62
Views
35
CrossRef citations to date
0
Altmetric
Original Article

Autoreactive T Cells in Multiple Sclerosis

, &
Pages 183-201 | Received 26 May 1992, Published online: 10 Jul 2009

References

  • Adams R. D., Sidman R. L. Introduction to Neuropathology. McGraw-Hill, New York 1968
  • Prineas J. W., Wright R. G. Macrophages, lymphocytes and plasma cells in the pervascular compartment in chronic multiple sclerosis. Lab. Invest 1978; 38: 409–421
  • Woodroofe M. N., Bellamy A. S., Feldmann M., Davison A. N., Cuzner M. L. Immunocytochemical characterization of the immune reaction in the central nervous system in multiple sclerosis. Possible role for microglia in lesion growth. J. Neurol. Sci 1986; 74: 135–152
  • Hofman F. M., von Hanwehr R. I., Dinarello C. A., Mizel S. B., Hinton D., Merrill J. E. Immunoregulatory molecules and IL-2 receptors identified in multiple sclerosis brain. J. Immunol 1986; 136: 3239–3245
  • Hofman F. M., Hinton D. R., Johson K., Merrill J. E. Tumor nerosis factor identified in multiple sclerosis brain. J. Exp. Med 1989; 170: 607–612
  • Sharief M. K., Hentges R. Association between tumor necrosis factor alpha and disease progression in patients with multiple sclerosis. N. Engl. J. Med 1991; 325: 467–472
  • Link H. Oligoclonal immunoglobulin G in multiple sclerosis brain. J. Neurol. Sci 1972; 16: 103–108
  • Wajgt A., Grony M. CSF Antibodies to myelin basic protein and to myelin-associated glycoprotein in multiple sclerosis: Evidence of the intrathecal production of antibodies. Acta Neurol. Scand 1983; 68: 337–343
  • Chiodi F., Sunqvist V A., Link H., et al. Viral IgM antibodies in serum and cerebrospinal fluid in patients with multiple sclerosis and controls. Acta Neurol. Scand 1987; 75: 201–208
  • Adams J. M., Imagawa D. T. Measles virus antibodies in multiple sclerosis. Proc. Soc. Exp. Bio. Med 1962; 3: 562–566
  • Salmi A., Reunanen M., Ilonen J., et al. Intrathecal antibody synthesis to virus antigens in multiple sclerosis. Clin. Exp. Immunol 1983; 52: 241–249
  • Zhang J. W., Chin Y., Henderikx R., Medaer R., Chou C. H., Raus J. C. M. Antibodies to myelin basic protein and measles virus in multiple sclerosis: precursor frequency analysis of the antibody producing B cells. Autoimmunity 1991; 11: 27–34
  • Jacobson S., Flerlage M. L., McFarland H. F. Impaired measles virus-specific cytotoxic T cell responses in multiple sclerosis. J. Exp. Med 1985; 163: 839–850
  • Sadnovick A. D., Baird P. A., Ward R. H. Updated risks for relatives. Am. J. Med. Genet 1988; 29: 533–541
  • Williams A., Eldridge R., McFarland H., Houff S., Krebs H., McFarlin D. Multiple sclerosis in twins. Neurology 1980; 30: 1130–1147
  • Ebers G. C., Bulman D. E., Sadovnick A. D. A Population based study of multiple sclerosis in twins. N. Engl. J. Med 1986; 315: 1638–1642
  • Opelz G., Terasaki P., Myers L., et al. The association of HLA antigens A3, B7 and Dw2 with 330 multiple sclerosis patients in the United States. Tissue Antigens 1977; 9: 54–58
  • Jersild C., Fog T., Hansen G. S., Thomsen M., Svejgaard A., Dupont B. Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. Lancet 1973; 2: 1221–1225
  • Tiwari J. L., Terasaki P. I. HLA-DR and disease associations. Prog. Clin. Biol. Res 1981; 58: 151–163
  • Olerup O., Hillert J., Fredrikson S., et al. Primarily chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities. Proc. Natl. Acad. Sci. USA 1989; 86: 7113–7117
