Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 7
569
Views
61
CrossRef citations to date
0
Altmetric
Research Article

FEEDING ENTRAINMENT OF FOOD-ANTICIPATORY ACTIVITY AND per1 EXPRESSION IN THE BRAIN AND LIVER OF ZEBRAFISH UNDER DIFFERENT LIGHTING AND FEEDING CONDITIONS

, , &
Pages 1380-1400 | Received 12 Jan 2010, Accepted 26 May 2010, Published online: 26 Aug 2010

REFERENCES

  • Ángeles-Castellanos M, Mendoza J, Escobar C. (2007). Restricted feeding schedules phase shift daily rhythms of c-fos and protein PER1 immunoreactivity in corticolimbic regions in rats. Neuroscience 144:344–355.
  • Azzaydi M, Rubio VC, Martínez López FJ, Sánchez-Vázquez FJ, Zamora S, Madrid JA. (2007). Effects of restricted feeding schedule on seasonal shifting of daily demand-feeding pattern and food anticipatory activity in European sea bass (Dicentrarchus labrax L.). Chronobiol. Int. 24:859–874.
  • Cahill GM. (2002). Clock mechanisms in zebrafish. Cell Tissue Res. 309:27–34.
  • Carneiro BTC, Araujo JF. (2009). The food-entrainable oscillator: a network of interconnected brain structures entrained by humoral signals? Chronobiol. Int. 26:1273–1289.
  • Cermakian N, Whitmore D, Foulkes NS, Sassone-Corsi P. (2000). Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. Proc. Natl. Acad. Sci. U.S.A. 97:4339–4344.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadan oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Davidson AJ, Poole AS, Yamazaki S, Menaker M. (2003). Is the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav. 2:32–39.
  • Davie A, Minghetti M, Migaud H. (2009). Seasonal variations in clock-gene expression in Atlantic salmon (Salmo salar). Chronobiol. Int. 26:379–395.
  • Dickmeis T, Lahiri K, Nica G, Vallone D, Santoriello C, Neumann CJ, Hammerschmidt M, Foulkes NS. (2007). Glucocorticoids play a key role in circadian cell cycle rhythms. PLoS Biol. 5:78.
  • Duguay D, Cermakian N. (2009). The crosstalk between physiology and circadian clock proteins. Chronobiol. Int. 26:1479–1513.
  • Escobar C, Cailotto C, Ángeles-Castellanos M, Delgado RS, Buijs RM. (2009). Peripheral oscillators: the driving force for food-anticipatory activity. Eur. J. Neurosci. 30:1665–1675.
  • Farhat FP, Martins CB, Lima LH, Isoldi MC, Castrucci AM. (2009). Melanopsin and clock genes: regulation by light and endothelin in the zebrafish ZEM-2S cell line. Chronobiol. Int. 26:1090–1119.
  • Feillet CA, Albrecht U, Challet E. (2006). “Feeding time” for the brain: a matter of clocks. J. Physiol. 100:252–260.
  • Gooley JJ, Schomer A, Saper CB. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9:398–407.
  • Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted feeding entrains liver clock without participation of the suprachismatic nucleus. Genes Cells 6:269–278.
  • Herrero MJ, Pascual M, Madrid JA, Sánchez-Vázquez FJ. (2005). Demand-feeding rhythms and feeding-entrainment of locomotor activity rhythms in tench (Tinca tinca). Physiol. Behav. 84:595–605.
  • Hurd MW, Debruyne J, Straume M, Cahill GM. (1998). Circadian rhythms of locomotor activity in zebrafish. Physiol. Behav. 65:465–472.
  • Kaneko M, Hernández-Borsetti N, Cahill GM. (2006). Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. Proc. Natl. Acad. Sci. U.S.A. 103:14614–14619.
  • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Álvarez JG, Egan DF, Vásquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM. (2009). AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440.
  • Landry GJ, Yamakawa GR, Webb IC, Mear RJ, Mistlberger RE. (2007). The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats. J. Biol. Rhythms 22:467–478.
  • López-Olmeda JF, Sánchez-Vázquez FJ. (2009). Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature. Chronobiol. Int. 26:200–218.
  • López-Olmeda JF, Sánchez-Vázquez FJ. (2010). Feeding rhythms in fish: from behavioural to molecular approach. In Kulczykowska E, Popek W, Kapoor BG(eds.) . Biological clock in fish. Enfield, NH: Science Publishers, pp. 155–184.
