Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 2
122
Views
8
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

Paradoxical Masking Effects of Bright Photophase and High Temperature in Drosophila malerkotliana

, , &
Pages 157-165 | Received 13 May 2011, Accepted 16 Nov 2011, Published online: 10 Feb 2012

REFERENCES

  • Allada R, White N, So W, Hall J, Rosbash M. (1998). A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804.
  • Allada R, Kadener S, Nandakumar N, Rosbash M. (2003). A recessive mutant of Drosophila clock reveals a role in circadian rhythm amplitude. EMBO J. 22:3367–3375.
  • Aschoff J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25:11–28.
  • Aschoff J. (1979). Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z. Tierpsychol. 49:225–249.
  • Aschoff J. (1981). Entrainment. Aschoff J. Behavioural neurobiology, volume 4—biological rhythms. London: Plenum Press, 81–93.
  • Aschoff J. (1988). Masking of circadian rhythms by zeitgebers as opposed to entrainment. Hekkens WTJM, Kerkhof GA, Rietveld W. Trends in chronobiology. Oxford, UK: Pergamon Press, 149–161.
  • Aschoff J. (1999). Masking and parametric effects of high-frequency light-dark cycles. Japn. J. Physiol. 49:11–18.
  • Aschoff J, Von Saint Paul U. (1976). Brain temperature in the unanaesthetized chicken: its circadian rhythms of representativeness to light. Brain Res. 101:1–9.
  • Daan S, Aschoff J. (2001). The entrainment of circadian systems. Takahashi J, Turek F, Moore R. Handbook of behavioral neurobiology. Volume 12. Circadian clocks. New York: Kluwer/Plenum, 7–43.
  • Erkert H, Grober J. (1986). Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol. 47:171–88.
  • Foster R, Menaker M. (1993). Circadian photoreceptors in mammals and other vertebrates. Wetterberg L. Light and biological rhythms in man. Oxford, UK: Pergamon Press, 73–91.
  • Germ M, Tomioka K. (1998). Circadian period modulation and masking effects induced by repetitive light pulses in locomotor rhythms of the cricket, Gryllus bimaculatus. Zool. Sci. 15:309–316.
  • Godden D. (1973). A re-examination of circadian rhythmicity in Carausius morosus. J. Insect Physiol. 19:1377–1386.
  • Golombek D, Rosenstein R. (2010). Physiology of circadian entrainment. Physiol. Rev. 90:1063–1110.
  • Grima B, Chelot E, Xia R, Rouyer F. (2004). Morning and evening peaks of activity are controlled by different clock neurons of the Drosophila brain. Nature 431:869–873.
  • Hardin P. (2005). The circadian timekeeping of Drosophila. Curr. Biol. 15:R714–R722.
  • Helfrich-Forster. (2000). Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster—sex-specific differences suggest a different quality of activity. J. Biol. Rhythms 15:135–154.
  • Helfrich-Forster C, Winter C, Hofbauer A, Hall J, Stanewsky R. (2001). The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30:249–261.
  • Johnson C, Elliot J, Foster R. (2003). Entrainment of circadian programs. Chronobiol. Int. 20:741–774.
  • Joshi D. (1999a). Selection for activity level alters the properties of the circadian pacemaker in Drosophila jambulina. Naturwissenschaften 86:231–233.
  • Joshi D. (1999b). Latitudinal variation in locomotor activity rhythm in adult Drosophila ananassae. Can. J. Zoo. 77:865–870.
  • Joshi D. (1999c). Selection for phase angle difference of adult locomotor activity in Drosophila rajasekari affects activity pattern, free running period, phase shifts and sensitivity to light. Biol. Rhythm Res. 30:10–28.
  • Katona C, Smale L. (1997). Wheel-running rhythms in Arvicanthis niloticus. Physiol. Behav. 61:365–372.
  • Keny V, Vanlalnghaka C, Hakim S, Barnabas R, Joshi D. (2007a). Altitudinal variation in the phase response curves for the Himalayan strains of Drosophila helvetica. Chronobiol. Int. 24:835–844.
  • Keny V, Vanlalnghaka C, Hakim S, Barnabas R, Joshi D. (2007b). Two oscillators might control the locomotor activity of high altitudinal strains of Drosophila helvetica. Chronobiol. Int. 24:821–834.
  • Khare P, Barnabas R, Kanojiya M, Kulkarni A, Joshi D. (2002). Temperature dependant eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol. Int. 19:1041–1052.
  • Kim E, Bae K, Ng F, Glossop N, Hardin P, Edery I. (2002). Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron 34:69–81.
