42
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Strategies for Mimicking Neisserial Saccharide Epitopes as Vaccines

, , , &
Pages 229-250 | Published online: 10 Jul 2009

References

  • Brooks G. F., Lammel C. J. Humoral immune response to gonococcal infections. Clin. Micro. Rev. 1989; 2S: S5–S10
  • Kita E., Matsuura H., Kashiba S. A mouse model for the study of gonococcal genital infection. J. Infect. Dis. 1981; 143: 67–70
  • Taylor-Robinson D., Furr P., Hetherington C. Neisseria gonnhoeae colonises the genital tract of oestradiol-treated germfree female mice. Micro. Path. 1990; 9: 369–374
  • Tramont E. C., Boslego J., Chung R., McChesney D. C., Ciak J., Sadoff J., Piziak M., Brinton C., Wood S., Bryan J. Parenteral gonococcal pilus vaccine. The Pathogemic neisseriae, G. K. Schoolnik, G. F. Brooks, S. Falkow, C. E. Frasch, J. S. Knapp, J. A. McCutchan, S. A. Morse. American Society for Microbiology, Washington, DC 1985; 316–322
  • Tramont E. C. Gonococcal vaccines. Clin. Micro. Rev. 1989; 2S
  • Cohen I. R., Kellogg D. S., Norins L. C. Serum antibody response in experimental human gonorrhea: immunoglobulins G, A, and M. Br. J. Ven. Dis. 1969; 45: 325–327
  • Tramont E. C., Ciak J. Antigonococcal antibodies in genital secretions. Immunobiology of Neisseria gonorrhoeae, G. F. Brooks, E. C. Gotschlich, W. D. Sawyer, F. E. Young. American Society for Microbiology, Washington, DC 1978; 274–278
  • Lammel C. J., Sweet R. L., Rice P. A., Knapp J. S., Schoolnik G. K., Heilbron D. C., Brooks G. F. Antibody-antigen specificity in the immune response to infection with Neisseria gonorrhoeae. J. Infect. Dis. 1985; 152: 990–1001
  • Rice P. A. Molecular basis for serum resistance in Neisseria gonorrhoeae. Clin. Microbiol. Rev. 1989; 2S: S112–S117
  • Cannon J., Buchanan T., Sparling P. Confirmation of association of protein I serotype of Neisseria gonorrhoeae with ability to cause disseminated infection. Infect. Immun. 1983; 40: 816–819
  • Sparling P. Biology of Neisseria gonorrhoeae. Sexually Transmitted Diseases, K. K. Holmes, P. A. Mardh, P. F. Sparling, P. J. Weisner, J. W. Cates, S. M. Lemon, W. E. Stamm. McGraw-Hill, New York 1990
  • Ram S., McQuillen D. P., Gulati S., Elkins C., Pangburn M. K., Rice P. A. Binding of complement factor H to loop 5 of porin protein 1A: a molecular mechanism of serum resistance of non-sialylated Neisseria gonorrhoeae. J. Exp. Med. 1998; 187: 671–680
  • Ram S., McQuillen D. P., Boden R., Gulati S., Pangburn M. K., Rice P. A. Neisseria gonorrhoeae regulate the classical pathway by directly binding C4-binding protein. Mol. Immunol. 1998; 35: 398, (Abstr.)
