Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 1
421
Views
35
CrossRef citations to date
0
Altmetric
Research Article

Dim Light at Night Increases Immune Function in Nile Grass Rats, a Diurnal Rodent

, &
Pages 26-34 | Received 02 Sep 2011, Accepted 15 Oct 2011, Published online: 04 Jan 2012

REFERENCES

  • Arjona A, Sarkar DK. (2006). The circadian gene mPer2 regulates the daily rhythm of IFN-gamma. J. Interferon Cytokine Res. 26:645–649.
  • Avitsur R, Stark JL, Sheridan JF. (2001). Social stress induces glucocorticoid resistance in subordinate animals. Horm. Behav. 39:247–257.
  • Avitsur R, Stark JL, Dhabhar FS, Padgett DA, Sheridan JF. (2002). Social disruption-induced glucocorticoid resistance: kinetics and site specificity. J. Neuroimmunol. 124:54–61.
  • Bailey MT, Avitsur R, Engler H, Padgett DA, Sheridan JF. (2004). Physical defeat reduces the sensitivity of murine splenocytes to the suppressive effects of corticosterone. Brain Behav. Immun. 18:416–424.
  • Bailey MT, Engler H, Powell ND, Padgett DA, Sheridan JF. (2007). Repeated social defeat increases the bactericidal activity of splenic macrophages through a Toll-like receptor-dependent pathway. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293: R1180–R1190.
  • Bedrosian TA, Fonken LK, Walton JC, Haim A, Nelson RJ (2011a). Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology. 36:1062–1069.
  • Bedrosian TA, Fonken LK, Walton JC, Nelson RJ. (2011b). Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biol. Lett. 7:468–471.
  • Bilbo SD, Dhabhar FS, Viswanathan K, Saul A, Yellon SM, Nelson RJ. (2002). Short day lengths augment stress-induced leukocyte trafficking and stress-induced enhancement of skin immune function. Proc. Natl. Acad. Sci. U. S. A. 99:4067–4072.
  • Blask DE. (2009). Melatonin, sleep disturbance and cancer risk. Sleep Med. Rev. 13:257–264.
  • Bollinger T, Bollinger A, Naujoks J, Lange T, Solbach W. (2010). The influence of regulatory T cells and diurnal hormone rhythms on T helper cell activity. Immunology. 131:488–500.
  • Borugian MJ, Gallagher RP, Friesen MC, Switzer TF, Aronson KJ. (2005). Twenty-four-hour light exposure and melatonin levels among shift workers. J. Occup. Environ. Med. 47:1268–1275.
  • Brainard GC, Richardson BA, Petterborg LJ, Reiter RJ. (1982). The effect of different light intensities on pineal melatonin content. Brain Res. 233:75–81.
  • Brainard GC, Lewy AJ, Menaker M, Fredrickson RH, Miller LS, Weleber RG, Cassone V, Hudson D. (1985). Effect of light wavelength on the suppression of nocturnal plasma melatonin in normal volunteers. Ann. N. Y. Acad. Sci. 453:376–378.
  • Brotto LA, Gorzalka BB, LaMarre AK. (2001). Melatonin protects against the effects of chronic stress on sexual behaviour in male rats. Neuroreport. 12:3465–3469.
  • Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, Besing RC, Menaker M, Gewirtz AT, Davidson AJ. (2010). Dysregulation of inflammatory responses by chronic circadian disruption. J. Immunol. 185:5796–5805.
  • Cecon E, Fernandes PA, Pinato L, Ferreira ZS, Markus RP. (2010). Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland. Chronobiol. Int. 27:52–67.
  • Chen Z, Gardi J, Kushikata T, Fang J, Krueger JM. (1999). Nuclear factor-kappaB-like activity increases in murine cerebral cortex after sleep deprivation. Am. J. Physiol. 276:R1812–R1818.
  • Claustrat B, Valatx JL, Harthe C, Brun J. (2008). Effect of constant light on prolactin and corticosterone rhythms evaluated using a noninvasive urine sampling protocol in the rat. Horm. Metab. Res. 40:398–403.
  • Couto-Moraes R, Palermo-Neto J, Markus RP. (2009). The immune-pineal axis: stress as a modulator of pineal gland function. Ann. N. Y. Acad. Sci. 1153:193–202.
  • da Silveira Cruz-Machado S, Carvalho-Sousa CE, Tamura EK, Pinato L, Cecon E, Fernandes PA, de Avellar MC, Ferreira ZS, Markus RP. (2010). TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway. J. Pineal Res. 49:183–192.
  • Dagnino-Subiabre A, Orellana JA, Carmona-Fontaine C, Montiel J, Diaz-Veliz G, Seron-Ferre M, Wyneken U, Concha ML, Aboitiz F. (2006). Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats. J. Neurochem. 97:1279–1287.
  • Dauchy RT, Dauchy EM, Tirrell RP, Hill CR, Davidson LK, Greene MW, Tirrell PC, Wu J, Sauer LA, Blask DE. (2010). Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Comp. Med. 60:348–356.
