835
Views
225
CrossRef citations to date
0
Altmetric
Research Article

Role of Arbuscular Mycorrhizal Fungi in Uptake of Phosphorus and Nitrogen From Soil

, &
Pages 257-270 | Published online: 27 Sep 2008

References

  • Abuzinadah R. A., Read D. J. Amino acids as nitrogen sources for ectomycorrhizal fungi: utilization of individual amino acids. Plant Cell Environ. 1988; 16: 351–363
  • Ames R. N., Reid C. P. P., Porter L. K., Cambardella C. Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 1983; 95: 381–396
  • Augé R. M., Duan X., Ebel R. C., Stodola A. J. W. Nonhydraulic signalling of soil drying in mycorrhizal maize. Planta 1994; 193: 74–82
  • Azcón R., Gomez M., Tobar R. Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorus-fertilized plants of Lactuca sativa L. New Phytol. 1992; 121: 227–234
  • Azcon-Aguilar C., Gianinazzi-Pearson V., Fardeau J. C., Gianinazzi S. Effect of vesicular-arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria on growth and nutrition of soybean in a neutral-calcareous soil amended with 32P-45Ca-tricalcium phosphate. Plant Soil 1986; 96: 3–15
  • Benhamou N., Fortin J. A., Hamel C., St-Arnaud M., Shatilla A. Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp. chrysanthemi. Phytopathology 1994; 84: 958–968
  • Bolan N. S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 1991; 134: 189–207
  • Brennerova M. V., Crowley D. E. Direct detection of rhizosphere-colonizing Pseudomonas sp. using an Escherichia coli rRNA promoter in a Tn7-lux system. FEMS Microbiol. Ecol. 1994; 14: 319–330
  • Christensen H., Jakobsen I. Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.). Biol. Fertil. Soil 1993; 15: 253–258
  • Clapperton M. J., Reid D. M. Effects of low-concentration sulphur dioxide fumigation and vesicular-arbuscular mycorrhizas on 14C-partitioning in Phleum pratense L. New Phytol. 1992; 120: 381–387
  • Colpaert J. V., Van Assche J. A., Luijtens K. The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L. New Phytol. 1992; 120: 127–135
  • Cuenca G., Azcon R. Effects of ammonium and nitrate on the growth of vesicular-arbuscular mycorrhizal Erythrina poeppigiana O. I. Cook seedlings. Biol. Fertil. Soil 1994; 18: 249–254
  • Ebel R. C., Stodola A. J. W., Duan X., Auge R. M. Non-hydraulic root-to-shoot signalling in mycorrhizal and non-mycorrhizal sorghum exposed to partial soil drying or root severing. New Phytol. 1994; 127: 495–505
  • Fieschi M., Alloatti G., Sacco S., Berta G. Membrane potential hyperpolarisation in vesicular arbuscular mycorrhizae of Allium porrum L.: a nonnutritional longdistance effect of the fungus. Protoplasma 1992; 168: 136–140
  • Frey B., Schüepp H. Transfer of symbolically fixed nitrogen from berseem (Trifolium alexandrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol. 1992; 122: 447–454
  • Frey B., Schüepp H. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol. 1993a; 124: 221–230
  • Frey B., Schüepp H. A role of vesicular-arbuscular (VA) mycorrhizal fungi in facilitating interplant nitrogen transfer. Soil Biol. Biochem. 1993b; 25: 651–658
  • Frey B., Vilariño A., Schüepp H., Arines J. Chitin and ergosterol content of extraradical and intraradical mycelium of the vesicular-arbuscular mycorrhizal fungus. Glomus intraradices. Soil Biol. Biochem. 1994; 26: 711–717
  • Gange A. C., West H. M. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol. 1994; 128: 79–87
  • George E., Häussler K.-U., Vetterlein D., Gorgus E., Marschner H. Water and nutrient translocation by hyphae of. Glomus mosseae. Can. J. Bot. 1992; 70: 2130–2137
  • George E., Kothari S. K., Li X.-L., Weber E., Marschner H. VA mycorrhiza: benefits to crop plant growth and costs. Expanding the Production and Use of Cool Season Food Legumes, F. J. Muehlbauer, W. J. Kaiser. Kluwer Academic, DordrechtThe Netherlands 1994a; 832–846
  • George E., Römheld V., Marschner H. Contribution of mycorrhizal fungi to micronutrient uptake by plants. Biochemistry of Metal Micronutrients in the Rhizosphere, J. A. Manthey, D. E. Crowley, D. G. Luster. CRC Press, Boca Raton, FL 1994b; 93–109
  • Hamel C., Barrantes-Cartín U., Furlan V., Smith D. L. Endomycorrhizal fungi in nitrogen transfer from soybean to maize. Plant Soil 1991; 138: 33–40
  • Hamel C., Dalpé Y., Lapierre C., Simard R. R., Smith D. L. Composition of the vesicular-arbuscular mycorrhizal fungi population in an old meadow as affected by pH, phosphorus and soil disturbance. Agric. Ecosystems Environ. 1994; 49: 223–231
  • Handley L. L., Daft M. J., Wilson J., Scrimgeour C. M., Ingleby K., Sattar M. A. Effects of the ecto- and VA-mycorrhizal fungi Hydnagium carneum, Glomus clarum on the 15N and 13C values of Eucalyptus globulus. Ricinus communis. Plant Cell Environ. 1993; 16: 375–382