  • Densen P., Gulati S., Rice P. A. Specificity of antibodies against Neisseria gonorrhoeae that stimulate neutrophil chemotaxis. J. Clin. Invest. 1987; 80: 78–87
  • Apicella M. A., Westerink M. A.J., Morse S. A., Schneider H., Rice P. A., Griffiss J. M. Bactericidal antibody response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. J. Infect. Dis. 1986; 153: 520–526
  • Ross S. C, Densen P. Opsonophagocytosis of Neisseria gonorrhoeae: interaction of local and disseminated isolates with complement and neutrophils. J. Infect. Dis. 1985; 151: 33–41
  • Brinton C., Bryan J., Dillon J., Guerina N., Jacobson L., Kraus S., Labik A., Lee S., Levine A., Lim S., Mc Michael J., Polen S., Rogers K., To A., To S. Uses of pili in gonorrhea control: role of bacterial pili in disease, purification, and properties of gonococcal pili, and progress in the development of a gonococcal pilus vaccine for gonorrhea. Immunobiology of Neisseria gonorrhoea, G. F. Brooks, E. C. Gotschlich, K. K. Holmes, W. D. Sawyer, F. E. Young. American Society for Microbiology, Washington, DC 1978; 155–178
  • Boslego J. W., Tramont E. C., Chung R. C., McChesney D. G., Ciak J., Sadoff J. C., Piziak M. V., Brown J. D., Brinton C. C., Wood S. W., Bryan J. R. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 1991; 9: 154–162
  • Hagblom P., Segal E., Billyard E., So M. Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 1985; 315: 156–158
  • Sparling P. P., Cannon J. G., So M. Phase and antigenic variation of pili and outer membrane protein II of Neisseria gonorrhoeae. J. Inject. Dis. 1986; 153: 196–201
  • Rice P. A.E.W., Hook I II, Blake M. S., Kaslow R. S., Gulati S., Kohl P. K., Van Radden M., Buchanan T. M. A possible influence of vaccine induced Por, LOS, and Rmp antibodies on the outcome of intraurethral challenge with Neisseria gonorrhoeae. Neisseria 94, J. S. Evans, S. E. Yost, M. C.J. Maiden, I. M. Feavers. S.C.C., WinchesterEngland 1994; 483–484
  • Gulati S., Rice P. A., Blake M., Sarafian S. K., Morse S. A., Quentin-Millet M. J., Arminjon F. Antibody responses in six volunteers immunized with a gonococcal protein I vaccine. Neisseriae 1990, M. Achtmann, P. Kohl, C. Marchal, G. Morelli, A. Seiler, B. Thiesen. Walter dc Gruyter & Co., BerlinGermany 1991; 229–234
  • Yamasaki R., Schneider H., Griffiss J. M., Mandrell R. Epitope expression of gonococcal lipooligosaccharide (LOS). Importance of the lipoidal moiety for expression of an epitope that exists in the oligosaccharide moiety of LOS. Mol. Immunol. 1988; 25: 799–809
  • Kayhty H., Karanko V., Peltola H., Makela P. H. Serum antibodies after vaccination with Haemophilus influenzae type b capsular polysaccharide and responses to reimmunization: no evidence of immunologic tolerance or memory. Pediatrics 1984; 74: 857–865
  • Mosier D. E., Zaldivar N. M., Goldings E., Mond J., Scher I., Paul W. E. Formation of antibody in the newborn mouse: study of T-cell-independent antibody response. J. Infect. Dis. 1977; 136: S14–S19
  • Stead A., Main S., Ward M., Walt P. Studies on lipopolysaccharide isolated from strains of Neisseria gonorrhoeae. J. Gen. Microb. 1975; 88: 123–131
  • Schneider H., Hale T. L., Zollinger W. D., Seid R., Hammack C. A., Jr, Griffiss J. M. Heterogeneity of molecular size and antigenic expression within lipooligosaccharides of individual strains of Neisseria gonorrhoeaeNeisseria meningitidis. Infect. Immun. 1984; 45: 544–549
  • Mandrell R., Schneider H., Apicella M., Zollinger W., Rice P. A., Griffiss J. M. Antigenic and physical diversity of Neisseria gonorrhoeae lipooligosaccharides. Infect. Immun. 1986; 54: 63–69
