Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 30, 2013 - Issue 4
334
Views
10
CrossRef citations to date
0
Altmetric
Research Papers

Protein Kinase C Differentially Regulates Entrainment of the Mammalian Circadian Clock

&
Pages 460-469 | Received 29 May 2012, Accepted 27 Sep 2012, Published online: 02 Jan 2013

REFERENCES

  • Abrahamson EE, Moore RY. (2001). Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916:172–191.
  • Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT, Sampath AP, Hattar S. (2010). Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat. Neurosci. 13:1107–1112.
  • Awatramani GB, Slaughter MM. (2001). Intensity-dependent, rapid activation of presynaptic metabotropic glutamate receptors at a central synapse. J. Neurosci. 21:741–749.
  • Bourhis E, Maheux J, Rouillard C, Levesque D. (2008). Extracellular signal-regulated kinases (ERK) and protein kinase C (PKC) activities are involved in the modulation of Nur77 and Nor-1 expression by dopaminergic drugs. J. Neurochem. 106:875–888.
  • Bult A, Smale L. (1999). Distribution of Ca2+-dependent protein kinase C isoforms in the suprachiasmatic nucleus of the diurnal murid rodent, Arvicanthis niloticus. Brain Res. 816:190–199.
  • Butcher GQ, Doner J, Dziema H, Collamore M, Burgoon PW, Obrietan K. (2002). The p42/44 mitogen-activated protein kinase pathway couples photic input to circadian clock entrainment. J. Biol. Chem. 277:29519–29525.
  • Cagampang FR, Rattray M, Campbell IC, Powell JF, Coen CW. (1998). Variation in the expression of the mRNA for protein kinase C isoforms in the rat suprachiasmatic nuclei, caudate putamen and cerebral cortex. Brain Res. Mol. Brain Res. 53:277–284.
  • Cartmell J, Schoepp DD. (2000). Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem. 75:889–907.
  • Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU. (1994). Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266:1713–1717.
  • Ebling FJ. (1996). The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog. Neurobiol. 50:109–132.
  • Gannon RL, Millan MJ. (2011). Positive and negative modulation of circadian activity rhythms by mGluR5 and mGluR2/3 metabotropic glutamate receptors. Neuropharmacology 60:209–215.
  • Haak LL. (1999). Metabotropic glutamate receptor modulation of glutamate responses in the suprachiasmatic nucleus. J. Neurophysiol. 81:1308–1317.
  • Harlan RE, Kailas SR, Tagoe CE, Garcia MM. (2004). Morphine actions in the rat forebrain: role of protein kinase C. Brain Res. Bull. 62:285–295.
  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81.
  • Herzog ED. (2007). Neurons and networks in daily rhythms. Nat. Rev. 8:790–802.
  • Jakubcakova V, Oster H, Tamanini F, Cadenas C, Leitges M, van der Horst GT, Eichele G. (2007). Light entrainment of the mammalian circadian clock by a PRKCA-dependent posttranslational mechanism. Neuron 54:831–843.
  • Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Guler AD, Aguilar C, Cameron MA, Allender S, Hankins MW, Lucas RJ. (2010). Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66:417–428.
  • Lee B, Almad A, Butcher GQ, Obrietan K. (2007). Protein kinase C modulates the phase-delaying effects of light in the mammalian circadian clock. Eur. J. Neurosci. 26:451–462.
  • Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408.
  • Macek TA, Schaffhauser H, Conn PJ. (1999). Activation of PKC disrupts presynaptic inhibition by group II and group III metabotropic glutamate receptors and uncouples the receptor from GTP-binding proteins. Ann. N. Y. Acad. Sci. 868:554–557.
  • Minami N, Berglund K, Sakaba T, Kohmoto H, Tachibana M. (1998). Potentiation of transmitter release by protein kinase C in goldfish retinal bipolar cells. J. Physiol. 512(Pt 1):219–225.
  • Miyake S, Sumi Y, Yan L, Takekida S, Fukuyama T, Ishida Y, Yamaguchi S, Yagita K, Okamura H. (2000). Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Neurosci. Lett. 294:41–44.
