Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 3
76
Views
8
CrossRef citations to date
0
Altmetric
Research Article

DIFFERENTIAL EFFECTS OF PHOTOPHASE IRRADIANCE ON METABOLIC AND URINARY STRESS HORMONE CONCENTRATIONS IN BLIND AND SIGHTED RODENTS

, &
Pages 487-516 | Received 10 Sep 2009, Accepted 22 Nov 2009, Published online: 04 Jun 2010

REFERENCES

  • Acra A, Jurdi M, Mu'allem H, Karahagopian Y, Raffoul Z. (1990). Monitoring solar ultraviolet-A radiation. Available at: http://almashriq.hiof.no/lebanon/600/610/614/solar-water/idrc (accessed November 2009).
  • Ahlers I, Pástorová B, Solár P, Ahlersová E. (1999). Daily rhythm in rat pineal catecholamines. Physiol. Res. 48:231–234.
  • Albers HE, Yogev L, Todd RB, Goldman BD. (1985). Adrenal corticoids in hamsters: Role of circadian timing. Am. J. Physiol. 248(R):434–438.
  • Atkinson HC, Waddel BJ. (1997). Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: Sexual dimorphism and changes across the estrous cycle. Endocrinology 138:3842–3848.
  • Axelrod J, Reisine TD. (1984). Stress hormones: Their interaction and regulation. Science 224:452–459.
  • Banin D, Haim A, Arad Z. (1994). Metabolism and thermoregulation in the Levant vole Microtus guentheri: The role of photoperiodicity. J. Therm. Biol. 19:55–62.
  • Benjamini L. (1989). Diel activity rhythms in the Levent vole, Microtus guentheri. Isr. J. Zool. 47:194–195.
  • Bennett AF, Ruben JA. (1979). Endothermy and activity in vertebrates. Science 206:649–654.
  • Berson DM, (2007). Phototransduction in ganglion-cell photoreceptor. Plfugers. Arch. 454:849–855.
  • Bingham C, Arbogast B, Guillaume GC, Lee JK, Halberg F. (1982). Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9:397–439.
  • Brainard GC, Vaughan MK, Reiter RJ. (1986). Effect of light irradiance and wavelength on the Syrian hamster reproductive system. Endocrinology 119:648–654.
  • Bronson FH. (1979). Light intensity and reproduction in wild and domestic house mice. Biol. Reprod. 21:235–239.
  • Cernuda-Cernuda R, DeGrip WJ, Cooper HM, Nevo E, García-Fernández JM. (2002). The retina of Spalax ehrenbergi: Novel histologic features supportive of a modified photosensory role. Invest. Ophthalmol. Vis. Sci. 43:2374–2383.
  • Chacón F, Esquifino AI, Perelló M, Cardinali DP, Spinedi E, Alvarez MP. (2005). 24-hour changes in ACTH, corticosterone, growth hormone, and leptin levels in young male rats subjected to calorie restriction. Chronobiol. Int. 22:253–265.
  • Challet E. (2007). Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655.
  • Clarke JA. (1983). Moonlight's influence on predator/prey interactions between short-eared owls (Asio flammeus) and deermice (Peromyscus maniculatus). Behav. Ecol. Sociobiol. 13:205–209.
  • Cooper HM, Herbin M, Nevo E. (1993). Visual system of a naturally microphthalmic mammal: The blind mole rat, Spalax ehrenbergi. J. Comp. Neurol. 328:313–350.
  • Dardente H, Klosen P, Caldelas I, Pévet P, Masson-Pévet M. (2002). Phenotype of Per1- and Per2-expressing neurons in the suprachiasmatic nucleus of a diurnal rodent (Arvicanthis ansorgei): Comparison with a nocturnal species, the rat. Cell Tissue Res. 2310:85–92.
  • David-Gray ZK, Janssen JW, DeGrip WJ, Nevo E, Foster RG. (1998). Light detection in a “blind” mammal. Nat. Neurosci. 1:655–656.
  • Duguay D, Cermakian N. (2009). The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26:1479–1513.
  • Erkert HG. (2008). Diurnality and nocturnality in nonhuman primates: Comparative chronobiological studies in laboratory and nature. Biol. Rhythm Res. 39:229–267.
  • Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster RG. (1999). Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284:502–504.
  • Fu Y, Zhong H, Wang MH, Luo DG, Liao HW, Maeda H, Hattar S, Frishman LJ, Yau KW. (2005). Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. Proc. Natl. Acad. Sci. USA 102:10339–10344.
  • Gavrilović LJ, Dronjak S. (2006). Sympatho-adrenomedullary system responses to various chronic stress situations. Yugoslav. Med. Biochem. 25:11–15.