  • Mandrell R. E., Griffiss J. M., Macher B. A. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae, Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J. Exp. Med. 1988; 168: 107–126
  • Gibson B. W., Webb J. W., Yamasaki R., Fisher S. J., Burlingame A. L., Mandrell R. E., Schneider H., Griffiss J. M. Structure and heterogeneity of the oligosaccharides from the lipopolysaccharides of a pyocin-resistant Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 1989; 86: 17–21
  • Yamasaki R., Nasholds W., Schneider H., Apicella M. A. Epitope expression and partial structural characterization of F62 lipooligosaccharide (LOS) of Neisseria gonorrhoeae: IgM monoclonal antibodies (3F11 and 1–1-M) recognize non-reducing termini of the LOS components. Mol. Immunol. 1991; 28: 1233–1242
  • Yamasaki R., Bacon B. E., Nasholds W., Schneider H., Griffiss J. M. Structural determination of oligosaccharides derived from lipooligosaccharide of Neisseria gonorrhoeae F62 by chemical, enzymatic, and two-dimensional NMR methods. Biochemistry 1991; 30: 10566–10575
  • Yamasaki R., Kerwood D. E., Schneider H., Quinn K. P., Griffiss J. M., Mandrell R. E. The structure of lipooligosaccharide produced by Neisseria gonorrhoeae, strain 15253, isolated from a patient with disseminated infection: evidence for a new glycosylation pathway of gonococcal lipooligosaccharide. J. Biol. Chem. 1994; 269: 30345–30351
  • Kerwood D. E., Schneider H., Yamasaki R. Structural analysis of lipooligosaccharide produced by Neisseria gonorrhoeae, strain MS1 Imk (variant A): a precursor for a gonococcal lipooligosaccharide associated with virulence. Biochemistry 1992; 31: 12760–12768
  • Yamasaki R., Koshino H., Kurono S., Nishinaka Y., McQuillen D. P., Kume A., Gulati S., Rice P. A. Structural and immunochemical characterization of a Neisseria gonorrhoeae epitope defined by a monoclonal antibody 2C7; the antibody recognizes a conserved epitope on specific lipo-oligosaccharides in spite of the presence of human carbohydrate epitopes. J. Biol. Chem. 1999; 51: 36550–36558
  • Rice P. A., Kasper D. L. Characterization of gonococcal antigens responsible for induction of bactericidal antibody in disseminated infection: the role of gonococcal endotoxins. J. Clin. Invest. 1977; 60: 1149–1158
  • Apicella M. A., Shero M., Jarvis G. A., Griffiss J. M., Mandrell R. E., Schneider H. Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide. Infect. Immun. 1987; 55: 1755–1761
  • Schneider H., Griffiss J. M., Boslego J. W., Hitchcock P. J., Zahos K. M., Apicella M. A. Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J. Exp. Med. 1991; 174: 1601–1605
  • Schneider H., Hammack C. A., Apicella M. A., Griffiss J. M. Instability of expression of lipooligosaccharides and their epitopes in Neisseria gonorrhoeae. Infect. Immun. 1988; 56: 942–976
  • Gotschlich E. C. Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipo-oligosaccharide. J. Exp. Med. 1994; 180: 2181–2190
  • Jennings M., Hood D., Peak R., Virji M., Moxon E. Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol. Microbiol. 1995; 18: 729–740
  • Banerjee A., Wang R., Uljon S. N., Rice P. A., Gotschlich E. C., Stein D. C. Identification of the gene (lgtG) encoding the lipooligosaccharide b chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 1998; 95: 10872–10877
  • Mandrell R., Griffiss J., Macher B. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J. Exp. Med. 1998; 168: 107–126
  • Mandrell R. E. Further antigenic similarities of Neisseria gonorrhoeae lipooligosaccharides and human glycosphingolipids. Infect. Immun. 1992; 60: 3017–3020
