Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 30, 2013 - Issue 4
305
Views
16
CrossRef citations to date
0
Altmetric
Research Papers

Effect of Experimental Diabetic Retinopathy on the Non-Image-Forming Visual System

, , , , , , & show all
Pages 583-597 | Received 17 Jul 2012, Accepted 11 Nov 2012, Published online: 27 Feb 2013

REFERENCES

  • Angelucci A, Clascá F, Sur M. (1996). Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J. Neurosci. Methods 65:101–112.
  • Belforte N, Sande P, de Zavalía N, Knepper PA, Rosenstein RE. (2010). Effect of chondroitin sulfate on intraocular pressure in rats. Invest. Ophthalmol. Vis. Sci. 51:5768–5775.
  • Berson DM, Dunn FA, Takao M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073.
  • Brøndsted AE, Lundeman JH, Kessel L. (2013). Short wavelength light filtering by the natural human lens and IOLs —implications for entrainment of circadian rhythm. Acta Ophthalmol. 91:52–57.
  • Chambille I, Serviere J. (1993). Neurotoxic effects of neonatal injections of monosodium l-glutamate (L-MSG) on the retinal ganglion cell layer of the golden hamster: anatomical and functional consequences on the circadian system. J. Comp. Nerurol. 338:67–82.
  • Chen SK, Badea TC, Hattar S. (2011). Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95.
  • de Zavalía N, Plano SA, Fernandez DC, Lanzani MF, Salido E, Belforte N, Sarmiento MI, Golombek DA, Rosenstein RE. (2011). Effect of experimental glaucoma on the non-image forming visual system. J. Neurochem. 117:904–914.
  • Drouyer E, Dkhissi-Benyahya O, Chiquet C, WoldeMussie E, Ruiz G, Wheeler LA, Denis P, Cooper HM. (2008). Glaucoma alters the circadian timing system. PLoS ONE 3:e3931.
  • Fernandez DC, Chianelli MS, Rosenstein RE. (2009). Involvement of glutamate in retinal protection against ischemia/reperfusion damage induced by post-conditioning. J. Neurochem. 111:488–498.
  • Fernandez DC, Pasquini LA, Dorfman D, Aldana Marcos HJ, Rosenstein RE. (2012). Early distal axonopathy of the visual pathway in experimental diabetes. Am. J. Pathol. 180:303–313.
  • Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, Menaker M. (1991). Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. 169A:39–50.
  • Gallego PH, Craig ME, Hing S, Donaghue KC. (2008). Role of blood pressure in development of early retinopathy in adolescents with type 1 diabetes: prospective cohort study. BMJ 337:a918.
  • Gastinger MJ, Kunselman AR, Conboy EE, Bronson SK, Barber AJ. (2008). Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Invest. Ophthalmol. Vis. Sci. 49:2635–2642.
  • Gill GV, Woodward A, Casson IF, Weston PJ. (2009). Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes—the ‘dead in bed’ syndrome revisited. Diabetologia 52:42–45.
  • Golombek DA, Rosenstein RE. (2010). Physiology of circadian entrainment. Physiol. Rev. 90:1063–1102.
  • Gooley JJ, Lu J, Fischer D, Saper CB. (2003). A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 23:7093–7106.
  • Grozdanic SD, Matic M, Sakaguchi DS, Kardon RH. (2007). Evaluation of retinal status using chromatic pupil light reflex activity in healthy and diseased canine eyes. Invest. Ophthalmol. Vis. Sci. 48:5178–5183.
  • Hancock HA, Kraft TW. (2004). Oscillatory potential analysis and ERGs of normal and diabetic rats. Invest. Ophthalmol. Vis. Sci. 45:1002–1008.
  • Hannibal J, Vrang N, Card JP, Fahrenkrug J. (2001). Light-dependent induction of cFos during subjective day and night in PACAP-containing ganglion cells of the retinohypothalamic tract. J. Biol. Rhythms 16:457–470.
  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070.
  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau KW. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81.
  • Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497:326–349.
  • Herichová I, Zeman M, Stebelová K, Ravingerová T. (2005). Effect of streptozotocin-induced diabetes on daily expression of per2 and dbp in the heart and liver and melatonin rhythm in the pineal gland of Wistar rat. Mol. Cell. Biochem. 270:223–229.
  • Jain V, Ravindran E, Dhingra NK. (2012). Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse. J. Comp. Neurol. 520:742–755.
