Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 31, 2014 - Issue 6
1,350
Views
25
CrossRef citations to date
0
Altmetric
Original Article

Phylogeny and oscillating expression of period and cryptochrome in short and long photoperiods suggest a conserved function in Nasonia vitripennis

, , &
Pages 749-760 | Received 19 Sep 2013, Accepted 02 Jan 2014, Published online: 23 Apr 2014

References

  • Bajgar A, Jindra M, Dolezel D. (2013). Autonomous regulation of the insect gut by circadian genes acting downstream of juvenile hormone signaling. Proc Natl Acad Sci USA. 110:4416–21
  • Bertossa RC, van de Zande L, Beukeboom LW. (2009). The fruitless gene in Nasonia displays complex sex-specific splicing and contains new zinc-finger domains. Mol Biol Evol. 26:1557–69
  • Bertossa RC, van Dijk J, Beersma DG, Beukeboom LW. (2010). Circadian rhythms of adult emergence and activity but not eclosion in males of the parasitic wasp Nasonia vitripennis. J Insect Physiol. 56:805–12
  • Bertossa RC, van Dijk J, Diao W, et al. (2013). Circadian rhythms differ between sexes and closely related species of Nasonia wasps. PLoS One. 8:e60167
  • Bradshaw WE, Holzapfel CM. (2007). Evolution of animal photoperiodism. Annu Rev Ecol Evol S. 38:1–25
  • Bradshaw WE, Holzapfel CM. (2010). What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects. J Biol Rhythm. 25:155–65
  • Bünning E. (1936). Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dtsch Bot Ges. 54:590–607
  • Campbell BC, Steffen-Campbell JD, Werren JH. (1993). Phylogeny of the Nasonia species complex (Hymenoptera: Pteromalidae) inferred from an internal transcribed spacer (ITS2) and 28S rDNA sequences. Insect Mol Biol. 2:225–37
  • Daan S, Albrecht U, Van der Horst GTJ, et al. (2001). Assembling a clock for all seasons: Are there M and E oscillators in the genes? J Biol Rhythm. 16:105–16
  • Daan S, Merrow M. (2002). External time-internal time. J Biol Rhythm. 17:107–9
  • Denlinger DL. (2002). Regulation of diapause. Annu Rev Entomol. 47:93–122
  • Emerson KJ, Bradshaw WE, Holzapfel CM. (2009). Complications of complexity: Integrating environmental, genetic and hormonal control of insect diapause. Trends Genet. 25:217–25
  • Gentile C, Rivas GBS, Meireles-Filho ACA, et al. (2009). Circadian expression of clock genes in two mosquito disease vectors: Cry2 is different. J Biol Rhythm. 24:444–51
  • Goto SG. (2013). Roles of circadian clock genes in insect photoperiodism. Entomol Sci. 16:1–16
  • Goto SG, Denlinger DL. (2002). Short-day and long-day expression patterns of genes involved in the flesh fly clock mechanism: Period, timeless, cycle and cryptochrome. J Insect Physiol. 48:803–16
  • Goto SG, Han B, Denlinger DL. (2006). A nondiapausing variant of the flesh fly, Sarcophaga bullata, that shows arrhythmic adult eclosion and elevated expression of two circadian clock genes, period and timeless. J Insect Physiol. 52:1213–18
  • Grima B, Chélot E, Xia R, Rouyer F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature. 431:869–73
  • Helfrich-Förster C. (2009). Does the morning and evening oscillator model fit better for flies or mice? J Biol Rhythm. 24:259–70
  • Hirayama J, Sassone-Corsi P. (2005). Structural and functional features of transcription factors controlling the circadian clock. Curr Opin Genet Dev. 15:548–56
  • Huang H-D, Lee T-Y, Tzeng S-W, Horng J-T. (2005). KinasePhos: A web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res. 33:W226–9
  • Ikeno T, Katagiri C, Numata H, Goto SG. (2011a). Causal involvement of mammalian-type cryptochrome in the circadian cuticle deposition rhythm in the bean bug Riptortus pedestris. Insect Mol Biol. 20:409–15
  • Ikeno T, Numata H, Goto SG. (2011b). Photoperiodic response requires mammalian-type cryptochrome in the bean bug Riptortus pedestris. Biophs Res Commun. 410:394–7
  • Ikeno T, Numata H, Goto SG. (2011c). Circadian clock genes period and cycle regulate photoperiodic diapause in the bean bug Riptortus pedestris males. J Insect Physiol. 57:935–8
