317
Views
24
CrossRef citations to date
0
Altmetric
Immunity in the Gut

Modulation of Gut-Associated Lymphoid Tissue Functions with Genetically Modified Lactococcus lactis

, &
Pages 465-486 | Published online: 02 Dec 2009

REFERENCES

  • D. Taupin and D.K. Podolsky. Trefoil factors: Initiators of mucosal healing. Nat Rev Mol Cell Biol 4: 721–732, 2003.
  • M.T. Abreu-Martin and S.R. Targan. Regulation of immune responses of the intestinal mucosa. Crit Rev Immunol 16: 277–309, 1996.
  • M.C. Noverr and G.B. Huffnagle. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12: 562–568, 2004.
  • D. Kelly, J.I. Campbell, T.P. King, . Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5: 104–112, 2004.
  • A.J. Macpherson and N.L. Harris. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4: 478–485, 2004.
  • Probiotics or con (editorial)? Lancet 371: 624, 2008.
  • R.N. Fedorak and L.A. Dieleman. Probiotics in the treatment of human inflammatory bowel diseases: Update 2008. J Clin Gastroenterol 42(Suppl 2): S97--S103, 2008.
  • S. Salminen and A. von Wright. Current Probiotics—Safety Assured? Microb Ecol Health Dis 10: 68–77, 1998.
  • L. Steidler. Genetically engineered probiotics. Best Pract Res Clin Gastroenterol 17: 861–876, 2003.
  • K.F. Schleifer. Recent changes in the taxonomy of lactic-acid bacteria. Fems Microbiology Reviews 46: 201–203, 1987.
  • K.H. Schleifer, J. Kraus, C. Dvorak, . Transfer of Streptococcus-Lactis and related Streptococci to the genus Lactococcus Gen-Nov. Syst Appl Microbiol 6: 183–195, 1985.
  • EFSA. Opinion of the Scientific Committee on a request from EFSA related to ‘A generic approach to the safety assessment by EFSA of micro-organisms used in food/feed and the production of food/feed additives’. EFSA J 226: 1–12, 2005.
  • EFSA. Annex 3: Assessment of Gram-positive, non-sporulating bacteria with respect to a qualified presumption of safety. 2007.
  • M. Gruzza, M. Fons, M.F. Ouriet, . Study of gene transfer in vitro and in the digestive tract of gnotobiotic mice from Lactococcus lactis strains to various strains belonging to human intestinal flora. Microb Releases 2: 183–189, 1994.
  • S. Drouault, G. Corthier, S.D. Ehrlich, and P. Renault. Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 65: 4881–4886, 1999.
  • J.M. Wells, P.W. Wilson, and R. W. Le Page. Improved cloning vectors and transformation procedure for Lactococcus lactis. J Appl Bacteriol 74: 629–636, 1993.
  • F.E. Ahmed. Genetically modified probiotics in foods. Trends Biotechnol 21: 491–497, 2003.
  • M. Kleerebezem and J. Hugenholtz. Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 14: 232–237, 2003.
  • A. Bolotin, P. Wincker, S. Mauger, . The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11: 731–753, 2001.
  • U. Wegmann, M. O'Connell-Motherway, A. Zomer, . Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189: 3256–3270, 2007.
  • M. van Asseldonk, G. Rutten, M. Oteman, . Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95: 155–160, 1990.
  • S.J. Lee, D.M. Kim, K.H. Bae, . Enhancement of secretion and extracellular stability of staphylokinase in Bacillus subtilis by wprA gene disruption. Appl Environ Microbiol 66: 476–480, 2000.
  • X.C. Wu, W. Lee, L. Tran, and S.L. Wong. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol 173: 4952–4958, 1991.
  • V. Enouf, P. Langella, J. Commissaire, . Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67: 1423–1428, 2001.
  • P. Ravn, J. Arnau, S.M. Madsen, . The development of TnNuc and its use for the isolation of novel secretion signals in Lactococcus lactis. Gene 242: 347–356, 2000.
