Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 28, 2011 - Issue 6
143
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Dim Nighttime Illumination Interacts With Parametric Effects of Bright Light to Increase the Stability of Circadian Rhythm Bifurcation in Hamsters

, &
Pages 488-496 | Received 02 Feb 2011, Accepted 03 May 2011, Published online: 28 Jul 2011

REFERENCES

  • Aschoff J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25:11–28.
  • Aschoff J. (1979). Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z. Tierpsychol. 49:225–249.
  • Bachleitner W, Kempinger L, Wulbeck C, Rieger D, Helfrich-Forster C. (2007). Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 104:3538–3543.
  • Brainard GC, Richardson BA, Hurlbut EC, Steinlechner S, Matthews SA, Reiter RJ. (1984). The influence of various irradiances of artificial light, twilight, and moonlight on the suppression of pineal melatonin content in the Syrian hamster. J. Pineal Res. 1:105–119.
  • Butler MP, Silver R. (2010). Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex. Proc. Biol. Sci. 278:745–750.
  • Chiesa JJ, Angles-Pujolras M, Diez-Noguera A, Cambras T. (2006). History-dependent changes in entrainment of the activity rhythm in the Syrian hamster (Mesocricetus auratus). J. Biol. Rhythms 21:45–57.
  • Erkert HG, Grober J. (1986). Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol. (Basel) 47:171–188.
  • Evans JA, Elliott JA, Gorman MR. (2005). Circadian entrainment and phase resetting differ markedly under dimly illuminated versus completely dark nights. Behav. Brain Res. 162:116–126.
  • Evans JA, Elliott JA, Gorman MR. (2007). Circadian effects of light no brighter than moonlight. J. Biol. Rhythms 22:356–367.
  • Evans JA, Elliott JA, Gorman MR. (2009). Dim nighttime illumination accelerates adjustment to timezone travel in an animal model. Curr. Biol. 19:R156–R157.
  • Evans JA, Elliott JA, Gorman MR. (2010). Dynamic interactions between coupled oscillators within the hamster circadian pacemaker. Behav. Neurosci. 124:87–96.
  • Fernandez-Duque E, Erkert HG. (2006). Cathemerality and lunar periodicity of activity rhythms in owl monkeys of the Argentinian Chaco. Folia Primatol. (Basel) 77:123–138.
  • Frank DW, Evans JA, Gorman MR. (2010). Time-dependent effects of dim light at night on re-entrainment and masking of hamster activity rhythms. J. Biol. Rhythms 25:103–112.
  • Gorman MR, Elliott JA. (2003). Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species. J. Biol. Rhythms 18:502–512.
  • Gorman MR, Elliott JA. (2004). Dim nocturnal illumination alters coupling of circadian pacemakers in Siberian hamsters, Phodopus sungorus. J. Comp. Physiol. A 190:631–639.
  • Gorman MR, Steele NA. (2006). Phase angle difference alters coupling relations of functionally distinct circadian oscillators revealed by rhythm splitting. J. Biol. Rhythms 21:195–205.
  • Gorman MR, Elliott JA, Evans JA. (2003). Plasticity of hamster circadian entrainment patterns depends on light intensity. Chronobiol. Int. 20:233–248.
  • Gorman MR, Evans JA, Elliott JA. (2006). Potent circadian effects of dim illumination at night in hamsters. Chronobiol. Int. 23:245–250.
  • Hoffmann K. (1971). Splitting of the circadian rhythm as a function of light intensity. In Menaker M (ed.). Biochronometry. Washington, DC: National Academy of Sciences, 134–146.
  • Johnson CH, Elliott JE, Foster R. (2003). Entrainment of circadian programs. Chronobiol. Int. 20:741–773.
  • Kawato M, Suzuki R. (1980). Two coupled neural oscillators as a model of the circadian pacemaker. J. Theor. Biol. 86:547–575.
  • Klein DC, Moore RY, Reppert SM (eds.). (1991). Suprachiasmatic nucleus: the mind's clock. New York: University Oxford Press.
  • Meijer JH, Schwartz WJ. (2003). In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Biol. Rhythms 18:235–249.
  • Meijer JH, Daan S, Overkamp GJ, Hermann PM. (1990). The two-oscillator circadian system of tree shrews (Tupaia belangeri) and its response to light and dark pulses. J. Biol. Rhythms 5:1–16.
  • Nelson DE, Takahashi JS. (1991). Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J. Physiol. 439:115–145.
  • Pittendrigh CS. (1966). The Circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Z. Pflanzenphysiol. Z. Bot. 54:275–307.
  • Pittendrigh CS. (1981). Circadian systems: entrainment. In Aschoff J (ed.). Biological rhythms. New York: Plenum Press: 95–124.
  • Pittendrigh CS, Daan S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents: IV. Entrainment: pacemaker as Clock. J. Comp. Physiol. A 106:291–331.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Roenneberg T, Foster RG. (1997). Twilight times: light and the circadian system. Photochem. Photobiol. 66:549–561.
  • Rosenthal SL, Vakili MM, Evans JA, Elliott JA, Gorman MR. (2005). Influence of photoperiod and running wheel access on the entrainment of split circadian rhythms in hamsters. BMC Neurosci. 6:41–53.
  • Saunders DS. (1975). Skeleton photoperiods and the control of diapause and development in the flesh fly Sarcophaga- Argyrostoma. J. Comp. Physiol. A Sens. Neu. Behav. Physiol. 97:97–112.
  • Sharma VK, Singaravel M, Chandrashekaran MK, Subbaraj R. (1997). Relationship between free-running period and minimum tolerable light pulse interval of skeleton photoperiods in field mice Mus booduga. Chronobiol. Int. 14:237–245.
  • Stephan FK. (1983). Circadian rhythms in the rat: constant darkness, entrainment to T cycles and to skeleton photoperiods. Physiol. Behav. 30:451–462.
  • Takahashi JS, DeCoursey PJ, Bauman L, Menaker M. (1984). Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308:186–188.
  • Watanabe T, Naito E, Nakao N, Tei H, Yoshimura T, Ebihara S. (2007). Bimodal clock gene expression in mouse suprachiasmatic nucleus and peripheral tissues under a 7-hour light and 5-hour dark schedule. J. Biol. Rhythms 22:58–68.
  • Weaver DR. (1998). The suprachiasmatic nucleus: a 25-year retrospective. J. Biol. Rhythms 13:100–112.
  • Yan L, Silver R, Gorman M. (2010). Reorganization of suprachiasmatic nucleus networks under 24-h LDLD conditions. J. Biol. Rhythms 25:19–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.