  • Davis S, Mirick DK. (2006). Circadian disruption, shift work and the risk of cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control. 17:539–545.
  • de Groot J, Boersma WJ, Scholten JW, Koolhaas JM. (2002). Social stress in male mice impairs long-term antiviral immunity selectively in wounded subjects. Physiol. Behav. 75:277–285.
  • Deboer T, Detari L, Meijer JH. (2007). Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep. 30:257–262.
  • Demas GE, Chefer V, Talan MI, Nelson RJ. (1997). Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am. J. Physiol. 273:R1631–R1637.
  • Dhabhar FS. (2002). Stress-induced augmentation of immune function—the role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav. Immun. 16:785–798.
  • Dhabhar FS, McEwen BS. (1999). Enhancing versus suppressive effects of stress hormones on skin immune function. Proc. Natl. Acad. Sci. U. S. A. 96:1059–1064.
  • Drazen DL, Nelson RJ. (2001). Melatonin receptor subtype MT2 (Mel 1b) and not mt1 (Mel 1a) is associated with melatonin-induced enhancement of cell-mediated and humoral immunity. Neuroendocrinology. 74:178–184.
  • Dumont M, Beaulieu C. (2007). Light exposure in the natural environment: relevance to mood and sleep disorders. Sleep Med. 8:557–565.
  • Evans JA, Elliott JA, Gorman MR. (2007). Circadian effects of light no brighter than moonlight. J. Biol. Rhythms. 22:356–367.
  • Fiske VM. (1941). Effect of light on sexual maturation, estrous cycles, and anterior pituitary of the rat. Endocrinology. 29:187–196.
  • Fonken LK, Nelson RJ. (2011). Illuminating the deleterious effects of light at night. F1000 Med. Rep. 3:18.
  • Fonken LK, Finy MS, Walton JC, Weil ZM, Workman JL, Ross J, Nelson RJ. (2009). Influence of light at night on murine anxiety- and depressive-like responses. Behav. Brain Res. 205:349–354.
  • Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ. (2010). Light at night increases body mass by shifting the time of food intake. Proc. Natl. Acad. Sci. U. S. A. 107:18664–18669.
  • Gilad E, Wong HR, Zingarelli B, Virag L, O'Connor M, Salzman AL, Szabo C. (1998). Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages: role of inhibition of NFkappaB activation. FASEB J. 12:685–693.
  • Ha M, Park J. (2005). Shiftwork and metabolic risk factors of cardiovascular disease. J. Occup. Health. 47:89–95.
  • Haldar C, Singh R. (2001). Pineal modulation of thymus and immune function in a seasonally breeding tropical rodent, Funambulus pennanti. J. Exp. Zool. 289:90–98.
  • Hashiramoto A, Yamane T, Tsumiyama K, Yoshida K, Komai K, Yamada H, Yamazaki F, Doi M, Okamura H, Shiozawa S. (2010). Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J. Immunol. 184:1560–1565.
  • Hut RA, Beersma DG. (2011). Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366:2141–2154.
  • Kanda N, Watanabe S. (2005). Regulatory roles of sex hormones in cutaneous biology and immunology. J. Dermatol. Sci. 38:1–7.
  • Keppel G, Wickens T. (2004). Design and analysis: a researcher's handbook. 4th ed. Upper Saddle River, NJ: Prentice Hall, 73–75.
  • Klein SL, Nelson RJ. (1999). Social interactions unmask sex differences in humoral immunity in voles. Anim. Behav. 57:603–610.
  • Kloog I, Portnov BA, Rennert HS, Haim A. (2011). Does the modern urbanized sleeping habitat pose a breast cancer risk? Chronobiol. Int. 28:76–80.
  • Kohyama J. (2009). A newly proposed disease condition produced by light exposure during night: asynchronization. Brain Dev. 31:255–273.
  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. (2006). Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20:1868–1873.
  • Kriegsfeld LJ, Mei DF, Yan L, Witkovsky P, Lesauter J, Hamada T, Silver R. (2008). Targeted mutation of the calbindin D28K gene disrupts circadian rhythmicity and entrainment. Eur. J. Neurosci. 27:2907–2921.
  • Lopes C, Mariano M, Markus RP. (2001). Interaction between the adrenal and the pineal gland in chronic experimental inflammation induced by BCG in mice. Inflamm. Res. 50:6–11.
  • Lotufo CM, Lopes C, Dubocovich ML, Farsky SH, Markus RP. (2001). Melatonin and N-acetylserotonin inhibit leukocyte rolling and adhesion to rat microcirculation. Eur. J. Pharmacol. 430:351–357.
  • Lundkvist GB, Robertson B, Mhlanga JD, Rottenberg ME, Kristensson K. (1998). Expression of an oscillating interferon-gamma receptor in the suprachiasmatic nuclei. Neuroreport. 9:1059–1063.
