Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 40, 2011 - Issue 2
120
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Chlamydia pneumoniae Heat Shock Protein 60 Enhances Expression of ERK, TLR-4 and IL-8 in Atheromatous Plaques of Coronary Artery Disease Patients

, , &
Pages 206-222 | Published online: 30 Dec 2010

REFERENCES

  • Apfalter, P., Blasi, F., Boman, J., Gaydos, C. A., Kundi, M., Maass, M., Makristathis, A., Meijer, A., Nadrchal, R., Persson, K., Rotter, M. L., Tong, C. Y., Stanek, G., Hirschl, A. M. (2001). Multicenter comparison trial of DNA extraction methods and PCR assays for detection of Chlamydia pneumoniae in endarterectomy specimens. J. Clin. Microbiol. 39: 519–524.
  • Beekhuizen, H., Gevel, J. S. V. D. (1998). Endothelial cell adhesion molecules in inflammation and postischemic reperfusion injury. Transplant Proc. 30: 4251–4256.
  • Blasi, F., Centanni, S., Allegra, L. (2004). Chlamydia pneumoniae: crossing the barriers? Eur. Respir. J. 23:499–500.
  • Bulut, Y., Faure, E., Thomas, L., Karahashi, H., Michelsen, K. S., Equils O. (2002). Chlamydial heat shock protein 60 activates macrophages and endothelial cells through tolllike receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168:1435–1440.
  • Danesh, J., Collins, R., Peto, R. (1997). Chronic infections and coronary heart disease:is there a link? Lancet 350:430–436.
  • Davidson, M., Kuo, C. C., Middaugh, J. P., Campbell, L. A., Wang, S. P., Newman, W. P., Finley, J. C., Grayston, J. T. (1998). Confirmed previous infection with Chlamydia pneumoniae (TWAR) and its presence in early coronary atherosclerosis. Circulation 98:628–633.
  • Fong IW, Chiu B, Viira E, Tucker W, Wood H, Peeling RW. Chlamydial heat-shock protein-60 antibody and correlation with chlamydia pneumoniae in atherosclerotic plaques. J Infect Dis. 2002 Nov 15: 186(10): 1469–73.
  • Godzik, K. G., Brien, E. R. O., Wang, S. K., Kuo, C. C. (1995). In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae. J. Clin. Microbiol. 33:2411–2414.
  • Goetze, S., Kintscher, U., Kaneshiro, K., Meehan, W. P., Collins, A., Fleck, E. (2001). TNFα induces expression of transcription factors c-fos, EGR1, and ETS1 in vascular lesions through extracellular signal-regulated kinases. Atherosclerosis 159:93–101.
  • Grayston, J. T., Kuo, C. C., Coulson, A. S., Campbell, L. A., Lawrence, R. D., Lee, M. J., Strandness, E. D., Wang, S. (1995). Chlamydia pneumoniae (TWAR) in atherosclerosis of the carotid artery. Circulation 92:3397–3400.
  • Haralambieva, I. H., Iankov, I. D., Ivanova, P. V., Mitev, V., Mitov, I. G. (2004). Chlamydophila pneumoniae induces p44/p42 mitogen-activated protein kinase activation in human fibroblasts through Toll-like receptor 4. J. Med. Microbiol. 53:1187–1193.
  • Hartung, D., Petrov, A., Haider, N., Fujimoto, S., Blankenberg, F., Fujimoto, A., Virmani, R., Kolodgie F. D., Strauss, H. W., Narula, J. (2007). Radiolabeled monocyte chemotactic protein 1 for the detection of inflammation in experimental atherosclerosis. J. Nucl. Med. 48:1816–1821.
  • Ieven, M. M., Hoymans, V. Y. (2005). Involvement of Chlamydia pneumoniae in atherosclerosis: More evidence for lack of evidence. J. Clin. Microbiol. 43:19–24.
  • Janssens, S., Beyaert, R. (2002). A universal role for MyD88 in TLR/IL-1R-mediated signaling. Trends Biochem. Sci. 27:474–482.
  • Jha, H. C., Prasad, J., Mittal, A. (2008). High IgA seropositivity for combined Chlamydia pneumoniae, Helicobacter pylori infection and high sensitive C-reactive protein in coronary artery disease patients in India can serve as atherosclerotic marker. Heart Vessels 23:390–396.
  • Jha, H. C., Srivastava, P., Divya, A., Prasad, J., Mittal, A. (2009). Prevalence of Chlamydophila pneumoniae is higher in aorta and coronary artery than in carotid artery of coronary artery disease patients. APMIS 117:905–911.
  • Jha, H. C., Vardhan, H., Gupta, R., Varma, R., Prasad, J., Mittal, A. (2007). Higher incidence of persistent chronic infection of Chlamydia pneumoniae among CAD patients in India is a cause of concern. BMC Infect. Dis. 7:48.
  • Johnston, S. C., Messina, L. M., Browner, W. S., Lawton, M. T., Morris, C., Dean, D. (2001). C-reactive protein levels and viable Chlamydia pneumoniae in carotid artery atherosclerosis. Stroke 32: 2748–2752.
  • Karin, M., Delhase, M. (2000). The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signaling. Semin. Immunol. 12:85–98.
  • Khachigian, L. M. (2006). Early growth response-1 in cardiovascular pathobiology. Circ. Res. 98:186–191.