  • Konopka R, Pittendrigh C. (1989). Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J. Neurogenet. 6:1–10.
  • Laakso M-L, Hatonen T, Alila A. (1995). Daytime dark exposure increases pineal melatonin in rat pups. J. Pineal Res. 19:23–30.
  • Lear B, Lin J, Keath J, McGill J, Raman I, Allada R. (2005). The ion channel narrow abdomen is critical for neural output of the Drosophila circadian pacemaker. Neuron 48:965–976.
  • Lu B, Liu W, Guo F, Guo A. (2008). Circadian modulation of light-induced locomotion responses in Drosophila melanogaster. Genes Brain Behav. 7:730–739.
  • Majercak J, Sidote D, Hardin P, Edery I. (1999). How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24:219–230.
  • Marques M, Waterhouse J. (1994). Masking and the evolution of circadian rhythmicity. Chronobiol. Int. 11:146–155.
  • Martinez-Nicolas A, Ortiz-Tudela E, Madrid JA, Rol MA. (2011). Crosstalk between environmental light and internal time in humans. Chronobiol. Int. 28:617–630.
  • Mrosovsky N. (1999). Masking: history, definitions, and measurement. Chronobiol. Int. 16:415–429.
  • Mrosovsky N, Foster R Salmon P. (1999). Thresholds for masking responses to light in three strains of retinally degenerate mice. J. Comp. Physiol. A 184:423–428.
  • Nash H, Scott R, Lear B, Allada R. (2002). An unusual cation channel mediates photic control of locomotion in Drosophila. Curr. Biol. 12:2152–2158.
  • Odhiambo M. (1966). The metabolic effects of the corpus allatum hormone in the male desert locust. II. Spontaneous locomotor activity. J. Exp. Biol. 45:51–63.
  • Page T. (1989). Masking in invertebrates. Chronobiol. Int. 6:3–11.
  • Pendergast JS, Yamazaki S. (2011). Masking responses to light in period mutant mice. Chronobiol. Int. 28:653–656.
  • Pickard G, Sollars P, Rinchik E, Nolan P, Bucan M. (1995). Mutagenesis and behavioral screening for altered circadian activity identifies the mouse mutant, Wheels. Brain Res. 705:255–266.
  • Pittendrigh C. (1960). Circadian rhythms and the circadian organization of living systems. Cold Spring Harb. Symp. Quant. Biol. 25:159–184.
  • Pittendrigh C, Daan S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: pacemaker as clock. J. Comp. Physiol. 106:291–331.
  • Portaluppi F, Smolensky M, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Redlin U, Mrosovsky N. (2004). Nocturnal activity in a diurnal rodent (Arvicanthis niloticus): the importance of masking. J. Biol. Rhythms 19:58–67.
  • Satralkar M, Khare P, Keny V, Vanlalnghaka C, Kasture M, Shivagaje A, Iyyer S, Barnabas R, Joshi D. (2007). Effects of photophase and altitude on the oviposition rhythm of the Himalayan strains of Drosophila ananassae. Chronobiol. Int. 24:389–405.
  • Stoleru D, Peng Y, Agosto J, Roshbash M. (2004). Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868.
  • Stoleru D, Peng Y, Nawathean P, Roshbash M. (2005). A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438:238–242.
  • Thakurdas P, Sharma S, Sinam B, Chib C, Joshi D. (2010). Nocturnal illumination dimmer than starlight altered the circadian rhythm of locomotor activity rhythm of a fruit fly. Chronobiol. Int. 27:83–94.
  • Thakurdas P, Sharma S, Singh B, Vanlalhriatpuia K, Joshi D. (2011). Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina. Chronobiol. Int. 28:390–396.
  • Tomioka K, Sakamoto T. (2006). History dependence of insect circadian rhythms. Formosan Entomol. 26:87–97.
  • Tomioka K, Sakamoto M, Harui Y, Matsumoto N, Matsumoto A. (1998). Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. J. Insect Physiol. 44:587–596.
  • Vanlalnghaka C, Pillai B, Vanlalhriatpuia K, Pandit S, Joshi D. (2003). Effects of psi-mutations on the oviposition rhythm of Drosophila rajasekari. Biol. Rhythm Res. 34:435–446.
  • Zubidat A, Nelson R, Haim A. (2010a). Differential effects of photophase irradiance on metabolic and urinary stress hormone concentrations in blind and sighted rodents. Chronobiol. Int. 27:487–516.
  • Zubidat A, Nelson R, Haim A. (2010b). Photoentrainment in blind and sighted rodent species: responses to photophase light with different wavelengths. J. Expt. Biol. 213:4213–4222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.