493
Views
37
CrossRef citations to date
0
Altmetric
Review Article

The complex role of DNA, histones and HMGB1 in the pathogenesis of SLE

Pages 487-493 | Received 06 Feb 2014, Accepted 03 May 2014, Published online: 11 Jun 2014

References

  • Tsokos, G. C. 2011. Systemic lupus erythematosus. N. Engl. J. Med. 365: 2110–2121
  • Tan, E. M. 1989. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv. Immunol. 44: 93–151
  • Harden, J. A. 1986. The lupus autoantigens and the pathogenesis of systemic lupus erythematosus. Arthritis Rheum. 29: 457–460
  • Ardoin, S. P. and D. S. Pisetsky. 2008. Developments in the scientific understanding of lupus. Arthritis Res. Ther. 10: 218. doi: 10.1186/ar2488
  • McCarty, G. A., J. R. Rice, M. L. Bembe, and D. S. Pisetsky. 1982. Independent expression of autoantibodies in systemic lupus erythematosus. J. Rheumatol. 9: 691–695
  • Pisetsky, D. S., A. C. Grammer, T. C. Ning, and P. E. Lipsky. 2011. Are autoantibodies the targets of B-cell-directed therapy? Nat. Rev. Rheumatol. 7: 551–556
  • Harley, J. B., and J. A. James. 1995. Autoepitopes in lupus. J. Lab. Clin. Med. 126: 506–516
  • McClain, M. T., L. D. Heinlen, G. J. Dennis, et al. 2005. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 11: 85–89
  • Desai, D. D., M. R. Krishnan, J. T. Swindle, and T. N. Marion. 1993. Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice. J. Immunol. 151: 1614–1626
  • Gilkeson, G. S., A. M. Pippen, and D. S. Pisetsky. 1995. Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J. Clin. Invest. 95: 1398–1402
  • Radic, M. Z., and M. Weigert. 1994. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu. Rev. Immunol. 12: 487–520
  • Luger, K., M. L. Dechassa, and D. J. Tremethick. 2012. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell. Biol. 13: 436–447
  • Zentner, G. E., and S. Henikoff. 2013. Regulation of nucleosome dynamics by histone modifications. Nat. Struct. Mol. Biol. 20: 259–266
  • Muller, S., J. Dieker, A. Tincani, and P. L. Meroni. 2008. Pathogenic anti-nucleosome antibodies. Lupus. 17: 431–436
  • Mortensen, E. S., and O. P. Rekvig. 2009. Nephritogenic potential of anti-DNA antibodies against necrotic nucleosomes. J. Am. Soc. Nephrol. 20: 696–704
  • Bizzaro, N., D. Villalta, D. Giavarina, and R. Tozzoli. 2012. Are anti-nucleosome antibodies a better diagnostic marker than anti-dsDNA antibodies for systemic lupus erythematosus? A systemic review and a study of metanalysis. Autoimmun. Rev. 12: 97–106
  • Holdenrieder, S., and P. Stieber. 2009. Clinical use of circulating nucleosomes. Crit. Rev. Clin. Lab. Sci. 46: 1–24
  • Pisetsky, D. S. 2014. The translocation of nuclear molecules during inflammation and cell death. Antioxid. Redox Signal. 20: 1117–25
  • Bell, D. A., B. Morrison, and P. Vanden Bygaart. 1990. Immunogenic DNA-related factors. Nucleosomes spontaneously released from normal murine lymphoid cells stimulate proliferation and immunoglobulin synthesis of normal mouse lymphocytes. J. Clin. Invest. 85: 1487–1496
  • Mohan, C., S. Adams, V. Stanik, and S. K. Datta. 1993. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177: 1367–1381
  • Lindau, D., V. Rönnefarth, A. Erbacher, H. -G. Rammensee, and P. Decker. 2011. Nucleosome-induced neutrophil activation occurs independently of TLR9 and endosomal acidification: implications for systemic lupus erythematosus. Eur. J. Immunol. 41: 669–681
  • Krieg, A. M. 2002. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20: 709–760
  • Barton, G. M., and J. C. Kagan. 2009. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9: 535–542
  • Pisetsky, D. S., and C. F. Reich. 2000. Inhibition of murine macrophage IL-12 production by natural and synthetic DNA. Clin. Immunol. 96: 198–204
  • Gursel, I., M. Gursel, H. Yamada, et al. 2003. Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation. J. Immunol. 171: 1393–1400
  • Chamilos, G., J. Gregorio, S. Meller, et al. 2012. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood. 120: 3699–3707
  • Kahlenberg, J. M., and M. J. Kaplan. 2013. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J. Immunol. 191: 4895–4901