  • Oksenberg J. R., Sherritt M., Begovich A. B., et al. T cell receptor V alpha and C alpha alleles associated with multiple sclerosis and myasthenia gravis. Proc. Natl. Acad. Sci. USA 1989; 86: 988–992
  • Seboun E., Robinson M. A., Doolittle T. H., Ciulla T. A., Kindt T. J., Hauser S. L. A susceptibility locus for multiple sclerosis is Linked to the T cell receptor beta chain complex. Cell 1989; 57: 1095–1100
  • Davis M. M., Bjorkman R. J. T cell antigen receptor genes and T cell recognition. Nature 1988; 334: 393–402
  • Brown J. H., Jardetzky T., Saper M. A., Samraoui B., Bjorkman P. J., Wiley D. C. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 1988; 332: 845–850
  • Biddison W. E., Rao P. E., Talle M. A., Goldstein G., Shaw S. Possible involvement of the T4 molecule in T cell recognition of class II HLA antigens. J. Exp. Med 1984; 159: 783–797
  • Stern L. J., Wiley D. C. The human class II MHC protein HLA-DR1 assembles as empty Ab heterodimers in the absence of antigen peptide. Cell 1992; 68: 465–477
  • Harding C. V., Unanue E. R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T cell stimulation. Nature 1990; 346: 574–576
  • Adorini L., Muller S., Cardineaux E., Lehmann P. V., Falcioni E., Nagy Z. A. In vivo competition between self peptides and foreign antigens in T cell activation. Nature 1988; 334: 623–625
  • Lees M. B., Brostoff S. W. Myelin 1984; 197–217
  • Hickey W. F., Kimura H. P. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988; 239: 290–292
  • Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T cell lines. Nature 1984; 307: 273–276
  • Fierz W., Endler B., Reske K., Wekerle H., Fontana A. Astrocytes as antigen-presenting cells. I. induction of la antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immunol 1985; 134: 3785–3793
  • Lee S. C., Raine C. S. Multiple sclerosis: oligodendrocytes in active lesions do not express class II major histocompatibility complex molecules. J. Neuroimmunol 1989; 25: 261–266
  • McCarron R. M., Kempski O., Spatz M., McFarlin D. E. Presentation of myelin basic protein by murine cerebral vascular endothelial cells. J. Immunol 1985; 143: 3100–3103
  • Panitch H. S., Hafler D. A., Johnson K. P. Antibodies to myelin basic protein in CSF in patients with multiple sclerosis. Prog. Multiple Sclerosis Res 1980; 98–105
  • Warren K. G., Catz I. A Myelin Basic Protein antibody cascade in purified IgG from CSF of multiple sclerosis patients. J. Neurol. Sci 1990; 96: 19–27
  • Cruz M., Olsson T., Ernerudh J., et al. Immunoblot detection of oligoclonal anti-myelin basic protein IgG antibodies in CSF in multiple sclerosis. Neurology 1987; 37: 1515–1519
  • Zhang J. W., Lambrechts J., Heyligen H., Vandenbark A. A., Raus J. C. M. Human B cell lines secreting IgM specific for myelin basic protein. J. Neuroimmunol 1989; 23: 249–256
  • Zhang J. W., Weber W., Borst J., Vandenbark A. A., Raus J. C. M. A Common epitope on human myelin basic protein and the human T lymphocytes CD3 molecule. J. Immunol 1989; 142: 3917–3922
  • Zhang J. W., Vandenbark A. A., Jacobs M. R., Offner H., Raus J. C. M. Murine monoclonal antibodies inhibit proliferation and cytotoxicity of MBP-specific T cell clones. J. Neuroimmunol 1989; 24: 87–94
  • Lisak R. P., Zweiman B. In vitro cell-mediated immunity of CSF lymphocytes to myelin basic protein in primary demyelinating diseases. N. Engl. J. Med 1977; 297: 850–853
  • Johnson D., Hafler D. A., Fallis R. J., et al. Cell-mediated immunity to myelin-associated glycoprotein, proteolipid protein and myelin basic protein in multiple sclerosis. J. Neuroimmunol 1977; 13: 99–108