  • Harley J. L. The significance of mycorrhiza. Mycol. Res. 1989; 92: 129–139
  • Harley J. L., Smith S. E. Mycorrhizal Symbiosis. Academic Press, London 1983
  • Hetrick B. A. D., Wilson G. W. T., Schwab A. P. Mycorrhizal activity in warm- and cool-season grasses: variation in nutrient-uptake strategies. Can. J. Bot. 1994; 72: 1002–1008
  • Ho I., Trappe J. M. Nitrate reducing capacity of two vesicular-arbuscular mycorrhizal fungi. Mycologia 1975; 67: 886–888
  • Högberg P. 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 1990; 115: 483–486
  • Högberg P., Nasholm T., Högbom L., Ståhl L. Use of 15N labelling and 15N natural abundance to quantify the role of mycorrhizas in N uptake by plants: importance of seed N and of changes in the 15N labelling of available N. New Phytol. 1994; 127: 515–519
  • Ikram A., Jensen E. S., Jakobsen I. No significant transfer of N and P from Pueraria phaseoloides to Hevea brasiliensis via hyphal links of arbuscular mycorrhiza. Soil Biol. Biochem. 1994; 26: 1541–1547
  • Jakobsen I. Transport of phosphorus and carbon in VA mycorrhizas. Mycorrhiza — Structure, Function, Molecular Biology and Biotechnology, A. Varma, B. Hock. Springer, Berlin 1995; 297–324
  • Jakobsen I., Abbott L. K., Robson A. D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Spread of hyphae and phosphorus inflow into roots. New Phytol. 1992a; 120: 317–380
  • Jakobsen J., Abbott L. K., Robson A. D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol. 1992b; 120: 509–516
  • Jakobsen I., Joner E. J., Larsen J. Hyphal phosphorus transport, a keystone to mycorrhizal enhancement of plant growth. Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems, S. Gianinazzi, H. Schüepp. Birkhäuser, BaselSwitzerland 1994; 133–145
  • Jakobsen I., Rosendahl L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 1990; 115: 77–83
  • Johansen A., Jakobsen I., Jensen E. S. Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol. 1992; 122: 281–288
  • Johansen A., Jakobsen I., Jensen E. S. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III. Hyphal transport of 32P and 15N. New Phytol. 1993a; 124: 61–68
  • Johansen A., Jakobsen I., Jensen E. S. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol. Fertil. Soil 1993b; 16: 66–70
  • Johansen A., Jakobsen I., Jensen E. S. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 1994; 160: 1–9
  • Joner E. J., Jakobsen I. Contribution by two arbuscular mycorrhizal fungi to P uptake by cucumber (Cucumis sativus L) from 32P-labelled organic matter during mineralization in soil. Plant Soil 1994; 163: 203–209
  • Joner E. J., Jakobsen I. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol. Biochem., in press.
  • Joner E. J., Magid J., Gahoonia T. S., Jakobsen I. Phosphorus depletion and activity of phosphatases in the rhizospherc of mycorrhizal and non-mycorrhizal cucumber (Cucumis sativus L.). Soil Biol. Biochem, in press.
  • Kielland K. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 1994; 75: 2373–2383
  • Leake J. R., Read D. J. Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol. 1990; 115: 243–250
  • Li X.-L., George E., Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 1991a; 136: 41–48
  • Li X.-L., George E., Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol. 1991b; 119: 397–404
  • Li X.-L., Marschner H., George E. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 1991c; 136: 49–57
  • Linderman R. G. Vesicular-arbuscular mycorrhizae and soil microbial interactions. Mycorrhizae in Sustainable Agriculture, G. J. Bethlenfalvay, R. G. Linderman. ASA-CSSA-SSSA, Madison, WI 1992; 45–70
  • Mader P., Vierheilig H., Alt M., Wiemken A. Boundaries between soil compartments formed by microporous hydrophobic membranes (GORE-TEX) can be crossed by vesicular-arbuscular mycorrhizal fungi but not by ions in the soil solution. Plant Soil 1993; 152: 201–206
  • Marschner H. Mineral Nutrition of Higher Plants. Academic Press, London 1995
  • Marschner H., Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 1994; 159: 89–102
  • Martin F., Cté R., Canet D. NH4 assimilation in the ectomycorrhizal basidiomycete Laccaria bicolor (Make) Orton, a 15N-NMR study. New Phytol. 1994; 128: 479–485
  • Michelsen A., Sprent J. I. The influence of vesicular-arbuscular mycorrhizal fungi on the nitrogen fixation of nursery-grown Ethiopian acacias estimated by the 15N natural abundance method. Plant Soil 1994; 160: 249–257
  • Morel C., Plenchette C. Is the isotopically exchangeable phosphate of a loamy soil the plant-available P?. Plant Soil 1994; 158: 287–297