  • L. Steidler, S. Neirynck, N. Huyghebaert, . Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21: 785–789, 2003.
  • F. Bringel, G.L. Van Alstine, and J.R. Scott. A host factor absent from Lactococcus lactis subspecies lactis MG1363 is required for conjugative transposition. Mol Microbiol 5: 2983–2993, 1991.
  • M.B. Pedersen, P.R. Jensen, T. Janzen, and D. Nilsson. Bacteriophage resistance of a deltathyA mutant of Lactococcus lactis blocked in DNA replication. Appl Environ Microbiol 68: 3010–3023, 2002.
  • C.M. Thomas and K.M. Nielsen. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3: 711–721, 2005.
  • J.G. Lawrence. Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 2: 519–523, 1999.
  • H. Ochman, J.G. Lawrence, and E.A. Groisman. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304, 2000.
  • M.J. Gasson. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154: 1–9, 1983.
  • L. Schotte, L. Steidler, J. Vandekerckhove, and E. Remaut. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzyme Microb Technol 27: 761–765, 2000.
  • L. Steidler, W. Hans, L. Schotte, . Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352–1355, 2000.
  • L. Steidler, K. Robinson, L. Chamberlain, . Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun 66: 3183–3189, 1998.
  • L. Steidler, J.M. Wells, A. Raeymaekers, . Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. Appl Environ Microbiol 61: 1627–1629, 1995.
  • L.G. Bermudez-Humaran, P. Langella, N.G. Cortes-Perez, Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71: 1887–1896, 2003.
  • R. Kuhn, J. Lohler, D. Rennick, . Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263–274, 1993.
  • R.N. Fedorak, A. Gangl, C.O. Elson, . Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn's disease. The Interleukin 10 Inflammatory Bowel Disease Cooperative Study Group. Gastroenterology 119: 1473–1482, 2000.
  • S. Schreiber, R.N. Fedorak, O.H. Nielsen, . Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's Disease IL-10 Cooperative Study Group. Gastroenterology 119: 1461–1472, 2000.
  • S. Schreiber, R.N. Fedorak, G. Wild, . Safety and tolerance of rhIL-10 treatment in patients with mild/moderate active ulcerative colitis. Gastroenterology 114: 1080, 1998.
  • H. Herfarth and J. Scholmerich. IL-10 therapy in Crohn's disease: At the crossroads. Treatment of Crohn's disease with the anti-inflammatory cytokine interleukin 10. Gut 50: 146–147, 2002.
  • K. Madsen. Combining T cells and IL-10: A new therapy for Crohn's disease? Gastroenterology 123: 2140–2144, 2002.
  • L. Schotte, L. Steidler, J. Vandekerckhove, and E. Remaut. Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzyme and Microb Technol 27: 761–765, 2000.
  • N. Huyghebaert, A. Vermeire, S. Neirynck, . Development of an enteric-coated formulation containing freeze-dried, viable recombinant Lactococcus lactis for the ileal mucosal delivery of human interleukin-10. Euro J Pharma Biopharma 60: 349–359, 2005.
  • B. Foligne, S. Nutten, L. Steidler, . Recommendations for improved use of the murine TNBS-induced colitis model in evaluating anti-inflammatory properties of lactic acid bacteria: Technical and microbiological aspects. Dig Dis Sci 51: 390–400, 2006.
  • S. Termont, K. Vandenbroucke, D. Iserentant, . Intracellular accumulation of trehalose protects Lactococcus lactis from freeze-drying damage and bile toxicity and increases gastric acid resistance. Appl Env Microb 72: 7694–7700, 2006.
  • B. Foligne, R. Dessein, M. Marceau, . Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology 133: 862–874, 2007.
  • H. Braat, P. Rottiers, D.W. Hommes, . A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin Gastroenterol Hepatol 4: 754–759, 2006.
  • B. Kleessen, A.J. Kroesen, H.J. Buhr, and M. Blaut. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 37: 1034–1041, 2002.