  • Schleusener H. J., Wekerle H. Autoaggressive T lymphocyte lines recognizing the encephalitogenic region of MBP: in vitro selection from unprimed rat T lymphocyte population. J. Immunol 1985; 135: 3128–3133
  • Martenson R. E., Levine S., Sowniski R. The location of regions in guinea pig and bovine MBP which induce EAE in Lewis rats. J. Immunol 1975; 114: 592–595
  • McFarlin D. E., Blank S. E., Kibler R. F. EAE in the rat: response to encephalitogenic proteins and peptides. Science 1973; 179: 478–480
  • Vandenbark A. A., Hashim G. A., Celnik B., et al. Determinants of human MBP that induce encephalitogenic T cells in Lewis rats. J. Immunol 1989; 143: 3512–3516
  • Ho H. Z., Tiwari J. L., Haile R. W., Terasaki P. I., Morton N. E. HLA-linked and unlinked determinants of multiple sclerosis. Immunogenetics 1982; 15: 509–517
  • Gogolin K. J., Kolaga V. J., Baker L., Lisak R. P., Zmijewski C. M., Spielman R. S. Subtypes of HLA-DQ and DR defined by DQβ 1 and DRβ 1 RFLPs: allele frequencies in the general population and in insulin-dependent diabetes (IDDM) and multiple sclerosis patients. Ann. Hum. Genet 1989; 53: 327–338
  • Heard R. N., Cullen C., Middleton D., et al. An allelic cluster of DQ alpha restriction fragments is associated with multiple sclerosis: evidence that a second haplotype may influence disease susceptibility. Hum. Immunol 1989; 25: 111–123
  • Olerup O., Carlsson B., Wallin J., et al. Genomic HLA-typing by RFLP-analysis using DR beta and DQ beta cDNA probes reveals normal DR-DQ linkages in patients with multiple sclerosis. Tissue Antigens 1987; 30: 135–138
  • Spurkland A., Rnningen K. S., Vandvik B., Thorsby E., Vartdal F. HLA-DQA1 and HLA-DQB1 Genes may jointly determine susceptibility to develop multiple sclerosis. Hum. Immunol 1991; 30: 69–75
  • Ota K., Matsui M., Milford E. L., Mackin G. A., Werner H. L., Hafler D. A. T cell recognition of an immunodominant MBP epitope in multiple sclerosis. Nature 1990; 346: 183–187
  • Zhang J. W., Chou S. H. J., Hashim G. A., Medaer R., Raus J. C. M. Preferential peptide and HLA restriction of MBP specific T cell clones derived from MS patients. Cell Immunol 1990; 129: 189–198
  • Wucherpfennig K. W., Weiner H. L., Hafler D. A. T cell recognition of myelin basic protein. Immunology Today 1991; 12: 277–282
  • Pette M., Fujita K., Wilkinson D., et al. Myelin autoreactivity in multiple sclerosis: recognition of MBP in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc. Natl. Acad. Sci. USA 1990; 87: 7968–7972
  • Martin R., Howell M. D., Jaraquemada D., et al. A MBP peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J. Exp. Med 1991; 173: 19–24
  • Jaraquemada D., Martin R., Rosen Bronson S., Flerlage M., McFarland H. F., Long E. O. HLA-DR2a is the dominant restriction molecule for the cytotoxic T cell response to MBP in DR2Dw2 individuals. J. Immunol 1990; 145: 2880–2885
  • Chou Y. K., Vainiene M., Whitham R., et al. Response of human T lymphocyte lines to MBP: association of dominant epitopes with HLA class II restriction molecules. J. Neurosci. Res 1989; 23: 207–216
  • Zhang J. W., Medaer R., Chin Y., Hashim G. A., et al. Myelin basic protein specific T lymphocytes: precursor frequency, fine specificity and cytotoxicity. Ann. Neurol 1992, in press
  • Cohen J. A., Essayan D. M., Zweiman B., Lisak R. P. Limiting dilution analysis of antigen-reactive lymhpocytes isolated from the central nervous system of Lewis rat with EAE. Cell Immunol 1987; 108: 203–213