  • Ikeno T, Numata H, Goto SG. (2008). Molecular characterization of the circadian clock genes in the bean bug, Riptortus pedestris, and their expression patterns under long- and short-day conditions. Gene. 419:56–61
  • Ikeno T, Tanaka SI, Numata H, Goto SG. (2010). Photoperiodic diapause under the control of circadian clock genes in an insect. BMC Biol. 8:116
  • Ingram KK, Kutowoi A, Wurm Y, et al. (2012). The molecular clockwork of the fire ant Solenopsis invicta. PloS One. 7:e45715
  • Iwai S, Fukui Y, Fujiwara Y, Takeda M. (2006). Structure and expressions of two circadian clock genes, period and timeless in the commercial silkmoth, Bombyx mori. J Insect Physiol. 52:625–37
  • Kobelková A, Bajgar A, Dolezel D. (2010). Functional molecular analysis of a circadian clock gene timeless promoter from the drosophilid fly Chymomyza costata. J Biol Rhythm. 25:399–409
  • Koštál V. (2011). Insect photoperiodic calendar and circadian clock: Independence, cooperation, or unity? J Insect Physiol. 57:538–56
  • Kostál V, Závodská R, Denlinger D. (2009). Clock genes period and timeless are rhythmically expressed in brains of newly hatched, photosensitive larvae of the fly, Sarcophaga crassipalpis. J Insect Physiol. 55:408–14
  • Letunic I, Doerks T, Bork P. (2012). SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 40:D302–5
  • Merlin C, Lucas P, Rochat D, et al. (2007). An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J Biol Rhythm. 22:502–14
  • Meuti ME, Denlinger DL. (2013). Evolutionary links between circadian clocks and photoperiodic diapause in insects. Integr Comp Biol 53:131–43
  • Muguruma F, Goto SG, Numata H, Shiga S. (2010). Effect of photoperiod on clock gene expression and subcellular distribution of PERIOD in the circadian clock neurons of the blow fly Protophormia terraenovae. Cell Tissue Res. 340:497–507
  • Nguyen Ba AN, Pogoutse A, Provart N, Moses AM. (2009). NLStradamus: A simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics. 10:202
  • Ohta H, Yamazaki S, McMahon DG. (2005). Constant light desynchronizes mammalian clock neurons. Nat Neurosci. 8:267–9
  • Oster H, Maronde E, Albrecht U. (2002). The circadian clock as a molecular calendar. J Biol Rhythms. 19:507–16
  • Paolucci S, van de Zande L, Beukeboom LW. (2013). Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J Evol Biol. 26:705–18
  • Penn O, Privman E, Ashkenazy H, et al. (2010a). GUIDANCE: A web server for assessing alignment confidence scores. Nucleic Acids Res. 38:W23–8
  • Penn O, Privman E, Landan G, et al. (2010b). An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol Evol. 27:1759–67
  • Pittendrigh CS. (1972). Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc Natl Acad Sci USA. 69:2734–7
  • Pittendrigh CS, Daan S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. 5. Pacemaker structure: A clock for all seasons. J Comp Physiol A. 106:333–55
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27:1911–29
  • Qiu J, Hardin PE. (1996). per mRNA cycling is locked to lights-off under photoperiodic conditions that support circadian feedback loop function. Mol Cell Biol. 16:4182–8
  • R Core Team. (2013). A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available from: http://www.R-project.org
  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 339:62–6
  • Rieger D, Shafer OT, Tomioka K, Helfrich-Förster C. (2006). Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J Neurosci. 9:2531–43
  • Ronquist F, Huelsenbeck JP. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572–74
  • Rubin EB, Shemesh Y, Cohen M, et al. (2006). Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 16:1352–65
  • Sakamoto T, Uryu O, Tomioka K. (2009). The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis. J Biol Rhythm. 24:379–90
  • Sandrelli F, Costa R, Kyriacou CP, Rosato E. (2008). Comparative analysis of circadian clock genes in insects. Insect Mol Biol. 17:447–63
  • Saunders DS. (1965). Larval diapause induced by maternally-operating photoperiod. Nature. 206:739–40
  • Saunders DS. (1966). Larval diapause of maternal origin – II. The effect of photoperiod and temperature on Nasonia vitripennis. J Insect Physiol. 12:569–81