  • A. Waeytens, L. Ferdinande, S. Neirynck, . Paracellular entry of interleukin-10 producing Lactococcus lactis in inflamed intestinal mucosa in mice. Inflamm Bowel Dis 14: 471–479, 2007.
  • A.V. Keita, E. Gullberg, A.C. Ericson, . Characterization of antigen and bacterial transport in the follicle-associated epithelium of human ileum. Lab Invest 86: 504–516, 2006.
  • M. Rescigno, M. Urbano, B. Valzasina, . Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2: 361–367, 2001.
  • M. Rescigno, G. Rotta, B. Valzasina, and P. Ricciardi-Castagnoli. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204: 572–581, 2001.
  • H.A. Sampson. Food allergy. Part 2: Diagnosis and management. J Allergy Clin Immunol 103: 981–989, 1999.
  • H.A. Sampson. Food allergy. Part 1: Immunopathogenesis and clinical disorders. J Allergy Clin Immunol 103: 717–728, 1999.
  • C.P. Frossard, C. Hauser, and P.A. Eigenmann. Antigen-specific secretory IgA antibodies in the gut are decreased in a mouse model of food allergy. J Allergy Clin Immunol 114: 377–382, 2004.
  • C.P. Frossard, L. Tropia, C. Hauser, and P.A. Eigenmann. Lymphocytes in Peyer patches regulate clinical tolerance in a murine model of food allergy. J Allergy Clin Immunol 113: 958–964, 2004.
  • C.P. Frossard, L. Steidler, and P.A. Eigenmann. Oral administration of an IL-10-secreting Lactococcus lactis strain prevents food-induced IgE sensitization. J Allergy Clin Immunol 119: 952–959, 2007.
  • T. Marchbank, B.R. Westley, F.E. May, . Dimerization of human pS2 (TFF1) plays a key role in its protective/healing effects. J Pathol 185: 153–158, 1998.
  • R.J. Playford, T. Marchbank, R.A. Goodlad, . Transgenic mice that overexpress the human trefoil peptide pS2 have an increased resistance to intestinal damage. Proc Natl Acad Sci U S A 93: 2137–2142, 1996.
  • R.J. Playford, T. Marchbank, R. Chinery, . Human spasmolytic polypeptide is a cytoprotective agent that stimulates cell migration. Gastroenterology 108: 108–116, 1995.
  • P.C. Konturek, T. Brzozowski, S.J. Konturek, . Role of spasmolytic polypeptide in healing of stress-induced gastric lesions in rats. Regul Pept 68: 71–79, 1997.
  • C. McKenzie, T. Marchbank, R.J. Playford, . Pancreatic spasmolytic polypeptide protects the gastric mucosa but does not inhibit acid secretion or motility. Am J Physiol 273: G112–G117, 1997.
  • S.S. Poulsen, J. Thulesen, L. Christensen, . Metabolism of oral trefoil factor 2 (TFF2) and the effect of oral and parenteral TFF2 on gastric and duodenal ulcer healing in the rat. Gut 45: 516–522, 1999.
  • M.W. Babyatsky, M. de Beaumont, L. Thim, and D.K. Podolsky. Oral trefoil peptides protect against ethanol- and indomethacin-induced gastric injury in rats. Gastroenterology 110: 489–497, 1996.
  • G.A. Cook, L. Thim, N.D. Yeomans, and A.S. Giraud. Oral human spasmolytic polypeptide protects against aspirin-induced gastric injury in rats. J Gastroenterol Hepatol 13: 363–370, 1998.
  • C.P. Tran, G.A. Cook, N.D. Yeomans, . Trefoil peptide TFF2 (spasmolytic polypeptide) potently accelerates healing and reduces inflammation in a rat model of colitis. Gut 44: 636–642, 1999.
  • R. Chinery and R.J. Playford. Combined intestinal trefoil factor and epidermal growth factor is prophylactic against indomethacin-induced gastric damage in the rat. Clin Sci (Lond) 88: 401–403, 1995.
