, Plemenitas A. (2009). Halotolerant and halophilic fungi. Mycol Res, 113, 1231–41
  • Haas BJ, Kamoun S, Zody MC, et al. (2009). Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 461, 393–8
  • Haas BJ, Zeng Q, Pearson MD, et al. (2011). Approaches to fungal genome annotation. Mycology, 2, 118–41
  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, et al. (2006). Bio-ethanol: the fuel of tomorrow from the residues of today. Trends Biotechnol, 24, 549–56
  • Hättenschwiler S, Tiunov AV, Scheu S. (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst, 36, 191–218
  • Hector RF, Laniado-Laborin R. (2005). Coccidioidomycosis – a fungal disease of the Americas. PLoS Med, 2, e2
  • Hertz-Fowler C, Pain A. (2007). Specialist fungi, versatile genomes. Nature, 5, 322
  • Hohmann S. (2009). Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett, 583, 4025–9
  • Hu J, Chen C, Peever T, et al. (2012). Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics, 13, 171
  • Jeffries TW. (2006). Engineering yeasts for xylose metabolism. Curr Opin Biotechnol, 17, 320–6
  • Jones T, Federspiel NA, Chibana H, et al. (2004). The diploid genome sequence of Candida albicans. Proc Natl Acad Sci USA, 101, 7329–34
  • Kamoun S. (2003). Molecular genetics of pathogenic oomycetes. Eukar Cell, 2, 191–9
  • Kämper J, Kahmann R, Bölker M, et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 444, 97–101
  • Keller NP, Turner G, Bennet JW. (2005). Fungal secondary metabolism – from biochemistry to genomics. Nat Rev Microbiol, 3, 937–47
  • Kellner H, Vandenbol M. (2010). Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One, 5, e10971
  • Kersten P, Cullen D. (2007). Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol, 44, 77–87
  • Khaldi N, Seifuddin FT, Turner G, et al. (2010). SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol, 47, 736–41
  • King BC, Waxman KD, Nenni NV, et al. (2011). Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels, 4, 4
  • Kirk PM, Cannon PF, David JC, Stalpers JA. (2001). Ainsworth and Bisby’s dictionary of the fungi. Wallingford, UK: CAB International
  • Kis-Papo T, Weig AR, Riley R, et al. (2014). Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum. Nat Commun, 9, 3745
  • Kurtzman CP, Robnett CJ. (2010). Systematics of methanol assimilating yeasts and neighboring taxa from multigene sequence analysis and the proposal of Peterozyma gen.nov., a new member of the Saccharomycetales. FEMS Yeast Res, 10, 353–61
  • Lackner G, Misiek M, Braesel J, Hoffmeister D. (2012). Genome mining reveals the evolutionary origin and biosynthetic potential of basidiomycete polyketide synthases. Fungal Genet Biol, 49, 996–1003
  • Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. (2007). The Genome Online Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acid Res, 36, D475–9
  • Loftus BL, Fung E, Roncaglia P, et al. (2005). The genome of the Basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science, 307, 1321–4
  • Lorenz S, Guenther M, Grumaz C, et al. (2014). Genome sequence of the Basidiomycetous Fungus Pseudozyma aphidis DSM70725, an efficient producer of biosurfactant mannosylerythritol lipids. Genome Announc, 2, e00053–14
  • Ma L-J, Does HC, Borkovich KA, et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367–73
  • Ma L-J, Shea T, Young S, et al. (2014). Genome sequence of Fusarium oxysporum f. sp. melonis strain NRRL 26406, a fungus causing Wilt disease on melon. Genome Announc, 2, e00730–14
  • Machida M, Asai K, Sano M, et al. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature, 2438, 1157–61
  • Malthioni SM, Patel N, Riddick B, et al. (2013). Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One, 8, e76487
  • Martin F, Aerts A, Ahrén D, et al. (2008). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 452, 88–92