  • Gębczyński AK. (2006). Patterns of ultradian rhythms of activity and metabolic rate in relation to average daily energy expenditure in root voles. Acta Theriol. 51:345–352.
  • Getz LL. (2009). Circadian activity rhythm and potential predation risk of the prairie vole, Microtus ochrogaster. Southwest. Nat. 54:146–150.
  • Godsil BP, Fanselow MS. (2004). Light stimulus change evokes an activity response in the rat. Learn. Behav. 32:299–310.
  • Goldman BD, Goldman SL, Riccio AP, Terkel J. (1997). Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi. J. Biol. Rhythms 12:348–361.
  • Goldstein DS. (2003). Catecholamines and stress. Endocr. Regul. 37:69–80.
  • Gouthiere L, Mauvieux B, Davenne D, Waterhouse J. (2005). Complementary methodology in the analysis of rhythmic data, using examples from a complex situation, the rhythmicity of temperature in night shift workers. Biol. Rhythm Res. 36:177–193.
  • Griffith MK, Minton JE. (1992). Effect of light intensity on circadian profiles of melatonin, prolactin, ACTH, and cortisol in pigs. J. Anim. Sci. 70:492–498.
  • Haim A, Heth G, Pratt H, Nevo E. (1983). Photoperiodic effects on thermoregulation in a “blind” subterranean mammal. J. Exp. Biol. 107:59–64.
  • Haim A, Shanas U, Zisapel N, Gilboa A. (2004). Rodent pest control: The use of photoperiod manipulations as a tool. In Pelz HJ, Cowan DP, Feare CJ (eds.). Advance in vertebrate pest management III. Filander Verlag: Furthin Press, Germany, pp. 29–30.
  • Haim A, Zubidat AE, Scantlebury M. (2005). Seasonality and seasons out of time—thermoregulatory effects of light interference. Chronobiol. Int. 22:57–64.
  • Haim A, Zubidat AE, van Aarde RJ. (2008). Daily rhythms of body temperature and heat production of sibling Mastomys species from different ecosystems—the response to photoperiod manipulations. Comp. Biochem. Physiol. 151(A):505–510.
  • Halle S. (2000). Voles—small garminivores with polyphasic patterns. In Halle S, Stenseth NC (eds.). Activity patterns in small mammals: An ecological approach. Ecological Studies, Springer, Springer-Verlag, Berlin, Germany, pp. 191–215.
  • Hankins MW, Peirson SN, Foster RG. (2008). Melanopsin: An exciting photopigment. Trends Neurosci. 31:27–36.
  • Harrison DL, Bates PJJ. (1991). The mammals of Arabia. 2nd ed. Harrison Zoological Museum Publication, Kent, pp. 309–313.
  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295:955–957.
  • Haus E. (2007). Chronobiology in the endocrine system. Adv. Drug. Deliv. Rev. 59:985–1014.
  • Hermana JP, Cullinan WE. (1997). Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20:78–84.
  • Juszczak M, Boczek-Leszczyk E, Stempniak B. (2007). Effect of melatonin on the vasopressin secretion as influenced by tachykinin NK-1 receptor agonist and antagonist: In vivo and in vitro studies. J. Physiol. Pharmacol. 58:829–843.
  • Kalsbeek A, Perreau-Lenz S, Buijs RM. (2006). A network of (autonomic) clock outputs. Chronobiol. Int. 23:201–215.
  • Karmer KM, Birney EC. (2001). Effect of light intensity on activity patterns of Patagonian leaf-eared mice, Phyllotis xanthopygus. J. Mammal. 82:535–544.
  • Kavakl ÍH, Sancar A. (2002). Circadian photoreception in humans and mice. Mol. Interv. 2:484–492.
  • Kennaway DJ, Wright H. (2002). Melatonin and circadian rhythms. Cur. Top. Med. Chem. 2:199–209.
  • Klerman EB, Shanahan TL, Brotman DJ, Rimmer DW, Emens JS, Rizzo JF, Czeisler CA. (2002). Photic resetting of the human circadian pacemaker in the absence of conscious vision. J. Biol. Rhythms 17:548–555.
  • Kloog, I, Haim, A, Stevens, RG, Barchana, M, Portnov, BA. (2008). Light at night co-distributes with incidence of breast but not lung cancer in the female population of Israel. Chronobiol. Int. 25:65–81.
  • Koch JM, Hagenauer MH, Lee TM. (2009). The response of Per1 to light in the suprachiasmatic nucleus of the diurnal degu (Octodon degus). Chronobiol. Int. 26:1263–1271.
  • Kotler BP. (1984). Harvesting rates and predatory risk in desert rodents: A comparison of two communities on different continents. J. Mammal. 65:91–96.