  • B.H. Zhang, H.G. Yu, Z.X. Sheng, . The therapeutic effect of recombinant human trefoil factor 3 on hypoxia-induced necrotizing enterocolitis in immature rat. Regul Pept 116: 53–60, 2003.
  • P.L. Beck, J.F. Wong, Y. Li, . Chemotherapy- and radiotherapy-induced intestinal damage is regulated by intestinal trefoil factor. Gastroenterology 126: 796–808, 2004.
  • K. Vandenbroucke, W. Hans, J. Van Huysse, . Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology 127: 502–513, 2004.
  • M. Miyara and S. Sakaguchi. Natural regulatory T cells: Mechanisms of suppression. Trends Mol Med 13: 108–116, 2007.
  • I.L. Huibregtse, V. Snoeck, A. de Creus, . Induction of ovalbumin-specific tolerance by oral administration of Lactococcus lactis secreting ovalbumin. Gastroenterology 133: 517–528, 2007.
  • A.M. Faria and H.L. Weiner. Oral tolerance. Immunol Rev 206: 232–259, 2005.
  • T.A. Kraus and L. Mayer. Oral tolerance and inflammatory bowel disease. Curr Opin Gastroenterol 21: 692–696, 2005.
  • H.L. Weiner. Current issues in the treatment of human diseases by mucosal tolerance. Ann N Y Acad Sci 1029: 211–224, 2004.
  • A. Friedman and H.L. Weiner. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci U S A 91: 6688–6692, 1994.
  • A.M. Mowat, S. Strobel, H.E. Drummond, and A. Ferguson. Immunological responses to fed protein antigens in mice. I. Reversal of oral tolerance to ovalbumin by cyclophosphamide. Immunology 45: 105–113, 1982.
  • T. Yoshida, S. Hachimura, and S. Kaminogawa. The oral administration of low-dose antigen induces activation followed by tolerization, while high-dose antigen induces tolerance without activation. Clin Immunol Immunopathol 82: 207–215, 1997.
  • I. Huibrechtse, E. Marietta, S. Rashtak, . Induction of antigen-specific tolerance by oral administration of Lactococcus lactis-delivered immunodominant DQ8-restricted Gliadin peptide in sensitized NOD ABo DQ8 transgenic mice. J Immunol 183: 2390–2396, 2009.
  • W.M. de Vos. Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 2: 289–295, 1999.
  • Y. Dieye, S. Usai, F. Clier, . Design of a protein-targeting system for lactic acid bacteria. J Bacteriol 183: 4157–4166, 2001.
  • Y. Le Loir, V. Azevedo, S.C. Oliveira, . Protein secretion in Lactococcus lactis: An efficient way to increase the overall heterologous protein production. Microb Cell Fact 4: 2, 2005.
  • A.M. Dose. The symptom experience of mucositis, stomatitis, and xerostomia. Semin Oncol Nurs 11: 248–255, 1995.
  • S. Bruce and A. Quinn. The pain of oral mucositis. US Oncological Disease: Cancer-Related Complications; Touch Briefings 1: 86–90, 2007.
  • L.E. Volpato, T.C. Silva, T.M. Oliveira, . Radiation therapy and chemotherapy-induced oral mucositis. Rev Bras Otorrinolaringol (Engl Ed) 73: 562–568, 2007.
  • P. Rottiers, S. Caluwaerts, L. Steidler, . Effect of a mouth rinse formulation with human trefoil factor 1-secreting Lactococcus lactis in experimental oral mucositis in hamsters. Support Care Cancer 17: 857–1039 [1010–1092], 2009.
  • K. Vandenbroucke, L. Huyck, P. Demetter, . Treatment of murine colitis by Lactococcus lactis secreting anti-tumor necrosis factor Nanobodies™. 4th Annual Broad Medical Research Program Investigator Meeting for Inflammatory Bowel Disease: Abstract. 2006.
  • A.B. Kay. Allergy and allergic diseases. (First of two parts.) N Engl J Med 344: 30–37, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.