Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 3
628
Views
65
CrossRef citations to date
0
Altmetric
Research Article

Hepatic, Duodenal, and Colonic Circadian Clocks Differ in their Persistence under Conditions of Constant Light and in their Entrainment by Restricted Feeding

, , , &
Pages 204-215 | Received 31 Aug 2010, Accepted 24 Nov 2010, Published online: 31 Mar 2011

REFERENCES

  • Abe H, Kida M, Tsuji K, Mano T. (1989). Feeding cycles entrain circadian rhythms of locomotor activity in CS mice but not in C57BL/6J mice. Physiol. Behav. 45:397–401.
  • Balsalobre A. (2002). Clock genes in mammalian peripheral tissues. Cell Tissue Res. 309:193–199.
  • Beaule C, Houle LM, Amir S. (2003). Expression profiles of PER2 immunoreactivity within the shell and core regions of the rat suprachiasmatic nucleus: lack of effect of photic entrainment and disruption by constant light. J. Mol. Neurosci. 21:133–147.
  • Challet E, Caldelas I, Graff C, Pevet P. (2003). Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol. Chem. 384:711–9.
  • Chen-Goodspeed M, Lee CC. (2007). Tumor suppression and circadian function. J. Biol. Rhythms 22:291–298.
  • Coleman GJ, Harper S, Clarke JD, Armstrong S. (1982). Evidence for a separate meal-associated oscillator in the rat. Physiol. Behav. 29:107–115.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Davidson AJ, Aragona BJ, Houpt TA, Stephan FK. (2001). Persistence of meal-entrained circadian rhythms following area postrema lesions in the rat. Physiol. Behav. 74:349–354.
  • Feillet CA, Mendoza J, Pevet P, Challet E. (2008). Restricted feeding restores rhythmicity in the pineal gland of arrhythmic suprachiasmatic-lesioned rats. Eur. J. Neurosci. 28:2451–2458.
  • Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP. (2006). The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol. Cell. 22:375–382.
  • Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. (2008). The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J. Biol. Chem. 283:4535–4542.
  • Green CB, Takahashi JS, Bass J. (2008). The meter of metabolism. Cell 134:728–742.
  • Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278.
  • Hirayama J, Cardone L, Doi M, Sassone-Corsi P. (2005). Common pathways in circadian and cell cycle clocks: light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proc. Natl. Acad. Sci. U. S. A. 102:10194–10199.
  • Honma K, von Goetz C, Aschoff J. (1983). Effects of restricted daily feeding on freerunning circadian rhythms in rats. Physiol. Behav. 30:905–913.
  • Hoogerwerf WA. (2009). Role of biological rhythms in gastrointestinal health and disease. Rev. Endocr. Metab. Disord. 10:293–300.
  • Hoogerwerf WA, Hellmich HL, Cornelissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM. (2007). Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133:1250–1260.
  • Jasper MS, Engeland WC. (1994). Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology 59:97–109.
  • Klein DC, Moore RY, Reppert SM. (1991). Suprachiasmatic nucleus: the mind's clock. New York: Oxford University Press.
  • Knutsson A, Bogglid H. (2010). Gastrointestinal disorders among shift workers. Scand. J. Work Environ. Health 36:5–95.
  • Kobayashi H, Oishi K, Hanai S, Ishida N. (2004). Effect of feeding on peripheral circadian rhythms and behaviour in mammals. Genes Cells 9:857–864.
  • Lamont EW, Diaz LR, Barry-Shaw J, Stewart J, Amir S. (2005). Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus. Neuroscience 132:245–248.
  • Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U. (1997). The DBP gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J. 16:6762–6771.
  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. (2003). Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259.
  • Maywood ES, Reddy AB, Wong GK, O'Neill JS, O'Brien JA, McMahon DG, Harmar AJ, Okamura H, Hastings MH. (2006). Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr. Biol. 16:599–605.
  • McGowan CH, Russell P. (1995). Cell cycle regulation of human WEE1. EMBO J. 14:2166–2175.
  • Mistlberger RE. (1993). Effects of scheduled food and water access on circadian rhythms of hamsters in constant light, dark, and light:dark. Physiol. Behav. 53:509–516.
  • Mistlberger RE. (1994). Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18:171–195.
  • Nelson W, Tong YL, Lee JK, Halberg F. (1979). Methods for cosinor-rhythmometry. Chronobiologia 6:305–323.
  • Ohta H, Yamazaki S, McMahon DG. (2005). Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 8:267–269.
  • Pan X, Hussain MM. (2007). Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels. J. Biol. Chem. 282:24707–24719.
  • Perry JA, Kornbluth S. (2007). Cdc25 and Wee1: analogous opposites? Cell Div. 2–12.
  • Pittendrigh CS.(1981). Circadian systems: entrainment. In Aschoff J. (ed.). Handbook of behavioural neurobiology, Vol. 4, Biological rhythms. New York: Plenum, 95–124.