  • John C. M., Griffiss J. M., Apicella M. A., Mandrell R. E., Gibson B. W. The structural basis for pyocin resistance in Neisseria gonorrhoeae lipooligosaccharides. J. Biol. Chem. 1991; 266: 19303–19311
  • Jennings H. J., Lugowski C., Ashton F. E. The structure of an R-type oligosaccharide core obtained from some lipopolysaccharides of Neisseria meningitidis. Carbohydr. Res. 1983; 121: 233–241
  • Parsons N. J., Patel P. V., Tan E. L., Andrade J. R.C., Nairn C. A., Goldner M., Cole J. A., Smith H. Cytidine 5′-monophospho-N-acetyl neuraminic acid and a low molecular weight factor from human red blood cells induce lipopolysaccharide alteration in gonococci when conferring resistance to killing by human serum. Microb. Pathog. 1988; 5: 303–309
  • Fox A., Curry A., Rowland P., Lancaster S., Dennis M., Nicholas J., Cole J., Smith H. A surface polysaccharide forms when gonococci are converted to serum resistance by cytidine 5′-monophospho-N-acetyl neuraminic acid. FEMSLETT 1989; 75–80
  • Parsons N. J., Cole J. A., Smith H. Resistance to human serum of gonococi in urethral exuadates is reduced by neuraminidase. Proc. R. Soc. Lond. B. 1990; 241: 3–5
  • Patel P., Martin P., Goldner M., Parsons N., Smith H. Red blood cells, a source of factors which induce Neisseria gonorrhoeae to resistance to complement-mediated killing by human serum. J. Gen. Microbiol. 1984; 130: 2767–2770
  • Patel P. V., Veale D. R., Fox J. E., Martin P. M., Parsons N. J., Smith H. Fractionation of guinea pig serum for an inducer of gonococcal resistance to killing by human serum: active fractions containing glucopeptides similar to those from human red blood cells. J. Gen. Microbiol. 1984; 130: 2757–2766
  • Patel P. V., Martin P. M., Tan E. L., Nairn C. A., Parsons N. J., Goldner M., Smith H. Protein changes associated with induced resistance of neiseria gonorrhoeae to killing by human serum are relatively minor. J. Gen. Microbiol. 1988; 134: 499–507
  • Patel P. V., Parsons N. J., Andrade J. R.C., Nairn C. A., Tan E. L., Goldner M., Cole J. A., Smith H. White blood cells including polymorphonuclear phagocytes contain a factor which includes gonococcal resistance to complement-mediated serum killing. FEMS Microbiol. Lett. 1988; 50: 173–184
  • Mandrell R. E., Lesse A. J., Sugai J. V., Shero M., Griffiss J. M., Cole J. A., Parsons N. J., Smith H., Morse S. A., Apicella M. A. In vitro, in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J. Exp. Med. 1990; 171: 1649–1664
  • Apicella M. A., Mandrell R. E., Shero M., Wilson M., Griffiss J. M., Brooks G. F., Fenner C., Breen C. F., Rice P. A. Modification by sialic acid of Neisseria gonorrhoeae lipooligosaccharide epitope expression in human urethral exudates: an immunoelectron microscopic analysis. J. Infect. Dis. 1990; 162: 506–512
  • McQuillen D. P., Gulati S., Ram S., Turner A. K., Jani D. B., Heeren T. C., Rice P. A. Complement processing and immunoglobulin binding to Neisseria gonorrhoeae determined in vitro simulates in vivo effects. J. Infect. Dis. 1999; 179: 124–135
  • Estabrook M., Christopher N., Griffs J., Baker C., Mandrell R. Sialylation and human neutrophil killing of group C Neisseria meningitidis. J. Infect. Dis. 1992; 166: 1079–1085
  • Frangipane J., Rest R. Anaerobic growth and cytidine 5′monophospho-n-acetylnuraminie acid act synergistically to induce high level serum resistance in Neisseria gonorrhoeae. Infect. Immun. 1993; 61: 1657–1666
  • Kim J. J., Zhou D., Mandrell R. E., Griffiss J. M. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect. Immun. 1992; 60: 4439–4442
  • Elkins C., Carbonetti N., Varela V., Stirewalt D., Klapper D., Sparling P. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipooligasaccharide is not sialylated. Mol. Microbiol. 1992; 6: 2617–2628