  • Krame KM, Sothern RB. (2001). Circadian characteristics of corticosterone secretion in red-backed voles (Clethrionomys gapperi). Chronobiol. Int. 18:933–945.
  • Levy O, Dayan T, Kronfeld-Schor N. (2007). The relationship between the golden spiny mouse circadian system and its diurnal activity: An experimental field enclosures and laboratory study. Chronobiol. Int. 24:599–613.
  • Li X, Gilbert J, Davis FC. (2005). Disruption of masking by hypothalamic lesions in Syrian hamsters. J. Comp. Physiol. 191(A):23–30.
  • Lockley SW, Skene DJ, Arendt J, Tabandeh H, Bird AC, Defrace R. (1997). Relationship between melatonin rhythms and visual loss in the blind. J. Clin. Endocrinol. Metab. 82:3763–3770.
  • Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. (1999). Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–507.
  • Lynch HJ, Rivest RW, Ronsheim PM, Wurtman RJ. (1981). Light intensity and the control of melatonin secretion in rats. Neuroendocrinology 33:181–185.
  • Mrosovsky N. (1994). In praise of masking: Behavioural responses of retinally degenerate mice to dim light. Chronobiol. Int. 11:343–348.
  • Mrosovsky N. (1999). Masking: History, definitions, and measurement. Chronobiol. Int. 16:415–429.
  • Mrosovsky N, Hattar S. (2003). Impaired masking responses to light in melanopsin-knockout mice. Chronobiol. Int. 20:989–999.
  • Mrosovsky N, Hattar S. (2005). Diurnal mice (Mus musculus) and other examples of temporal niche switching. J. Comp. Physiol. 191(A):1011–1024.
  • Mrosovsky N, Thompson S. (2008). Negative and positive masking responses to light in retinal degenerate slow (rds/rds) mice during aging. Vision Res. 48:1270–1273.
  • Mrosovsky N, Lucas RJ, Foster RG. (2001). Persistence of masking responses to light in mice lacking rods and cones. J. Biol. Rhythms 16:585–588.
  • Navara KJ, Nelson RJ. (2007). The dark side of light at night: Physiological, epidemiological, and ecological consequences. J. Pineal Res. 43:215–224.
  • Nayak SK, Jegla T, Panda S. (2007). Role of a novel photopigment, melanopsin, in behavioral adaptation to light. Cell. Mol. Life Sci. 64:144–154.
  • Nelson DE, Takahashi JS. (1991). Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J. Physiol. 439:115–145.
  • Nelson RJ, Martin LB. (2007). Seasonal changes in stress responses. In: George F (ed.). Encyclopedia of stress. 2nd edition, vol. 3. Oxford: Academic Press, pp. 427–431.
  • Nelson W, Tong Y, Lee J, Halberg F. (1979). Methods for cosinor-rhythmometry. Chronobiologia 6:305–323.
  • Němec P, Cveková P, Burda H, Benada O, Peichl L. (2007). Visual systems and the role of vision in subterranean rodents: Diversity of retinal properties and visual system designs. In Begall S, Burda H, Schleich CE (eds.). Subterranean rodents: News from underground. Springer-Verlag, Berlin-Heidelberg, pp. 129–160.
  • Němec P, Cveková P, Benada O, Wielkopolska E, Olkowicz S, Turlejski K, Burda H, Bennett NC, Peichl L. (2008). The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): Retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75:356–364.
  • Nevo E. (1988). Genetic diversity in nature. Evol. Biol. 23:217–246.
  • Nevo E. (1999). Mosaic evolution of subterranean mammals: Regression, progression, and global convergence. Oxford: Oxford University Press.
  • Nevo E, Shkolnik A. (1974). Adaptive metabolic variation of chromosome forms in mole rats, Spalax. Experientia 30:724–726.
  • Nevo E, Ivanitskaya E, Beiles A. (2001). Adaptive radiation of blind subterranean mole rats. Backhuys, Leiden, Netherlands.
  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527.
  • Peichl L. (2005). Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 287:1001–1012.
  • Pévet P, Agez L, Bothorel B, Saboureau M, Gauer F, Laurent V, Masson-Pévet M. (2006). Melatonin in the multi-oscillatory mammalian circadian world. Chronobiol. Int. 23:39–51.
  • Piacsek BE, Hautzinger GM. (1974). Effects of duration, intensity, and spectrum of light exposure on sexual maturation time of female rats. Biol. Reprod. 10:380–387.
  • Pittendrigh CS. (1993). Temporal organization: reflections of a Darwinian clockwatcher. Annu. Rev. Physiol. 55:16–54.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Quintero JE, Kuhlman, SJ, McMahon DG. (2003). The biological clock nucleus: A multiphasic oscillator network regulated by light. J. Neurosci. 23:8070–8076.