  • Martin F, Kohler A, Murat C. (2010). Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 464, 1033–8
  • Martinez D, Berka RM, Henrissat B, et al. (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol, 26, 553–60
  • Martinez D, Challacombe J, Morgenstern I, et al. (2009). Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA, 106, 1954
  • Martinez D, Larrondo LF, Putnam N, et al. (2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol, 22, 695
  • Martinez DA, Oliver BG, Gräser Y, et al. (2012). Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio, 3, e00259–12
  • Medema MH, Blin K, Cimermancic P, et al. (2011). antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res, 39, W339–46
  • Mewes HW, Frishman D, Gruber C, et al. (2000). MIPS: a database for genomes and protein sequences. Nucleic Acids Res, 28, 37–40
  • Mewes HW, Ruepp A, Theis F, et al. (2010). MIPS: curated databases and comprehensive secondary data resources in 2010. Nucleic Acids Res, 39, D220–4
  • Moolhuijzen PM, Manners JM, Wilcox SA, et al. (2013). Genome sequences of six wheat-infecting Fusarium species isolates. Genome Anounc, 1, e00670–13
  • Moore D, Meškauskas A. (2006). A comprehensive comparative analysis of the occurrence of developmental sequences in fungal, plant and animal genomes. Myco Res, 110, 251–6
  • Morin E, Kohler A, Baker AR, et al. (2012). Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA, 109, 17501–6
  • Muller HM, Kenny EE, Sternberg PW. (2004). Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biol, 2, e309
  • Nagalakshmi U, Wang Z, Waern K, et al. (2008). The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344–9
  • Nordberg H, Cantor M, Dusheyko S, et al. (2014). The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res, 42, D26–FD31
  • Ohm RA, Jong JF, Lugones LG, et al. (2010). Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol, 28, 957–65
  • Ormerod KL, Morrow CA, Chow EWL, et al. (2013). Comparative genomics of serial isolates of Cryptococcus neoformans reveals gene associated with carbon utilization and virulence. G3 Genes Genom Genet, 3, 675–86
  • Padamsee M, Kumar TKA, Riley R, et al. (2012). The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol, 49, 217–26
  • Pagani I, Liolios K, Jansson J, et al. (2012). The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res, 40, D571–9
  • Pain A, Hertz-Fowler C. (2008). Genomic adaptation: a fungal perspective. Nat Rev, 6, 572–3
  • Pain A, Woodward J, Quail MA, et al. (2004). Insight into the genome of Aspergillus fumigatus: analysis of a 922 kb region encompassing the nitrate assimilation gene cluster. Fungal Genet Biol, 41, 443–53
  • Park J, Park B, Jung K, et al. (2008). CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res, 36, D562
  • Passoth V, Fredlund E, Druvefors UA, Schnürer J. (2006). Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res, 6, 3–13
  • Pel HJ, de Winde JH, Archer DB, et al. (2007). Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol, 25, 221–31
  • Pitt JI, Hocking AD. (2009). Xerophiles. In: Pitt JI, Hocking AD. Fungi and food spoilage. US: Springer, 339–55
  • Priebe S, Linde J, Albrecht D, et al. (2011). FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol, 48, 353–8
  • Rhind N, Chen Z, Yassour M, et al. (2011). Comparative functional genomics of the fission yeasts. Science, 332, 930–6
  • Rileya R, Salamova AA, Brown DW, et al. (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA, 111, 9923–8
  • Ronning CM, Fedorova ND, Bowyer P, et al. (2005). Genomics of Aspergillus fumigatus. Rev Iberoam Micol, 22, 223–8
  • Sanodiya BS, Thakur GS, Baghel RK, et al. (2009). Ganoderma lucidum: a potent pharmacological macrofungus. Curr Pharm Biotechnol, 10, 717–42
