Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 29, 2012 - Issue 7
387
Views
39
CrossRef citations to date
0
Altmetric
Research Article

Evidence for a Plastic Dual Circadian Rhythm in the Oyster Crassostrea gigas

Pages 857-867 | Received 27 Feb 2012, Accepted 14 May 2012, Published online: 23 Jul 2012

REFERENCES

  • Ameyaw-Akumfi C, Naylor E. (1987). Temporal patterns of shell-gape in Mytilus edulis. Mar. Biol. 95:237–242.
  • Aschoff J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25:11–28.
  • Aschoff J. (1981). Handbook of behavioral neurobiology: biological rhythms. Volume 4. New York: Plenum, 563.
  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6:544–556.
  • Bingham C, Arbogast B, Cornélissen G, Lee J-K, Halberg F. (1982). Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 9:397–439.
  • Bolliet V, Aranda A, Boujard T. (2001). Demand-feeding rhythm in rainbow trout and European catfish: synchronization by photoperiod and food availability. Physiol. Behav. 73:625–633.
  • Box GEP, Jenkins GM, Reinsel GC. (1994). Time series analysis: forecasting and control. 3rd ed. New York: Prentice Hall, 598.
  • Chambon C, Legeay A, Durrieu G, Gonzalez P, Ciret P, Massabuau J-C. (2007). Influence of the parasite worm Polydora sp. on the behavior of the oyster Crassostrea gigas: a study of the respiratory impact and associated oxidative stress. Mar. Biol. 152:329–338.
  • Cloern JE. (1996). Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Rev. Geophys. 34:127–168.
  • Dunlap JC. (1999). Molecular bases for circadian clocks. Cell 96:271–290.
  • Enriquez-Diaz M, Pouvreau S, Chavez-Villalba J, Le Pennec M. (2009). Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: evidence of an environment-dependent strategy. Aquacult. Int. 17:491–506.
  • Enright J. (1976). Resetting a tidal clock: a phase-response curve for Excirolana. In DeCoursey DJ (ed.). Biological rhythms in the marine environment. Columbia, SC: University of South Carolina Press, 103–114.
  • Eriksson L-O. (1973). Spring inversion of the diel rhythm of locomotor activity in young sea-going brown trout, Salmo trutta trutta L., and atlantic salmo, Salmo salar L. Aquilo Ser. Zool. 14:68–79.
  • Eriksson, L-O. (1978). Nocturnalism versus diurnalism; dualism within fish individuals. In Thorpe JE (ed.). Rhythmic activity of fishes. New York: Academic Press, 69–89.
  • Fraser NHC, Metcalfe NB, Heggenes J, Thorpe JE. (1995). Low summer temperature cause juvenile Atlantic salmon to become nocturnal. Can. J. Zool. 73:446–451.
  • García-March JR, Solsona MA, García-Carrascosa AM. (2008). Shell gaping behaviour of Pinna nobilis L., 1758: circadian and circalunar rhythms revealed by in situ monitoring. Mar. Biol. 153:689–698.
  • Gerkema MP, Videler JJ, de Wiljes J, van Lavieren H, Gerritsen H, Karel M. (2000). Photic entrainment of circadian activity patterns in the tropical labrid fish Halichoeres chrysus. Chronobiol. Int. 17:613–622.
  • Glé C, Del Amo Y, Sautour B, Laborde P, Chardy P. (2008). Variability of nutrients and phytoplankton primary production in a shallow macrotidal coastal ecosystem (Arcachon Bay, France). Estuarine, Coastal and Shelf Science 76:642–656.
  • Gouthière L, Mauvieux B. (2004). Étapes essentielles dans l'analyse des rythmes: qualité des données expérimentales, recherche de périodes par analyses spectrales de principes divers, modélisation. XXXVème Congrès de la Société Francophone de Chronobiologie, Université de Saint Etienne, France du 10 au 12 Juin 2003. Quelques aspects sur la Chronobiologie. Presses Universitaires de Saint Etienne 2004, 10.
  • Gouthière L, Claustrat B, Brun J, Mauvieux B. (2005a). Complementary methodological steps in the analysis of rhythms: search of periods, modelling. Examples of plasma melatonin and temperature curves. Pathol. Biol. 53:285–289.
  • Gouthière L, Mauvieux B, Davenne D, Waterhouse J. (2005b). Complementary methodology in the analysis of rhythmic data, using examples from a complex situation, the rhythmicity of temperature in night shift workers. Biol. Rhythm Res. 36:177–193.
  • Granger CWJ, Hatanaka M. (1964). Spectral analysis of economic time series. Princeton, NJ: Princeton University Press, 299.
  • Gwinner E, Brandstätter R. (2001). Complex bird clocks. Phil. Trans. R. Soc. Lond. 356:1801–1810.
  • Haimov I, Arendt J. (1999). The prevention and treatment of jet lag. Sleep Med. Rev. 3:229–240.
  • Halberg F. (1969). Chronobiology. Annu Rev. Physiol. 31:675–725.
  • Hall JC. (1995). Trippings along the trail to the molecular mechanisms of biological clocks. Trends Neurosci. 18:230–240.
  • Jenkins GM, Watts DG. (1968). Spectral analysis and its applications. San Francisco: Holden Day, 525.
  • Kim WS, Kim JM, Yi SK, Huh HT. (1997). Endogenous circadian rhythm in the river puffer fish Takifugu obscurus. Mar. Ecol. Prog. Ser. 153:293–298.
  • Kim WS, Huh, HT, Je JG, Han KN. (2003). Evidence of two-clock control of endogenous rhythm in the Washington clam, Saxidomus purpuratus. Mar. Biol. 142:305–309.