  • Maestroni GJ, Conti A, Pierpaoli W. (1986). Role of the pineal gland in immunity. Circadian synthesis and release of melatonin modulates the antibody response and antagonizes the immunosuppressive effect of corticosterone. J. Neuroimmunol. 13:19–30.
  • Markus RP, Ferreira ZS, Fernandes PA, Cecon E. (2007). The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation. 14:126–133.
  • Martin LB 2nd, Weil ZM, Nelson RJ. (2007). Immune defense and reproductive pace of life in Peromyscus mice. Ecology. 88:2516–2528.
  • Martin LB, Weil ZM, Nelson RJ. (2008). Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363:321–339
  • Martinez-Nicolas A, Ortiz-Tudela, Madrid JA, Rol MA. (2011). Crosstalk between environmental light and internal time in humans. Chronobiol. Int. 28:617–629.
  • Merlot E, Moze E, Dantzer R, Neveu PJ. (2004). Cytokine production by spleen cells after social defeat in mice: activation of T cells and reduced inhibition by glucocorticoids. Stress. 7:55–61.
  • Navara KJ, Nelson RJ. (2007). The dark side of light at night: physiological, epidemiological, and ecological consequences. J. Pineal Res. 43:215–224.
  • Negi G, Kumar A, Sharma SS. (2011). Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-kappaB and Nrf2 cascades. J. Pineal Res. 50:124–131.
  • Parry BL, Meliska CJ, Sorenson DL, Lopez A, Martinez LF, Hauger RL, Elliot JA. (2010). Increased sensitivity to light-induced melatonin suppression in premenstrual dysphoric disorder. Chronobiol. Int. 27:1438–1453.
  • Persengiev S, Kanchev L, Vezenkova G. (1991). Circadian patterns of melatonin, corticosterone, and progesterone in male rats subjected to chronic stress: effect of constant illumination. J. Pineal Res. 11:57–62.
  • Phanuphak P, Moorhead JW, Claman HN. (1974). Tolerance and contact sensitivity to DNFB in mice. I. In vivo detection by ear swelling and correlation with in vitro cell stimulation. J. Immunol. 112:115–123.
  • Pontes GN, Cardoso EC, Carneiro-Sampaio MM, Markus RP. (2006). Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes)—melatonin in human colostrum and colostrum phagocytes. J. Pineal Res. 41:136–141.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Puttonen S, Viitasalo K, Härma M. (2011). Effect of shiftwork on systemic markers of inflammation. Chronobiol. Int. 28:528–535.
  • Reiter RJ, Tan DX, Korkmaz A, Ma S. (2011). Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann. Med. doi: 10.3109/07853890.2011.586365
  • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature. 418:935–941.
  • Sapolsky RM. (2004). Stress and cognition. Gazzaniga M. The cognitive neuroscience III. Cambridge, MA: MIT press, 1031–1042
  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA. (2001). Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J. Natl. Cancer Inst. 93:1563–1568.
  • Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. (2009). The stressed CNS: when glucocorticoids aggravate inflammation. Neuron. 64:33–39.
  • Stevens RG. (2011). Testing the light-at-night (LAN) theory for breast cancer causation. Chronobiol. Int. 28:653–656.
  • Tamura EK, Cecon E, Monteiro AW, Silva CL, Markus RP. (2009). Melatonin inhibits LPS-induced NO production in rat endothelial cells. J. Pineal Res. 46:268–274.
  • Terron MP, Delgado J, Paredes SD, Barriga C, Reiter RJ, Rodriguez AB. (2009). Effect of melatonin and tryptophan on humoral immunity in young and old ringdoves (Streptopelia risoria). Exp. Gerontol. 44:653–658.
  • Thomas BB, Oommen MM, Ashadevi O. (2001). Constant light and blinding effects on reproduction of male South Indian gerbils. J. Exp. Zool. 289:59–65.
  • Vadas MA, Miller JF, Gamble J, Whitelaw A. (1975). A radioisotopic method to measure delayed type hypersensitivity in the mouse. I. Studies in sensitized and normal mice. Int. Arch. Allergy Appl. Immunol. 49:670–692.
  • Weil ZM, Martin LB, 2nd, Nelson RJ. (2006). Photoperiod differentially affects immune function and reproduction in collared lemmings (Dicrostonyx groenlandicus). J. Biol. Rhythms. 21:384–393.
  • Weinrauch Y, Abad C, Liang NS, Lowry SF, Weiss J. (1998). Mobilization of potent plasma bactericidal activity during systemic bacterial challenge. Role of group IIA phospholipase A2. J. Clin. Invest. 102:633–638.
  • Wills-Karp M. (1999). Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17:255–281.
  • Young MR, Matthews JP, Kanabrocki EL, Sothern RB, Roitman-Johnson B, Scheving LE. (1995). Circadian rhythmometry of serum interleukin-2, interleukin-10, tumor necrosis factor-alpha, and granulocyte-macrophage colony-stimulating factor in men. Chronobiol. Int. 12:19–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.