  • Gulati S., McQuillen D. P., Mandrell R. E., Jani D. B., Rice P. A. Immunogenicity of Neisseria gonorrhoeae lipooligosaccharide epitope, 2C7, widely expressed in vivo with no immunochemical similarity to human glycosphingolopids. J. Infect. Dis. 1996; 174: 1223–1237
  • Rice P. A., Kasper D. L. Characterization of serum resistance of Neisseria gonorrhoeae that disseminate: roles of blocking antibody and gonococcal outer membrane proteins. J. Clin. Invest. 1982; 70: 157–167
  • Ram S., Sharma A. K., Simpson S. D., Gulati S., McQuillen D. P., Pangburn M. K., Rice P. A. A novel sialic acid binding site of Factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J. Exp. Med. 1998; 187: 743–752
  • Jerne N. K. Towards a network theory of the immune system. Ann. Immunol. Inst. Pasteur. 1974; 125C: 373–389
  • Bowen R., Bona C. Stimulation of lymphocytic clones by anti-idiotypic antibodies: basis for development of idiotypic vaccines. Antiidiotypic Vaccines. Vol. 3, P.-A. Cazanave. Springer-Verlag, New York 1991; 8
  • Stein K. E., Soderstrom T. Neonatal administration of idiotype or antiidiotype primes for protection against Escherichia coli infection in mice. J. Exp. Med. 1984; 160: 1001–1011
  • Westerink M. A.J., Campagnari A. A., Wirth M. A., Apicella M. A. Development and characterization of an anti-idiotype antibody to the capsular polysaccharide of Neisseria meningitidis serogroup C. Infect. Immun. 1988; 56: 1120–1127
  • Westerink M. A.J., Giardina P. C., Apicella M. A., Kieber-Emmons T. Peptide mimicry of the meningococcal group C capsular polysaccharide. Proc. Natl. Acad. Sci. USA 1995; 92: 4021–4025
  • McNamara M. K., Wardand R. E., Kohler H. Monoclonal idiotope vaccine against Streptococcus pneumoniae infection. Science 1984; 226: 1325–1326
  • McNamara-Ward M., Ward R. J.-E., Huang H., Kohler H. Idiotype vaccine against Streptococcus pneumoniae—a precursor study. J. Immunol. 1987; 139: 2775–2780
  • Schreiber J. R., Nixon K. L., Tosi M. F., Pier G. B., Patawaran M. B. Anti-idiotype-induced, lipopolysaccharide-specific antibody response to Pseudomonas aeruginosa. II. Isotype and functional activity of the anti-idiotype-induced antibodies. J. Immunol 1991; 146: 188–193
  • Schreiber J. R., Pier G. B., Grout M., Nixon K., Patawaran M. Induction of opsonic antibodies to Pseudomonas aeruginosa mucoid exopolysaccharide by an anti-idiotypic monoclonal antibody. J. Infect. Dis. 1991; 164: 507–514
  • Brossay L., Paradis G., Pépin A., Mourad W., Cot L., ÉHébert J. Idiotype and anti-anti-idiotype antibodies to Neisseria gonorrhoeae lipooligosaccharides with bactericidal activity but no cross-reactivity with red blood cell antigens. J. Immunol. 1993; 151: 234–243
  • Magliani W., Polonelli L., Conti S., Salati A., Rocca P., Cusumano V., Mancuso G., Teti G. Neonatal mouse immunity against group B streptococcal infection by maternal vaccination with recombinant anti-idiotypes. Nat. Med. 1998; 4: 705–709
  • Westerink M. A.J., Muller E., Apicella M. A. Anti-idiotypic antibodies to bacterial capsular polysaccharides. Idiotypic Network and Discuses, J. Cerny, J. Hiernaux. American Society for Microbiology, Washington, DC 1990; 107–119
  • Gulali S., McQuillen D. P., Sharon J., Rice P. A. Experimental immunization with a monoclonal anti-idiotope antibody that mimics the Neisseria gonorrhoeae Lipooligasaccharide epitope 2C7. J. Infect. Dis. 1996; 174: 1238–1248
  • Herlyn D., Zaloudik J., Somasundaram R., Jacob L., Benden A., Mastangelo M. Anti-idiotype vaccine in colorectal cancer patients. Hybridoma 1993; 12: 515–520