  • Burns F. R., Li X., Shen N., Offner H., Chou Y. K., Vandenbark A. A., Herber-Katz E. Both rat and mouse T cell receptors specific for the encephalitogenic determinant of MBP use similar V alpha and V beta chain genes even though the MHC and encephalitogenic determinants being recognized are different. J. Exp. Med 1989; 169: 27–39
  • Wucherpfennig K. W., Ota K., Endo N., Seidman J., Weiner H. L., Hafler D. A. Shared human T cell receptor V beta usage to immunodominant regions of MBP. Science 1990; 248: 1016–1019
  • Ben-Nun A., Liblau R. S., Cohen L., Lehmann D., Tournier-Lasserve E., Rosenzweig A., Zhang J. W., et al. Restricted T cell receptor V beta gene usage by MBP-specific T cell clones in multiple sclerosis: predominant genes vari in individuals. Proc. Natl. Acad. Sci. USA 1991; 88: 2466–2470
  • Kotzin B. L., Karuturi S., Chou Y. K., et al. Preferential T cell receptor beta chain variable gene use in MBP-reactive T cell clones from patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 1991; 88: 9161–9165
  • Hafler D. A., Duby A. D., Lee S. J., Benjamin D., Seidman J. G., Weiner H. L. Oligoclonal T Lymphocytes in the cerebrospinal fluid of patients with multiple sclerosis. J. Exp. Med 1988; 167: 1313–1322
  • Rotteveel F. T., Kokkelink I., van Walbeek H. K., Polman C. H., van Dongen J. J., Lucas C. L. Analysis of T cell receptor-gene rearrangement in T cells from the cerebrospinal fluid of patients with multiple sclerosis. J. Neuroimmunol 1987; 15: 243–249
  • Lee S. J., Wucherpfennig K. W., Brod S. A., Benjamin D., Weiner H. L., Hafler D. A. Common T cell receptor usage in oligoclonal T lymphocytes derived from the blood and cerebrospinal fluid of patients with multiple sclerosis. Ann. Neurol 1991; 29: 33–40
  • Oksenberg J. R., Stuart S., Begovich A. B., et al. Limited heterogeneity of rearranged T cell receptor V alpha transcripts in brains of multiple sclerosis patients. Nature 1990; 345: 344–346
  • Wucherpfennig K. W., Newcombe J., Keddy C., Cuzner L. M., Hafler D. A. T cell receptor V alpha beta repertoire and IL-1 gene expresion in multiple sclerosis plaques. J. Exp. Med, in press
  • Allegretta M., Nicklas J. A., Sriam S., Albertini R. J. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990; 247: 718–721
  • Fujinami R. S., Oldstone M. B. A. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230: 1043–1046
  • Jahnke U., Fischer E. H., Alvord E. C. Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 1985; 229: 282–284
  • Atkin G. J., Daly E. A., Sheahan B. J., et al. Multiple sclerosis and molecular mimicry. Neuropathol. App. Neurobiol 1990; 16: 179–180
  • Pullen A. M., Wade T., Marrack R., Kappler J. W. Identification of the region of T cell receptor beta chain that interacts with the self-superantigen Mls-1a. Cell 1990; 61: 1365–1374
  • Meuer S. C., Hussey R. E., Fabbi M., et al. An alternative pathway of T cell activation: a functional role for the 50Kd T11 sheep erythrocyte receptor protein. Cell 1984; 36: 897–906
  • Hunig T. G., Tiefenthaler G., Heyer sum Buschenfelde K. H., Meuer S. C. Alternative pathway activation of T cells by binding of CD2 to its cell surface ligand. Nature 1987; 326: 298–301
  • Brod S. A., Purvee M., Benjamin D., Hafler D. A. T-T interactions are mediated by adhesion molcules. Eur. J. Immunol 1990; 20: 2259–2268
  • Wekerle H., Linnington C., Lassmann H., Meyermann R. Cellular immune reactivity within the CNS. Trends Neurosci 1986; 9: 271–277