  • Nemec S. Soil microflora associated with pot cultures of. Glomus intraradix-infected Citrus reticulata. Appl. Soil Ecol. 1994; 1: 299–306
  • Olsson P. A., Bååth E., Jakobsen I., Söderström B. Activity and structure of the soil bacterial community as related to presence of roots and arbuscular mycorrhizal inoculum, submitted.
  • Pacovsky R. S., Fuller G., Paul E. A. Influence of soil on the interactions between endomycorrhizae and Azospirillum in sorghum. Soil Biol. Biochem. 1985; 17: 525–531
  • Pearson J. N., Jakobsen I. Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol. 1993a; 124: 481–488
  • Pearson J. N., Jakobsen I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol. 1993b; 124: 489–494
  • Posta K., Marschner H., Romheld V. Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 1994; 5: 119–124
  • Ravnskov S., Jakobsen I. Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol., in press.
  • Read D. J. Mycorrhizas in ecosystems. Experientia 1991; 47: 376–391
  • Read D. J., Leak J. R., Langdale A. R. The nitrogen nutrition of mycorrhizal fungi and their host plants. Nitrogen, Phosphorus and Sulphur Utilization by Fungi, L. Boddy, R. Marchant, D. J. Read. Cambridge University Press, CambridgeUK 1989; 181–204
  • Reinhard S., Weber E., Martin P., Marschner H. Influence of phosphorus supply and light intensity on mycorrhizal response in Pisum-Rhizobium-Glomus symbiosis. EXPEA 1994; 50: 890–896
  • Rosendahl S. Influence of three vesicular-arbuscular mycorrhizal fungi (Glomaceae) on the activity of specific enzymes in the root system of Cucumis sativus L. Plant Soil 1992; 144: 219–226
  • Schwab S. M., Menge J. A., Tinker P. B. Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol. 1991; 117: 387–398
  • Shand C. A., Macklon A. E. S., Edwards A. C., Smith S. Inorganic and organic P in soil solutions from three upland soils. 1. Effect of soil solution extraction conditions, soil type and season. Plant Soil 1994; 159: 255–264
  • Smith S. E., Gianinazzi-Pearson V. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988; 39: 221–244
  • Smith S. E., Gianinazzi-Pearson V., Koide R., Cairney J. W. G. Nutrient transport in mycorrhizas: structure, physiology, and consequences for efficiency of the symbiosis. Plant Soil 1994; 159: 103–113
  • Smith S. E., St John B. J., Smith F. A., Nicholas D. J. D. Activity of glutamine synthetase and glutamate dehydrogenase in Trifolium subterraneum L. and Allium cepa L: effects of mycorrhizal infection and phosphate nutrition. New Phytol. 1985; 99: 211–227
  • Stewart G. R., Pate J. S., Unkovich M. Characteristics of inorganic nitrogen assimilation of plants in fire-prone Mediterranean-type vegetation. Plant Cell Environ. 1993; 16: 351–363
  • Tarafdar J. C., Marschner H. Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. Soil Sci. Plant Nutr. 1994a; 40: 593–600
  • Tarafdar J. C., Marschner H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem. 1994b; 26: 387–395
  • Tawaraya K., Saito M. Effect of vesicular-arbuscular mycorrhizal infection on amino acid composition in roots of onion and white clover. Soil Sci. Plant Nutr. 1994; 40: 339–343
  • Tawaraya K., Sasai K., Wagatsuma T. Effect of phosphorus application on the contents of amino acids and reducing sugars in the rhizosphere and VA mycorrhizal infection of white clover. Soil Sci. Plant Nutr. 1994; 40: 539–543
  • Tester M., Smith F. A., Smith S. E. The role of ion channels in controlling solute exchanger in mycorrhizal associations. Mycorrhizas in Ecosystems, D. J. Read, D. H. Lewis, A. H. Fitter, I. J. Alexander. CAB International, WallingfordUK 1992; 348–351
  • Tisdall J. M. Possible role of soil microorganisms in aggregation of soil. Plant Soil 1994; 159: 115–121
  • Tobar R., Azcón R., Barea J. M. Improved nitrogen uptake and transport from i5N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 1994a; 126: 119–122
  • Tobar R. M., Azcón R., Barea J. M. The improvement of plant N acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 1994b; 4: 105–108
  • Waschkies C., Schropp A., Marschner H. Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudo-monads and endomycorrhizal fungi. Plant Soil 1994; 162: 219–227
  • Wiesler F., Horst W. J. Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil 1994; 163: 267–277
  • Young C. C., Juang T. C., Guo H. Y. The effect of inoculation with vesicular-arbuscular mycorrhizal fungi on soybean yield and mineral phosphorus utilization in subtropical-tropical soils. Plant Soil 1986; 95: 245–253

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.