  • Schneider H, Wang PY, Maleszka CR. (1981). Conversion of d-xylose into ethanol by yeast Pachysolen tannophilus. Biotech Lett, 3, 89–92
  • Schneider J, Rupp O, Trost E, et al. (2012). Genome sequence of Wickerhamomyces anomalus DSM 6766 reveals genetic basis of biotechnologically important antimicrobial activities. FEMS Yeast Res, 12, 382–6
  • Schutter KD, Lin Y-C, Tiels P, et al. (2009). Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol, 27, 561–9
  • Sharma KK, Kuhad RC. (2008). Laccase: enzyme revisited function redefined. Indian J Microbiol, 48, 309–16
  • Sharma KK, Shrivastava B, Sastry VRB, et al. (2013). Middle-redox potential laccase from Ganoderma sp.: its application in improvement of feed for monogastric animals. Sci Rep, 3, 1299
  • Sharpton TJ, Stajich JE, Rounsley SD, et al. (2009). Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res, 19, 1722–31
  • Skrzypek MS, Arnaud MB, Costanzo MC, et al. (2010). New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res, 38, D428–32
  • Smith DR, Quinlan AR, Peckham HE, et al. (2008). Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res, 18, 1638–42
  • Soliai MM, Meyer SE, Udall JA, et al. (2014). De novo genome assembly of the fungal plant pathogen Pyrenophora semeniperda. PLoS One, 9, e87045
  • Stajich JE, Harris T, Brunk BP, et al. (2012). FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res, 40, D675–81
  • Stajich JE, Wilkee SK, Ahrénf D, et al. (2010). Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci USA, 107, 11889–94
  • Steffen KT, Hatakka A, Hofrichter M. (2002). Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol, 60, 212–17
  • Stein LD, Mungall C, Shu SQ, et al. (2002). The generic genome browser: a building block for a model organism system database. Genome Res, 12, 1599–610
  • Stephanopoulos G. (2007). Challenges in engineering microbes for biofuels production. Science, 315, 801–4
  • Stukenbrock EH, Jørgensen FG, Zala M, et al. (2010). Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet, 6, e1001189
  • Takeda I, Tamano K, Yamane N, et al. (2014). Genome sequence of the Mucoromycotina Fungus Umbelopsis isabellina, an effective producer of lipids. Genome Announc, 2, e00071–14
  • Tavares S, Ramos AP, Pires AS, et al. (2014). Genome size analyses of Pucciniales reveal the largest fungal genomes. Front Plant Sci, 5, 422
  • van der Heijden MGA, Klironomos JN, Ursic M, et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72
  • Wainright PO, Hinkle G, Sogin ML, Stickel SK. (1993). Monophyletic origins of the metazoa: an evolutionary link with fungi. Science, 260, 340–2
  • Wang F-Q, Zhong J, Zhao Y, et al. (2014). Genome sequencing of high-penicillin producing industrial strain of Penicillium chrysogenum. BMC Genomics, 15, S11
  • Wang Z, Gerstein M, Snyder M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10, 57–63
  • Ward PP, Lo JY, Duke M, et al. (1992b). Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Biotechnology, 10, 784–9
  • Wawrzyn GT, Quin MB, Choudhary S, et al. (2012). Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem Biol, 19, 772–83
  • Wilhelm BT, Marguerat S, Watt S, et al. (2008). Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 453, 1239–43
  • Wohlbach D, Kuoc A, Satob TK, et al. (2011). Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. Proc Natl Acad Sci USA, 108, 13212–17
  • Wong P, Walter M, Lee W, et al. (2011). FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Res, 39, D637–9
  • Wood V, Gwilliam R, Rajandream M-A, et al. (2002). The genome sequence of Schizosaccharomyces pombe. Nature, 415, 871–80
  • Xu J, Saunders CW, Hu P, et al. (2007). Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA, 104, 18730–5
  • Zhao Z, Liu H, Wang C, Xu J-R. (2013). Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics, 14, 274

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.