  • Hickey W. F., Hsu B. L., Kimura H. T lymphocyte entry into the central nervous system. J. Neurosci. Res 1991; 28: 254–260
  • Pober J. S., Gimbrone M. A., Jr., Lapierre L. A., et al. Overlapping patterns of activation of human endothelial cells by interleukine 1, tumor necrosis factor, and immune interferon. J. Immunol 1986; 137: 1893–1896
  • Mattiace L. A., Davis R., Dickson D. W. Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am. J. Pathol 1990; 136: 1101–1114
  • Hafler D. A., Weiner H. L. In vivo labeling of blood T cells: rapid traffic into cerebrospinal fluid in multiple sclerosis. Ann. Neurol 1987; 22: 89–93
  • Brosnan C. E., Selmaj K., Raine C. S. Hypothesis: A role for tumor necrosis factor in immune-mediated demyelination and its relevance to multiple sclerosis. J. Neuroimmunol 1988; 18: 87–94
  • Raine C. S., Traugott U. The pathogenesis and therapy of multiple sclerosis is based on the requirement of a combination of myelin antigens for autoimmune demyelination. J. Neuroimmunol 1982; 2: 83–91
  • Siliciano R. E., Pratt J. C., Schmidt R. E., Ritz J., Reinherz E. L. Activation of cytolytic T lymphocyte and natural killer cell function through T11 sheep erythrocyte binding protein. Nature 1985; 317: 428–434
  • Ang S. L., Seidman J. G., Peterman G., et al. Functional Gamma Chain associated T cell Receptors on cerebrospinal fluid natural killer like T cell clones. J. Exp. Med 1987; 165: 1453–1458
  • Selmaj K., Brosnan C. E., Raine C. S. Colocalization of lymphocytes bearing gamma-delta T cell receptor and heat shock protein Hsp65+ oligodendrocytes in multiple sclerosis. Proc. Natl. Acad. Sci. USA 1991; 88: 6452–6456
  • Wucherpfennig K. W., Newcombe J., Kebby C., Cuzner C. M., Hafler D. A. Gamma-delta T cell receptor repertoire in acute demyelinating multiple sclerosis lesions. Proc. Natl. Acad. Sci. USA, in press
  • Zhang J. W., Schreurs M., Medaer R., Raus J. C. M. Regulation of myelin basic protein specific helper T cells in multiple sclerosis: generation of suppressor T cell lines. Cell Immunol, 139: 118–130
  • Ellerman K. E., Powers J. M., Brostoff S. W. Nature 1988; 331: 265–278
  • Antel J. P., Arnason B. G., Medof M. E. Suppressor cell function in multiple sclerosis: correlation with clinical disease activity. Ann. Neurol 1979; 5: 338–342
  • Chofflon M., Weiner H. L., Morimoto C., Hafler D. A. Loss of functional suppression is linked to decreases in circulating supressor inducer (CD4+2H4+)T cells in multiple sclerosis. Ann. Neurol 1988; 24: 185–191
  • Hafler D. A., Buchsbaum M., Weiner H. L. Decreased autologous mixed lymphocyte reaction in multiple sclerosis. J. Neuroimmunol 1985; 9: 339–347
  • Hirsch R. L. Defective autologous mixed lymphocyte reactivity in multiple sclerosis. Clin. Exp. Immunol 1986; 64: 107–113
  • Baxevanis C. N., Reclos G. J., Sfagos C., et al. Multiple sclerosis: I. monocyte stimulatory defect in mixed lymphocyte reaction associated with clinical disease activity. Clin. Exp. Immunol 1987; 67: 362–371
  • Kuntz M. M., Innes J. B., Wekler M. E. The cellular basis of the impaired autologous mixed lymphocyte reaction in patients with systemic lupus erythematosus. J. Clin. Exp. Immunol 1979; 63: 151–153
  • Miyasaka N. B., Sauvesie D. A., Pierce D. A., Daniels T. E., Talal N. Decreased autologous mixed lymphocyte reaction in Sjorgen's syndrome. J. Clin. Invest 1980; 66: 928–933