  • Saunders DS. (1973). Thermoperiodic control of diapause in an insect: Theory of internal coincidence. Science. 181:358–60
  • Saunders DS. (1974). Evidence for “dawn” and “dusk” oscillators in the Nasonia photoperiodic clock. J Insect Physiol. 20:77–88
  • Saunders DS. (1975). Spectral sensitivity and intensity thresholds in Nasonia photoperiodic clock. Nature. 253:732–4
  • Saunders DS. (1981). Insect photoperiodism – the clock and the counter: A review. Physiol Entomol. 6:99–116
  • Saunders DS. (2009). Circadian rhythms and the evolution of photoperiodic timing in insects. Physiol Entomol. 34:301–8
  • Saunders DS. (2010). Controversial aspects of photoperiodism in insects and mites. J Insect Physiol. 56:1491–502
  • Saunders DS. (2011). Unity and diversity in the insect photoperiodic mechanism. Entomol Sci. 14:235–44
  • Saunders DS. (2012). Insect photoperiodism: Seeing the light. Physiol Entomol. 37:207–18
  • Saunders DS, Bertossa RC. (2011). Deciphering time measurement: The role of circadian “clock” genes and formal experimentation in insect photoperiodism. J Insect Physiol. 57:557–66
  • Saunders DS, Lewis RD. (1987). A damped circadian oscillator model of an insect photoperiodic clock. J Theor Biol. 128:61–71
  • Saunders DS, Sutton D, Jarvis RA. (1970). The effect of host species on diapause induction in Nasonia vitripennis. J Insect Physiol. 16:405–16
  • Schultz J, Milpetz F, Bork P, Ponting CP. (1998). Colloquium Paper: SMART, a simple modular architecture research tool: Identification of signaling domains. Proc Natl Acad Sci USA. 95:5857–64
  • Shimizu I, Kawai Y, Taniguchi M, Aoki S. (2001). Circadian rhythm and cDNA cloning of the clock gene period in the honeybee Apis cerana japonica. Zool Sci. 18:779–89
  • Stoleru D, Nawathean P, Mde LF, et al. (2007). The Drosophila circadian network is a seasonal timer. Cell. 129:207–19
  • Stoleru D, Peng Y, Agosto J, Rosbash M. (2004). Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature. 431:862–8
  • Syrová Z, Dolezel D, Saumann I, Hodková M. (2003). Photoperiodic regulation of diapause in linden bugs: Are period and clock genes involved? Cell Mol Life Sci. 60:2510–15
  • Tamura K, Peterson D, Peterson N, et al. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28:2731–9
  • Tan Y, Merrow M, Roenneberg T. (2004). Photoperiodism in Neurospora crassa. J Biol Rhythm. 19:135–43
  • Tauber E, Kyriacou BP. (2001). Insect photoperiodism and circadian clocks: Models and mechanisms. J Biol Rhythms. 16:381–90
  • Tomioka K, Matsumoto A. (2010). A comparative view of insect circadian clock systems. Cell Mol Life Sci. 67:1397–406
  • Van den Assem J, Jachmann F. (1999). Changes in male perseverance in courtship and female readiness to mate in a strain of the parasitic wasp Nasonia vitripennis over a period of 20+ years. Neth J Zool. 49:125–37
  • Vaz Nunes M, Saunders D. (1999). Photoperiodic time measurement in insects: A review of clock models. J Biol Rhythms. 14:84–104
  • Werckenthin A, Derst C, Stengl M. (2012). Sequence and expression of per, tim1, and cry2 genes in the Madeira cockroach Rhyparobia maderae. J Biol Rhythm. 27:453–66
  • Werren JH, Richards S, Desjardins CA, et al. (2010). Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science. 327:343–8
  • Yan S, Ni H, Li H, et al. (2013). Molecular cloning, characterization, and mRNA expression of two cryptochrome genes in Helicoverpa armigera (Lepidoptera: Noctuidae). J Econ Entomol. 106:450–62
  • Yanovsky MJ, Kay SA. (2003). Living by the calendar: How plants know when to flower. Nat Rev Mol Cell Biol. 4:265–75
  • Yoshii T, Funada Y, Ibuki-Ishibashi T, et al. (2004). Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveeness to light. J Insect Physiol. 50:479–88
  • Yuan Q, Metterville D, Briscoe AD, Reppert SM. (2007). Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol. 24:948–55
  • Zhu H, Sauman I, Yuan Q, et al. (2008). Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6:e4
  • Zhu H, Yuan Q, Froy O, et al. (2005). The two CRYs of the butterfly. Curr Biol. 15:R953–4