  • López-Olmeda JF, Egea-Álvarez M, Sánchez-Vázquez FJ. (2009a). Glucose tolerance in fish: is the daily feeding time important? Physiol. Behav. 96:631–636.
  • López-Olmeda JF, Montoya A, Oliveira C, Sánchez-Vázquez FJ. (2009b). Synchronization to light and restricted-feeding schedules of behavioral and humoral daily rhythms in gilthead sea bream (Sparus aurata). Chronobiol. Int. 26:1389–1408.
  • Miñana-Solís MC, Ángeles-Castellanos M, Feillet CA, Pévet P, Challet E, Escobar C. (2009). Differential effects of a restricted feeding schedule on clock-gene expression in the hypothalamus of the rat. Chronobiol. Int. 26:808–820.
  • Mistlberger RE. (2009). Food-anticipatory circadian rhythms: concepts and methods. Eur. J. Neurosci. 30:1718–1729.
  • Moriya T, Aida R, Kudo T, Akiyama M, Doi M, Hayasaka N, Nakahata N, Mistlberger RE, Okamura H, Shibata S. (2009). The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behaviour, temperature or clock gene expression in mice. Eur. J. Neurosci. 29:1447–1460.
  • Pando MP, Sassone-Corsi P. (2002). Unravelling the mechanisms of the vertebrate circadian clock: zebrafish may light the way. BioEssays 24:419–426.
  • Pando MP, Pinchak AB, Cermakian N, Sassone-Corsi P. (2001). A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc. Natl. Acad. Sci. U.S.A. 98:10178–10183.
  • Plautz JD, Kaneko M, Hall JC, Kay SA. (1997). Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Reebs SG, Lague M. (2000). Daily food-anticipatory activity in golden shiners: a test of endogenous timing mechanisms. Physiol. Behav. 70:35–43.
  • Refinetti R. (2004). Non-stationary time series and the robustness of circadian rhythms. J. Theor. Biol. 227:571–581.
  • Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ. (2010). Identification of RACK1 and protein kinase Cα as integral components of the mammalian circadian clock. Science 327:463–466.
  • Sánchez JA, Sánchez-Vázquez FJ. (2009). Feeding entrainment of daily rhythms of locomotor activity and clock gene expression in zebrafish brain. Chronobiol. Int. 26:1120–1135.
  • Sánchez-Vázquez FJ, Madrid JA. (2001). Feeding anticipatory activity in fish. In Houlihan DF, Boujard T, Jobling M (eds). Food intake in fish. Oxford: Blackwell Science, pp. 216–232.
  • Sánchez-Vázquez FJ, Tabata M. (1998). Circadian rhythms of demand-feeding and locomotor activity in rainbow trout. J. Fish Biol. 52:255–267.
  • Sánchez-Vázquez FJ, Zamora S, Madrid JA. (1995). Light-dark and food restriction cycles in sea bass: effect of conflicting zeitgebers on demand-feeding rhythms. Physiol. Behav. 58:705–714.
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S, Tabata M. (1997). Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding-entrainable circadian oscillator. J. Comp. Physiol. A 181:121–132.
  • Stephan FK. (2002). The “other” circadian system: food as a zeitgeber. J. Biol. Rhythms 17:284–292.
  • Stephan FK, Swann JM, Sisk CL. (1979). Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic nucleus lesions. Behav. Neural Biol. 25:545–554.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. (2001). Entrainment of the circadian clock in the liver by feeding. Science 291:490–493.
  • Velarde E, Haque R, Iuvone PM, Azpeleta C, Alonso-Gómez AL, Delgado MJ. (2009). Circadian clock genes of goldfish, Carassius auratus: cDNA cloning and rhythmic expression of Period and Cryptochrome transcripts in retina, liver, and gut. J. Biol. Rhythms 24:104–113.
  • Whitmore D, Foulkes NS, Strähle U, Sassone-Corsi P. (1998). Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nature Neurosci. 1:701–707.
  • Whitmore D, Foulkes NS, Sassone-Corsi P. (2000). Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404:87–91.
  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685.
  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. U.S.A. 101:5339–5346.
  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM. (1998). Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.