  • Morimoto C., Letvin N. L., Rudd C. E., et al. The role of the 2H4 molecule in the generation of suppressor function in conA-activated T cells. J. Immunol 1987; 137: 3247–3253
  • Hafler D. A., Weiner H. L.MS. A CNS and systemic autoimmune disease. Immunol. Today 1989; 10: 104–107
  • Rose L. M., Ginsberg A. H., Rothstein T. L., et al. Selective loss of a subset of T helper cells in active multiple sclerosis. Proc Natl. Acad. Sci. USA 1985; 82: 7389–7393
  • Morimoto C., Hafler D. A., Weiner H. L., et al. Selective loss of the suppressor-inducer T cell subset in progressive multiple sclerosis. Analysis with anti-2H4 monoclonal antibody. N. Engl. J. Med 1987; 316: 67–72
  • Morimoto C., Steinberg A. D., Letvin L. N., et al. A defect of immunoregulatory T cell subsets in SLE patients demonstrated with anti-2H4 antibody. J. Clin. Invest 1987; 79: 762–768
  • Zaffaroni M., Rossini S., Palma R., Ghezzi A., et al. Loss of suppressor-inducer T cells in chronic-progressive multiple sclerosis: preliminary results. Adv. Exp. Med. Biol 1989; 257: 293–295
  • Baxevanis C. N., Reclos G. J., Arsenis P., et al. Decreased expression of HLA-DR antigens on monocytes in patients with multiple sclerosis. J. Neuroimmunol 1989; 22: 177–183
  • Baxevanis C. N., Reclos G. J., Arsenis P., et al. Monocyte defect causes decreased autoMLR in multiple sclerosis. Adv. Exp. Med. Biol 1988; 237: 839–842
  • Hafler D. A., Chofflon M., Kurt Jones E., Weiner H. L. Interleukine-1 corrects the defective autologous mixed lymphocyte response in multiple sclerosis. Clin. Immunol. Immunopathol 1991; 58: 115–125
  • Hafler D. A., Fox D. A., Manning M. E., Schlossman S. E., Reinherz E. L., Weiner H. L. In vivo Activated T lymphocytes in the peripheral blood and cerebrospinal fluid. N. Engl. J. Med 1985; 312: 1405–1411
  • Chofflon M., Weiner H. L., Morimoto C., Hafler D. A. Decrease of suppressor inducer (CD4+2H4+) T cells in multiple sclerosis cerebrospinal fluid. Ann. Neurol 1989; 25: 494–499
  • Sobel R. A., Hafler D. A., Castro E. E., Morimoto C., Weiner H. L. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann. Neurol 1986; 19: 578–587
  • Hafler D. A., Weiner H. L. Immunotherapy of multiple sclerosis. Ann. Neurol 1988; 23: 211–222
  • Panitch H. S., Hirsch R. L., Schindler J., Johnson K. P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 1987; 37: 1097–102
  • Acha-Orbea H., Mitchell D. J., Timmermann L., et al. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 1988; 54: 263–273
  • Chou Y. K., Vandenbark A. A., Jones R. E., et al. Selection of encephalitogenic rat T lymphocyte clones recognizing an immunodominant epitope on myelin basic protein. J. Neurosci. Res 1989; 22: 181–187
  • Ben-Nun A., Wekerle H., Cohen I. R. Vaccination against autoimmune encephalomyelitis with T lymphocyte line cells reactive against myelin basic protein. Nature 1981; 292: 60–61
  • Vandenbark A. A., Hashim G. A., Offner H. Immunization with a synthetic T cell receptor V region peptide protects against experimental autoimmune encephalomyelitis. Nature 1989; 341: 541–544
  • Howell M. D., Winters S. T., Olee T., et al. Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science 1989; 246: 668–670
  • Miller A., Lider O., Roberts A. B., Sporn M. B., Weiner H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc. Natl. Acad. Sci. USA 1992; 89: 421–425
  • Miller A., Lider O., Weiner H. L. Antigen-driven bystander suppression after oral administration of antigens. J. Exp. Med 1991; 174: 791–798

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.