  • Foon K. A., Chakraborty M., John W. J., Sherratt A., Kohler H., Bhattacharya-Chatterjee M. Immune response to the carcinoembryonic antigen in patients treated with an anti-idiotype antibody vaccine. J. Clin. Invest. 1995; 96: 334–342
  • Chatterjee M., Mrozek E., Vaickus L., Oseroff A., Stoll H., Russell D., Kohler H., Foon K. A. Antiidiotype (Ab2) vaccine therapy for cutaneous T-cell lymphoma. Ann. N. Y. Acad. Sci. 1993; 690: 376–377
  • Hutchins W., Kieber-Emmons T., Carlone G., Westerink M. Human immune response to a peptide mimic of Neisseria meningitidis serogroup C in human PBMC-SCID mice. Hybridoma 1999; 18: 121–129
  • Scott J., Smith G. Searching for peptide ligands with an epitope library. Science 1990; 249: 386
  • Cortese R., Monaci P., Nicosia A., Luzzago A., Felici F., Galfre F., Pessi A., Tramontano A., Sollazzo M. Identification of biological active peptides using random libraries displayed on phage. Curr. Opin. Biotechnol. Annu. Rev. 1995; 6: 73–80
  • Felici F., Luzzago A., Monaci P., Nicosia A., Sollazzo M., Traboni C. Peptide and protein display on the surface of filamentous bacteriophage. Biotechnol. Annu. Rev. 1995; 1: 149
  • Daniels D., Lane D. The characterisation of p53 binding phage isolated from phage peptide display libraries. J. Mol. Biol. 1994; 4: 639–652
  • Geysen H. M., Rodda S. J., Mason T. J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol. Immunol. 1986; 23: 709–715
  • Parmley S., Smith G. Antibody selectable filamentous Id phage vectors: affinity purification of target ganes. Gene 1988; 73: 305–318
  • Smith G. P. Surface presentation of protein epitopes using bacteriophage expression systems. Curr. Opin. Biotech. 1991; 2: 668–673
  • Valadon P., Nussbaum G., Boyd L., Margulies D., Scharff M. Peptide libraries define the fine specificity of anti-polysaccharide antibodies to Cryptococcus neoformans. J. Mol. Biol. 1996; 261: 11–22
  • Zhang H., Zhong Z., Pirofski L. Peptide epitopes recognized by a human anticryptococcal glucuronoxylomannan antibody. Infect. Immun. 1997; 65: 1158–1164
  • Pincus S. H., Smith M. J., Jennings H. J., Burritt J. B., Glee P. M. Peptides that mimic the group B streptococcal type III capsular polysaccharide antigen. J. Immunol. 1998; 160: 293–298
  • Lu Z., Murray K., Van Cleave V., La Value E., Stahl M., McCoy J. Expression of Thioredoxin Random Peptide Libraries on the Escherichia coli cell surface as functional fusionsto flagellin. A system designed for exploring protein protein interactions. Bio/Technology 1995; 13: 366–372
  • Scott J. K., Loganathan D., Easley R. B., Gong X., Goldstein I. J. A family of canavalin A-binding peptides from a hexapeptide epitope library. Proc. Natl. Acad. Sci. USA 1993; 89: 5398
  • Oldenburg K., Loganathan D., Goldstein L., Schultz P., Gallop M. Peptide ligands for a sugar-binding protein isolated from random peptide library. Proc. Null. Sci. USA 1992; 89: 5393–5397
  • Hoess R., Brinkmann U. T.H., Pastan I. Identification of a peptide which binds to the carbohydrate-specific monoclonal antibody B3. Gene 1993; 128: 43–49
  • Kieber-Emmons T., Monzavi-Karbassi B., Wang B., Luo P., Weiner D. Cutting edge: DNA immunization with minigenes of carbohydrate mimotopes induce functional anti-carbohydrate antibody response. J. Immun. 2000; 165: 623–627
  • Tanghe A., Denis O., Lambrecht B., Motte V., van den Berg T., Huygen K. Tuberculosis DNA vaccine encoding Ag85A is immunogenic and protective when administered by intramuscular needle injection but not by epidermal gene gunbombardment. Infect. Immun. 2000; 68: 3854–3860

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.