1,038
Views
103
CrossRef citations to date
0
Altmetric
Research Article

Unraveling the Ties between Celiac Disease and Intestinal Microbiota

, &
Pages 207-218 | Accepted 17 Jun 2011, Published online: 25 Jul 2011

REFERENCES

  • Monteleone I, Sarra M, Del Vecchio Blanco G, Characterization of IL-17A-producing cells in celiac disease mucosa. J Immunol. 2010;184: 2211–2218.
  • Stepniak D, Koning F. Celiac disease-sandwiched between innate and adaptive immunity. Hum Immunol. 2006;67: 460–468.
  • Ciccocioppo R, Di Sabatino A, Bauer M, Matrix metalloproteinase pattern in celiac duodenal mucosa. Lab Invest. 2005;85: 397–407.
  • Drago S, El Asmar R, Di Pierro M, Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol. 2006;41: 408–419.
  • Mittelbronn M, Schittenhelm J, Bakos G, CD8(+)/perforin/granzyme B(+) effector cells infiltrating cerebellum and inferior olives in gluten ataxia. Neuropathology. 2010;30: 96–96.
  • Rewers M. Epidemiology of celiac disease: what are the prevalence, incidence, and progression of celiac disease?. Gastroenterology. 2005;128: S47–51.
  • Mearin ML, Ivarsson A, Dickey W. Coeliac disease: is it time for mass screening? Best Pract Res Clin Gastroenterol. 2005; 19, 441–452.
  • Greco L, Romino R, Coto I, The first large population based twin study of coeliac disease. Gut. 2002;50:624–628.
  • Catassi C, Kryszak D, Bhatti B, Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann Med. 2010;42: 530–538.
  • Ivarsson A, Hernell O, Stenlund H, Persson LA. Breast-feeding protects against coeliac disease. Am J Clin Nutr. 2002;75: 914–921.
  • Stene LC, Honeyman MC, Hoffenberg EJ, Rotavirus infection frequency and risk of coeliac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol., 2006;101: 2333–2340.
  • Akobeng AK, Ramanan AV, Buchan I, Heller RF. Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch Dis Child. 2006;91: 39–43.
  • Sanz Y. Gut microbes in coeliac disease pathogenesis and therapy. In Eduards MA, ed. Celiac Disease: Etiology, Diagnosis, and Treatment. New York: Nova Science; 2009.
  • Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol. 2007;56: 1669–1674.
  • Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. BMC Microbiol. 2008;22: 232.
  • Collado MC, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol. 2009;62: 264–269.
  • De Palma G, Nadal I, Medina M, Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol. 2010;10: 63.
  • Sánchez E, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Intestinal Bacteroides species associated with coeliac disease. J Clin Pathol. 2010;63: 1105–1111.
  • Sánchez E, Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y. Reduced diversity and increased virulence-gene carriage in intestinal enterobacteria of coeliac children. BMC Gastroenterol. 2008;8: 50.
  • Schippa S, Iebba V, Barbato M, A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiol. 2010;10: 175.
  • Forsberg G, Fahlgren A, Hörstedt P, Hammarström S, Hernell O, Hammarström ML. Presence of bacteria and innate immunity of intestinal epithelium in childhood CD. Am J Gastroenterol. 2004;95: 894–904.
  • Ou G, Hedberg M, Hörstedt P, Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood CD. Am J Gastroenterol. 2009;104: 3058–3067.
  • Tjellström B, Stenhammar L, L. Högberg, K. Gut microflora associated characteristics in children with CD. Am J Gastroenterol. 2005;100: 2784–2788.
  • Tjellström B, Stenhammar Högberg L. Gut microflora associated characteristics in first-degree relatives of children with CD. Scand J Gastroenterol. 42: 2007;1204–1208.
  • Tjellström B, Stenhammar L, Högberg L, Screening-detected and symptomatic untreated celiac children show similar gut microflora-associated characteristics. Scand J Gastroenterol. 2010;45: 1059–1062.
  • Bertini I, Calabrò A, V. De Carli, The metabonomic signature of CD. J Proteome Res. 2009;8: 170–177.
  • Rubio-Tapia A, Barton SH, Rosenblatt JE, Murray JA. Prevalence of small intestine bacterial overgrowth diagnosed by quantitative culture of intestinal aspirate in celiac disease. J Clin Gastroenterol. 2009;43: 157–161.
  • Cinova J, De Palma G, Stepankova R, Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS One. 6: e16169, 2011.
  • Vecchi M, Torgano G, Tronconi S, Agape D, Ronchi G. Evidence of altered structural and secretory glycoconjugates in the jejunal mucosa of patients with gluten sensitive enteropathy and subtotal villous atrophy. Gut. 1989;30: 804–810.
  • Bry L, Falk PG, Midtvedt T, Gordon JI. A model of host-microbial interactions in an open mammalian ecosystem. Science 1996;273: 1380–1383.
  • Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol. 1995;39: 555–562.
  • Freitas M, Cayuela C, Antoine JM, Piller F, Sapin C, Trugnan G. A heat labile soluble factor from Bacteroides thetaiotaomicron VPI-5482 specifically increases the galactosylation pattern of HT29-MTX cells. Cell Microbiol. 2001;3: 289–300.
  • Freitas M, Axelsson LG, Cayuela C, Midtvedt T, Trugnan G. Microbial-host interactions specifically control the glycosylation pattern in intestinal mouse mucosa. Histochem Cell Biol. 2002;118: 149-161.
  • Bergstrom KS, Kissoon-Singh V, Gibson DL, Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 13: e1000902, 2010.
  • Wehkamp J, Chu H, Shen B, Paneth cell antimicrobial peptides: topographical distribution and quantification in human gastrointestinal tissues. FEBS Lett. 2006;580: 5344–5350.
  • Bevins CL, Nita H, Salzman NH, Ghosh D, Huttner KM. Human defensin-5 (HD-5) transgenic mice:paneth cell expression and protection from lethal Salmonella typhimurium infection. Gastroenterology. 2002;A169.
  • Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A. 2008;105: 20858–20863.
  • Salzman NH, Hung K, Haribhai D, Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010; 11: 76–83.
  • Wehkamp J, Stange EF. Paneth's disease. J Crohns Colitis. 2010;4: 532–531.
  • Zhao C, Wang I, Lehrer RI. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 1996;396: 319–322.
  • Fernandez-Jimenez N, Castellanos-Rubio A, Plaza-Izurieta L. Analysis of beta-defensin and Toll-like receptor gene copy number variation in CD. Hum Immunol. 2010;71: 833-836.
  • Pizzuti D, Bortolami M, Mazzon E, Transcriptional downregulation of tight junction protein ZO-1 in active coeliac disease is reversed after a gluten-free diet. Dig Liver Dis. 2004;36: 337–341.
  • Elli L, Roncoroni L, Doneda L, Imaging analysis of the gliadin direct effect on tight junctions in an in vitro three-dimensional Lovo cell line culture system. Toxicol In Vitro. 2011;25: 45–50.
  • Michelsen KS, Arditi M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr Opin Hematol. 2007;14: 48–54.
  • Szebeni B, Veres G, Dezsofi A, Increased mucosal expression of Toll-like receptor (TLR)2 and TLR4 in coeliac disease. J Pediatr Gastroenterol Nutr. 2007;45: 187–193.
  • Westerholm-Ormio M, Vaarala O, Tiittanen M, Savilahti E. Infiltration of Foxp3- and Toll-like receptor-4-positive cells in the intestines of children with food allergy. J Pediatr Gastroenterol Nutr. 50: 367–376, 2010.
  • Cseh Á, Vásárhelyi B, Szalay B, Immune phenotype of children with newly diagnosed and gluten-free diet-treated CD. Dig Dis Sci. 2011;56: 792–798.
  • Santin I, Castellanos-Rubio A, Hualde I, Castaño L, Vitoria JC, Bilbao JR. Toll-like receptor 4 (TLR4) gene polymorphisms in CD. Tissue Antigens. 2007;70: 495–498.
  • Thomas KE, Sapone A, Fasano A, Vogel SN. Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in CD. J Immunol. 2006;176: 2512–2521.
  • Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 2007;76: 447-480.
  • Zanoni G, Navone R, Lunardi C, In CD, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes. PLoS Med. 3: e358, 2006.
  • Medina M, De Palma G, Ribes-Koninckx C, Calabuig M, Sanz Y. Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients. J Inflamm (Lond). 2008;5: 19.
  • De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal advance: bifidobacteria and gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol. 2010;87: 765–778.
  • Ivarsson A, Hernell O, Nystrom L, Persson LA. Children born in the summer have increased risk for coeliac disease. J Epidemiol Community Health. 2003;57: 36-39.
  • Huber JP, Farrar JD. Regulation of effector and memory T-cell functions by type I interferon. Immunology. 2011; 132: 466–474.
  • Tlaskalová-Hogenová H, Stěpánková R, Kozáková H, The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8: 110–120.
  • D'Arienzo R, Maurano F, Lavermicocca P, Ricca E, Rossi M. Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine. 2009;48: 254–259.
  • D'Arienzo R, Maurano F, Luongo D, Adjuvant effect of Lactobacillus casei in a mouse model of gluten sensitivity. Immunol Lett. 2008;119: 78–83.
  • Laparra JM, Sanz Y. Bifidobacteria inhibit the inflammatory response induced by gliadins in intestinal epithelial cells via modifications of toxic peptide generation during digestion. J Cell Biochem. 2010;109: 801–807.
  • Lindfors K, Blomqvist T, Juuti-Uusitalo K, Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152: 552–558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.