  • Klotter K. (1960). General properties of oscillating systems. Cold Spring Harb. Symp. Quant. Biol. 25:185–187.
  • Kunz D, Herrmann WM. (2000). Sleep-wake cycle, sleep-related disturbances, and sleep disorders: a chronobiological approach. Comp. Psychiatry 41:104–115.
  • Last KS, Bailhache T, Kramer C, Kyriacou CP, Rosato E, Olive PJW. (2009). Tidal, daily, and lunar-day activity cycles in the marine Polychaete Nereis virens. Chronobiol. Int. 26:167–183.
  • Marteil L. (1976). Shellfish culture in France. Part 2. Oyster and mussel biology. Rev. Trav. Inst. Peches Marit. 40:149–346.
  • Mrosovsky N. (1999). Masking: history, definitions, and measurement. Chronobiol. Int. 16:415–429.
  • Naylor E. (2010). Chronobiology of marine organisms. Cambridge, UK: Cambridge University Press, 242.
  • Nelson W, Tong YL, Lee JK, Halber F. (1979). Methods for cosinor-rhythmometry. Chronobiologia 6:305–323.
  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. (1998). Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 95:8660–8664.
  • Palmer JD. (1995). The biological rhythms and clocks of intertidal animals. New York: Oxford University Press, 217.
  • Palmer JD. (1997). Duelling hypotheses: circatidal versus circalunidian battle basics. Chronobiol. Int. 14:337–346.
  • Palmer JD. (2000). The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays 22:32–37.
  • Panda S, Hogenesch JB, Kay SA. (2002). Circadian rhythms from flies to human. Nature 417:329–335.
  • Pittendrigh CS. (1993). Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55:17–54.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobio.l Int. 25:1911–1929.
  • Reebs SG. (2002). Plasticity of diel and circadian activity rhythms in fishes. Rev. Fish Biol. Fisher. 12:349–371.
  • Robson AA, Garcia de Leaniz C, Wilson RP, Halsey LG. (2010). Effect of anthropogenic feeding regimes on activity rhythms of laboratory mussels exposed to natural light. Hydrobiologia 655:197–204.
  • Ruesink JL, Lenihan HS, Trimble AC, Heiman KW, Micheli F, Byers JE, Kay MC. (2005). Introduction of non-native oysters: ecosystem effects and restoration implications. Annu. Rev. Ecol. Evol. Syst. 36:643–89.
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S. (1995a). Circadian rhythms of feeding activity in sea bass, Dicentrarchus labrax L.: dual phasing capacity of diel demand-feeding pattern. J. Biol. Rhythm 10:256–266.
  • Sánchez-Vázquez FJ, Zamora S, Madrid JA. (1995b). Light-dark and food restriction cycles in sea bass: effect of conflicting zeitgebers on demand-feeding rhythms. Physiol. Behav. 58: 705–714.
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S, Iigo M, Tabata M. (1996). Demand feeding and locomotor circadian rhythms in the goldfish, Carassius auratus: dual and independent phasing. Physiol. Behav. 60:665–674.
  • Sánchez-Vázquez FJ, Madrid JA, Zamora S, Tabata M. (1997). Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding-entrainable circadian oscillator. J. Comp. Physiol. A 181:121–132.
  • Scargle JD. (1982). Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J. 263:835–853.
  • Schwartzmann C, Durrieu G, Sow M, Ciret P, Lazareth CE, Massabuau JC. (2011). In situ giant clam growth rate behavior in relation to temperature: a one-year coupled study of high-frequency noninvasive valvometry and sclerochronology. Limnol. Oceanogr. 56:1940–1951.
  • Tran D, Ciret P, Ciutat A, Durrieu G, Massabuau, J-C. (2003). Estimation of potential and limits of bivalve closure response to detect contaminants: application to cadmium. Environ. Toxicol. Chem. 22:116–122.
  • Tran D, Massabuau JC, Vercelli C. (2008). Influence of sex and spawning status on oxygen consumption and blood oxygenation status in oysters Crassostrea gigas cultured in a Mediterranean lagoon (Thau, France). Aquaculture 277:58–65.
  • Tran D, Nadau A, Durrieu G, Ciret P, Parisot JP, Massabuau J-C. (2011). Field chronobiology of a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms. Chronobiol. Int. 28:307–317.
  • Troost K. (2010). Causes and effects of a highly successful marine invasion: case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. J. Sea Res. 64:145–165.
  • Webb HM. (1976). Interactions of daily and tidal rhythms. In DeCoursey DJ (ed.). Biological rhythms in the marine environment. Columbia, SC: University of South Carolina Press, 129–135.
  • Williams BG. (1998). The lack of circadian timing in two intertidal invertebrates and its significance in the circatidal/circalunidian debate. Chronobiol. Int. 15:205–218.
  • Wilson R, Reuter P, Wahl M. (2005). Muscling in on mussels: new insights into bivalve behaviour using vertebrate remote-sensing technology. Mar. Biol. 147:1165–1172.
  • Yerushalmi S, Green RM. (2009). Evidence for the adaptive significance of circadian rhythms. Ecol. Lett. 12:970–981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.