  • Krull, M., Bockstaller, P., Wuppermann, F. N., Klucken, A. C., Muhling, J., Schmeck, B., Seybold, J., Walter, C., Maass, M., Rosseau, S., Hegemann, J. H., Suttorp, N., Hippenstie, S. (2006). Mechanisms of Chlamydophila pneumoniae mediated GM-CSF release in human bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 34:375–382.
  • Leinonen, M. (1993). Pathogenetic mechanisms and epidemiology of Chlamydia pneumoniae. Eur. Heart J. 14:57–61.
  • Luscinskas, F. W., Gimbrone, M. A. (1996). Endothelial-dependent mechanisms in chronic inflammatory leukocyte recruitment. Annu. Rev. Med. 47:413–421.
  • Maass, M., Bartels, C., Engel, P. M., Mamat, U., Hinrich, S. H. (1998). Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease. J. Am. Coll. Cardiol. 31:827–832.
  • Mach, F., Schonbeck, U., Bonnefoy, J. Y., Pober, J. S., Libby, P. (1997). Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40. Circulation 96:396–399.
  • Melgarejo, E., Medina, M. A., Sanchez-Jimenez, F., Urdiales, J. L. (2009). Monocyte chemoattractant protein-1: A key mediator in inflammatory processes. Int. J. Biochem. Cell Biol. 41:998–1001.
  • Naumann, M., Rudel, T., Wieland, B., Bartsch, C., Meyer, T. F. (1998). Coordinate activation of activator protein 1 and inflammatory cytokines in response to Neisseria gonorrhoeae epithelial cell contact involves stress response kinases. J. Exp. Med. 188:1277–1286.
  • Ong, G., Thomas, B. J., Mansfield, A. O., Davidson, B. R., Taylor-Robinson, D. (1996). Detection and widespread distribution of Chlamydia pneumoniae in the vascular system and its possible implications. J. Clin. Pathol. 49:102–106.
  • Ott, S. J., Mokhtari, N. E. E., Musfeldt, M., Hellmig, S., Freitag, S., Rehman, A., Kühbacher, T., Nikolaus, S., Namsolleck, P., Blaut, M., Hampe, J., Sahly, H., Reinecke, A., Haake, N., Günther, R., Krüger, D., Lins, M., Herrmann, G., Fölsch, U. R., Simon, R., Schreiber, S. (2006). Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937.
  • Paterson, D. L., Hall, J., Rasmussen, S. J., Timms, P. (1998). Failure to detect Chlamydia pneumoniae in atherosclerotic plaques of Australian patients. Pathology 30:169–172.
  • Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., Hennekens, C. H. (1997). Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336:973–979.
  • Robinson, D. T. (1998). Chlamydia pneumoniae in vascular tissue. Atherosclerosis 140:S21–S24.
  • Rodriguez, N., Fend, F., Jennen, L. Schiemann, M, Wantia, N., Costa, C. U. P. (2005). Polymorphonuclear neutrophils improve replication of Chlamydia pneumoniae in vivo upon MyD88-dependent attraction. J. Immunol. 174:4836–4844.
  • Ryan, S., Taylor, C. T., McNicholas, W. T. (2009). Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Thorax 64:631–636.
  • Sasu, S., Verda, D. L., Qureshi, N., Golenbock, D. T., Beasley, D. (2001). Chlamydia pneumoniae and Chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ. Res. 89: 244–250.
  • Su, H., McClarty, G., Dong, F., Hatch, G. M., Pan, Z. K., Zhong, G. (2004). Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for Chlamydial acquisition of host glycerol phospholipids. J. Biol. Chem. 279: 9409–9416.
  • Takahashi, M., Masuyama, J., Dceda, U., Kasahara, T., Kitagawa, S. I., Takahashi, Y., Shimada, K., Kano, S. (1995). Induction of monocyte chemoattractant protein-1 synthesis in human monocytes during transendothelial migration in vitro. Circ. Res. 76: 750–757.
  • Umehara, H., Goda, S., Imai, T., Nagano, Y., Minami, Y., Tanaka, Y. (2001). Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol. Cell. Biol. 79: 298–302.
  • Vabulas, R. M., Ahmad-Nejad, P., Costa, C. D., Miethke, T., Kirschning, C. J., Hacker, H. (2001). Endocytosed HSP60s use toll-like receptor 2 (TLR-2) and TLR-4 to activate the Toll/Interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276:31332–31339.
  • Wissel, H., Muller, T., Rudiger, M., Krüllc, M., Wauer, R. R. (2005). Contact of Chlamydophila pneumoniae with type II cell triggers activation of calcium-mediated NF-κB pathway. BBA 1743:37–48.
  • Wolf, K., Fischer, E., Hackstadt, T. (2005). Degradation of Chlamydia pneumoniae by peripheral blood monocytic cells. Infect. Immun. 73:4560–4570.
  • Yoneda, H., Miura, K., Matsushima, H., Sugi, K., Murakami, T., Ouchi, K., Yamashita, K., Itoh, H., Nakazawa, T., Suzuki, M., Shiraiet, M. (2003). Aspirin inhibits Chlamydia pneumoniae-induced NF-kB activation, cyclo-oxygenase-2 expression and prostaglandin E2 synthesis and attenuates chlamydial growth. J. Med. Microbiol. 52: 409–415.
  • Zebrack, J. S., Anderson, J. L. (2007). The role of infection in the pathogenesis of cardiovascular disease. Prog. Cardiovasc. Nurs. 18:42–49.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.