  • Miyoshi K, Narita M, Takatsu M, Suzuki T. (2007). mGlu5 receptor and protein kinase C implicated in the development and induction of neuropathic pain following chronic ethanol consumption. Eur. J. Pharmacol. 562:208–211.
  • Mrosovsky N. (1999). Masking: history, definitions, and measurement. Chronobiol. Int. 16:415–429.
  • Nelson DE, Takahashi JS. (1991). Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J. Physiol. 439:115–145.
  • Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y. (1988). The structure, expression, and properties of additional members of the protein kinase C family. J. Biol. Chem. 263:6927–6932.
  • Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y. (1989). Protein kinase C zeta subspecies from rat brain: its structure, expression, and properties. Proc. Natl. Acad. Sci. U. S. A. 86:3099–3103.
  • Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U. (2003). cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr. Biol. 13:725–733.
  • Pendergast JS, Yamazaki S. (2011). Masking responses to light in period mutant mice. Chronobiol. Int. 28:657–663.
  • Plano SA, Agostino PV, de la Iglesia HO, Golombek DA. (2012). cGMP-phosphodiesterase inhibition enhances photic responses and synchronization of the biological circadian clock in rodents. PLoS ONE 7:e37121.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Ralph MR, Foster RG, Davis FC, Menaker M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978.
  • Reppert SM, Weaver DR. (2001). Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63:647–676.
  • Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ. (2010). Identification of RACK1 and protein kinase Calpha as integral components of the mammalian circadian clock. Science 327:463–466.
  • Schak KM, Harrington ME. (1999). Protein kinase C inhibition and activation phase advances the hamster circadian clock. Brain Res. 840:158–161.
  • Scholz EP, Welke F, Joss N, Seyler C, Zhang W, Scherer D, Volkers M, Bloehs R, Thomas D, Katus HA, Karle CA, Zitron E. (2011). Central role of PKCalpha in isoenzyme-selective regulation of cardiac transient outward current Ito and Kv4.3 channels. J. Mol. Cell. Cardiol. 51:722–729.
  • Shim HS, Kim H, Lee J, Son GH, Cho S, Oh TH, Kang SH, Seen DS, Lee KH, Kim K. (2007). Rapid activation of CLOCK by Ca2+-dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO Rep. 8:366–371.
  • Sullivan JP, Connor JR, Tiffany C, Shearer BG, Burch RM. (1991). NPC 15437 interacts with the C1 domain of protein kinase C. An analysis using mutant PKC constructs. FEBS Lett. 285:120–123.
  • Sullivan JP, Connor JR, Shearer BG, Burch RM. (1992). 2,6-Diamino-N-([1-(1-oxotridecyl)-2-piperidinyl] methyl)hexanamide (NPC 15437): a novel inhibitor of protein kinase C interacting at the regulatory domain. Mol. Pharmacol. 41:38–44.
  • Takai Y, Kishimoto A, Iwasa Y, Kawahara Y, Mori T, Nishizuka Y. (1979). Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 254:3692–3695.
  • Tischkau SA, Gallman EA, Buchanan GF, Gillette MU. (2000). Differential cAMP gating of glutamatergic signaling regulates long-term state changes in the suprachiasmatic circadian clock. J. Neurosci. 20:7830–7837.
  • Tischkau SA, Mitchell JW, Pace LA, Barnes JW, Barnes JA, Gillette MU. (2004). Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. Neuron 43:539–549.
  • Weber ET, Gannon RL, Rea MA. (1995). cGMP-dependent protein kinase inhibitor blocks light-induced phase advances of circadian rhythms in vivo. Neurosci. Lett. 197:227–230.
  • Yan L, Silver R. (2004). Resetting the brain clock: time course and localization of mPER1 and mPER2 protein expression in suprachiasmatic nuclei during phase shifts. Eur. J. Neurosci. 19:1105–1109.
  • Yan L, Takekida S, Shigeyoshi Y, Okamura H. (1999). Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 94:141–150.
  • Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C. (2000). Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J. Physiol. 526(Pt 3):695–702.
  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM. (1998). Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.