  • Polidarová L, Soták M, Sládek M, Pácha J, Sumová A. (2009). Temporal gradient in the clock gene and cell-cycle checkpoint kinase Wee1 expression along the gut. Chronobiol. Int. 26:607–620.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Rajaratman SM, Arendt J. (2001). Health in a 24-h society. Lancet 358:999–1005.
  • Ripperger JA, Shearman LP, Reppert SM, Schibler U. (2000). CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14:679–689.
  • Sakamoto K, Nagase T, Fukui H, Horikawa K, Okada T, Tanaka H, Sato K, Miyake Y, Ohara O, Kako K, Ishida N. (1998). Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J. Biol. Chem. 273:27039–27042.
  • Sharma VK, Chidambaram R, Chandrashekaran MK. (2000). Probing the circadian pacemaker of a mouse using two light pulses. J. Biol. Rhythms 15:67–73.
  • Sheward WJ, Maywood ES, French KL, Horn JM, Hastings MH, Seckl JR, Holmes MC, Harmar AJ. (2007). Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice. J. Neurosci. 27:4351–4358.
  • Scheving LA, Yeh YC, Tsai TH, Scheving LE. (1979). Circadian phase-dependent stimulatory effects of epidermal growth factor on deoxyribonucleic acid synthesis in the tongue, esophagus, and stomach of the adult male mouse. Endocrinology 105:1475–1480.
  • Scheving LA, Yeh YC, Tsai TH, Scheving LE. (1980). Circadian phase-dependent stimulatory effects of epidermal growth factor on deoxyribonucleic acid synthesis in the duodenum, jejunum, ileum, caecum, colon, and rectum of the adult male mouse. Endocrinology 106:1498–1503.
  • Scheving LA, Tsai TH, Scheving LE. (1986). Effect of thioacetamide on the incorporation of [3H]-thymidine into DNA of 13 tissues and on the mitotic index of the corneal epithelium of BD2F1 in male mice while taking into consideration circadian variation. Chronobiol. Int. 3:1–15.
  • Scheving LE, Burns ER, Pauly JE, Tsai TH. (1978). Circadian variation in cell division of the mouse alimentary tract, bone marrow and corneal epithelium. Anat. Rec. 191:479–486.
  • Scheving LE, Tsai TH, Powell EW, Pasley JN, Halberg F, Dunn J. (1983). Bilateral lesions of suprachiasmatic nuclei affect circadian rhythms in [3H]-thymidine incorporation into deoxyribonucleic acid in mouse intestinal tract, mitotic index of corneal epithelium, and serum corticosterone. Anat. Rec. 205:239–249.
  • Schibler U, Ripperger J, Brown SA. (2003). Peripheral circadian oscillators in mammals: time and food. J. Biol. Rhythms 18:250–260.
  • Sládek M, Jindráková Z, Bendová Z, Sumová A. (2007a). Postnatal ontogenesis of the circadian clock within the rat liver. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R1224–R1229.
  • Sládek M, Rybová M, Jindráková Z, Zemanová Z, Polidarová L, Mrnka L, O'Neill J, Pácha J, Sumová A. (2007b). Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133:1240–1249.
  • Stephan FK, Swann JM, Sisk CL. (1979). Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav. Neural Biol. 25:346–363.
  • Stephan FK, Berkley KJ, Moss RL. (1981). Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 6:2625–2641.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. (2001). Entrainment of the circadian clock in the liver by feeding. Science 291:490–493.
  • Sudo M, Sasahara K, Moriya T, Akiyama M, Hamada T, Shibata S. (2003). Constant light housing attenuates circadian rhythms of mPer2 mRNA and mPER2 protein expression in the suprachiasmatic nucleus of mice. Neuroscience 121:493–499.
  • Takahashi JS, Hong HK, Ko CH, McDearmon EL. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9:764–775.
  • Terazono H, Mutoh T, Yamaguchi S, Kobayashi M, Akiyama M, Udo R, Ohdo S, Okamura H, Shibata S. (2003). Adrenergic regulation of clock gene expression in mouse liver. Proc. Natl. Acad. Sci. U. S. A. 100:6795–6800.
  • Tsunada S, Iwakiri R, Fujimoto K, Aw TY. (2003). Chronic lipid hydroperoxide stress suppresses mucosal proliferation in rat intestine: potentiation of ornithine decarboxylase activity by epidermal growth factor. Dig. Dis. Sci. 48:2333–2341.
  • Ventura MA, Gardey C, d'Athis P. (1984). Rapid reset of the corticosterone rhythm by food presentation in rats under acircadian restricted feeding schedule. Chronobiol. Int. 1:287–295.
  • Wood PA, Yang X, Taber A, Oh EY, Ansell C, Ayers SE, Al-Assaad Z, Carnevale K, Berger FG, Pena MM, Hrushesky WJ. (2008). Period 2 mutation accelerates ApcMin/+ tumorigenesis. Mol. Cancer Res. 6:1786–1793.
  • Yamajuku D, Shibata Y, Kitazawa M, Katakura T, Urata H, Kojima T, Nakata O, Hashimoto S. (2010). Identification of functional clock-controlled elements involved in differential timing of Per1 and Per2 transcription. Nucleic Acids Res. 38:7964–7973.
  • Yang X, Wood PA, Ansell CM, Ohmori M, Oh EY, Xiong Y, Berger FG, Pena MM, Hrushesky WJ. (2009). Beta-catenin induces beta-TrCP-mediated PER2 degradation altering circadian clock gene expression in intestinal mucosa of ApcMin/+ mice. J. Biochem. 145:289–297.
  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM. (1998). Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.