  • Jauch-Chara K, Schmid SM, Hallschmid M, Born J, Schultes B. (2008). Altered neuroendocrine sleep architecture in patients with type 1 diabetes. Diabetes Care 31:1183–1188.
  • Kern TS, Barber AJ. (2008). Retinal ganglion cells in diabetes. J. Physiol. 586:4401–4408.
  • Kessel L, Lundeman JH, Herbst K, Andersen TV, Larsen M. (2010). Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment. J. Cataract Refract. Surg. 36:308–312.
  • Kessel L, Siganos G, Jørgensen T, Larsen M. (2011). Sleep disturbances are related to decreased transmission of blue light to the retina caused by lens yellowing. Sleep 34:1215–1219.
  • Kumar S, Zhuo L. (2011). Quantitative analysis of pupillary light reflex by real-time autofluorescent imaging in a diabetic mouse model. Exp. Eye Res. 92:164–172.
  • La Morgia C, Ross-Cisneros FN, Hannibal J, Montagna P, Sadun AA, Carelli V. (2011). Melanopsin-expressing retinal ganglion cells: implications for human diseases. Vision Res. 51:296–302.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 193:265–275.
  • Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. (1999). Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284:505–507.
  • Lucas RJ, Douglas RH, Foster RG. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 4:621–626.
  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247.
  • Morgan JL, Curran T. (1991). Stimulus-transcription coupling in the nervous system: involvement of the inductible proto-oncogenes fos and jun. Annu. Rev. Physiol. 14:421–445.
  • Nadal-Nicolás FM, Jiménez-López M, Sobrado-Calvo P, Nieto-López L, Cánovas-Martínez I, Salinas-Navarro M, Vidal-Sanz M, Agudo M. (2009). Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest. Ophthalmol. Vis. Sci. 50:3860–3868.
  • Oishi K, Kasamatsu M, Ishida N. (2004). Gene- and tissue-specific alterations of circadian clock gene expression in streptozotocin-induced diabetic mice under restricted feeding. Biochem. Biophys. Res. Commun. 317:330–334.
  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527.
  • Paxinos G, Watson C. (1997). The rat brain in stereotaxic coordinates. Amsterdam: Elsevier, 125 pp
  • Peirson SN, Halford S, Foster RG. (2009). The evolution of irradiance detection: melanopsin and the non-visual opsins. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364:2849–2865.
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol. Int. 27:1911–1929.
  • Prichard JR, Armacanqui HS, Benca RM, Behan M. (2007). Light-dependent retinal innervation of the rat superior colliculus. Anat. Rec. (Hoboken) 290:341–348.
  • Schmoll C, Tendo C, Aspinall P, Dhillon B. (2011). Reaction time as a measure of enhanced blue-light mediated cognitive function following cataract surgery. Br. J. Ophthalmol. 95:1656–1659.
  • Shimazoe T, Ishida J, Maetani M, Yakabe T, Yamaguchi M, Miyasaka K, Kono A, Watanabe S, Funakoshi A. (2000). Entrainment function in the suprachiasmatic nucleus of streptozotocin-induced diabetic rats. Jpn. J. Pharmacol. 83:355–358.
  • Shinoda K, Rejdak R, Schuettauf F, Blatsios G, Völker M, Tanimoto N, Olcay T, Gekeler F, Lehaci C, Naskar R, Zagorski Z, Zrenner E. (2007). Early electroretinographic features of streptozotocin-induced diabetic retinopathy. Clin. Exp. Ophthalmol. 35:847–854.
  • Trejo LJ, Cicerone CM. (1984). Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res. 300:49–62.
  • Wollnik F, Brysch W, Uhlmann E, Gillardon F, Bravo R, Zimmermann M, Schlingensiepen KH, Herdegen T. (1995). Block of c-Fos and JunB expression by antisense oligonucleotides inhibits light-induced phase shifts of the mammalian circadian clock. Eur. J. Neurosci. 7:388–393.
  • Yamanouchi S, Shimazoe T, Nagata S, Moriya T, Maetani M, Shibata S, Watanabe S, Miyasaka K, Kono A, Funakoshi A. (1997). Decreased level of light-induced Fos expression in the suprachiasmatic nucleus of diabetic rats. Neurosci. Lett. 227:103–106.
  • Young ME. (2006). The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am. J. Physiol. Heart Circ. Physiol. 290:H1–H16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.