  • Rado R, Gev H, Goldamn BD, Terkel J. (1991). Light and circadian activity in the blind mole rat. In Riklis E (ed.). Photobiology. Plenum, New York, pp. 581–589.
  • Ramanathan C, Campbell A, Tomczak A, Nunez AA, Smale L, Yan L. (2009). Compartmentalized expression of light-induced clock genes in the suprachiasmatic nucleus of the diurnal grass rat (Arvicanthis niloticus). Neuroscience 161:960–969.
  • Redlin U. (2001). Neural basis and biological function of masking by light in mammals: Suppression of melatonin and locomotor activity. Chronobiol. Int. 18:737–758.
  • Redlin U, Mrosovsky N. (2004). Nocturnal activity in a diurnal rodent (Arvicanthis niloticus): The importance of masking. J. Biol. Rhythms 19:58–67.
  • Refinetti R, Cornélissen G, Halberg F. (2007). Procedures for numerical analysis of circadian rhythms. Biol. Rhythm Res. 38:275–325.
  • Reiter RJ. (1993). The melatonin rhythm: Both a clock and calendar. Experientia 49:645–664.
  • Reiter RJ. (1994). Non-visible electromagnetic radiation and pineal function. Acta Neurobiol. Exp. Eye-Pineal Relationships International Symposium, Nencki Institute Warszawa. 54:93–94.
  • Sapolsky RM. (2002). Endocrinology of the stress-response. In Becker JB, Breedlove SM, Crews D, McCarthy MM (eds.). Behavioral endocrinology. 2nd ed. London: The MIT Press, pp. 409–450.
  • Silva JE. (2006). Thermogenic mechanisms and their hormonal regulation. Physiol. Rev. 86:435–464.
  • Speakman J. (2000). The cost of living: Field metabolic rates of small mammals. Adv. Ecol. Res. 30:177–297.
  • Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Esquifino AI, Cardinali DP, Maestroni GJ. (2008). Melatonin, environmental light, and breast cancer. Breast Cancer Res. Treat. 108:339–350.
  • Stevens RG, Blask DE, Brainard GC, Hansen J, Lockley SW, Provencio I, Rea MS, Reinlib L. (2007). Meeting report: The role of environmental lighting and circadian disruption in cancer and other diseases. Environ. Health Perspect. 115:1357–1362.
  • Sudo A, Miki K. (1995). Circadian rhythm of catecholamine excretion in rats after phase shift of light-dark cycle. Ind. Health. 33:57–66.
  • Taylor CR, Heglund N, Maloiy GMO. (1982). Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:1–21.
  • Thompson S, Foster RG, Stone EM, Sheffield VC, Mrosovsky N. (2008). Classical and melanopsin photoreception in irradiance detection: Negative masking of locomotor activity by light. Eur. J. Neurosci. 27:1973–1979.
  • Tosini G, Pozdeyev N, Sakamoto K, Iuvone PM. (2008). The circadian clock system in the mammalian retina. Bioessays 30:624–633.
  • Vásquez RA. (1994). Assessment of predation risk via illumination level: Facultative central place foraging in the cricetid rodent Phyllotis darwini. Behav. Ecol. Sociobiol. 24:375–381.
  • Vilaplana J, Cambras T, Díez-Noguera A. (1995). Effects of light intensity on the activity rhythm of young rats. Biol. Rhythm Res. 26:306–315.
  • Wilkinson CW. (2008). Circadian clocks: Showtime for the adrenal cortex. Endocrinology 149:1451–1453.
  • Wilsbacher LD, Yamazaki S, Herzog ED, Song EJ, Radcliffe LA, Abe M, Block G, Spitznagel E, Menaker M, Takahashi JS. (2002). Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc. Natl. Acad. Sci. USA 99:489–494.
  • Windle R, Forsling J, Guzek JW. (1992). Daily rhythms in the hormone content of the neurohypophyseal system and release of oxytocin and vasopressin in the male rat: Effect of constant light. J. Endocrinol. 133:283–290.
  • Zubidat AE, Ben-Shlomo R, Haim A. (2007). Thermoregulatory and endocrine responses to light pulses in short-day acclimated social voles (Microtus socialis). Chronobiol. Int. 24:269–288.
  • Zubidat AE, Nelson RJ, Haim A. (2008). Urinary adrenalin and cortisol secretion patterns of social voles in response to adrenergic blockade under basal conditions. Physiol. Behav. 93:243–249.
  • Zubidat AE, Nelson RJ, Haim A. (2009). Photosensitivity to different light intensities in blind and sighted rodents. J. Exp. Biol. 212:3857–3864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.