  • Di Domizio, J., S. Dorta-Estremera, M. Gagea, et al. 2012. Nucleic acid-containing amyloid fibrils potently induce type I interfgeron and stimulate systemic autoimmunity. PNAS. 109: 14550–14555
  • Nagata, S., and K. Kawane. 2011. Autoinflammation by endogenous DNA. Adv. Immunol. 110: 139–161
  • Atianand, M. K., and K. A. Fitzgerald. 2013. Molecular basis of DNA recognition in the immune system. J. Immunol. 190: 1911–1918
  • Gehrke, N., C. Mertens, T. Zillinger, et al. 2013. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity. 39: 482–495
  • Jiang, W., and Pisetsky, D. S. 2008. The induction of HMGB1 release from RAW 264.7 cells by transfected DNA. Mol. Immunol. 45: 2038–2044
  • Huang, H., H. -W. Chen, J. Evankovich, et al. 2013. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J. Immunol. 191: 2665–2679
  • Huang, H., J. Evankovich, W. Yan, et al. 2011. Endogenous histones function as alarmins in sterile inflammatory liver injury through toll-like receptor 9 in mice. Hepatology. 54: 999–1008
  • Allam, R., C. R. Scherbaum, M. N. Darispudi, et al. 2012. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 23: 1375–1388
  • Yang, H., D. J. Antoine, U. Andersson, and K. J. Tracey. 2013. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J. Leukoc. Biol. 93: 1–9
  • Venereau E., M. Schiraldi, M. Uguccioni, and M. E. Bianchi. 2013. HMGB1 and leukocyte migration during trauma and sterile inflammation. Mol. Immunol. 55: 76–82
  • Štros, M. 2010. HMGB proteins: interactions with DNA and chromatin. Biochim. Biophys. Acta. 1799: 101–113
  • Thomas, J.O., and K. Stott. 2012. H1 and HMGB1: modulators of chromatin structure. Biochim. Soc. Trans. 40: 341–346
  • Wang, H., O. Bloom, M. Zhang, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 285: 248–251
  • Yang, H., P. Lundbäck, L. Ottosson, et al. 2012. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol. Med. 18: 250–259
  • Venereau, E., M. Casalgrandi, M. Schiraldi, et al. 2012. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 209: 1519–1528
  • Bonaldi, T. F. Talamo, P. Scaffidi, D, et al. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22: 5551–5560
  • Muñoz, L. E., K. Lauber, M. Schiller, et al. 2010. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol. 6: 280–289
  • Nagata, S., R. Hanayama, and K. Kawane. 2010. Autoimmunity and the clearance of dead cells. Cell. 140: 619–630
  • Shao, W. H., and P. L. Cohen. 2011. Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis Res. Ther. 13: 202. doi: 10.1186/ar3206
  • Poon, I. K. H., M. D. Hulett, and C. R. Parish. 2010. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ. 17: 381–397
  • Scaffidi, P., T. Misteli, and M. E. Bianchi. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 18: 191–195
  • Rovere-Querini, P., A. Capobianco, P. Scaffidi, et al. 2004. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO J. 5: 1–6
  • Kazama, H., J. -E Ricci, J. M. Herndon, et al. 2008. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 29: 21–32
  • Urbonaviciute, V., S. Meister, B. G. Fürnrohr, et al. 2009. Oxidation of the alarmin high-mobility group box 1 protein (HMGB1) during apoptosis. Autoimmunity. 42: 305–307
  • Galluzzi, L., I. Vitale, J. M. Abrams, et al. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19: 107–120
  • Brinkmann, V., and A. Zychlinsky. 2012. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell. Biol. 198: 773–783
  • Miao, E. A., J. V. Rajan, and A. Aderem. 2011. Caspase-1-induced pyroptotic cell death. Immunol. Rev. 243: 206–214
  • Nyström, S., D. J. Antoine, P. Lundbäck, et al. 2013. TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis. EMBO J. 32: 86–99
  • Wang, Q., R. Imamura, K. Motani, et al. 2013. Pyroptotic cells externalize eat-me and release find-me signals and are efficiently engulfed by macrophages. Int. Immunol. 25: 363–372
  • Leffler, J., M. Martin, B. Gullstrand, et al. 2012. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188: 3522–3531
  • Farrara, C., and Fadeel, B. 2013. Macrophage clearance of neutrophil extracellular traps is a silent process. J. Immunol. 191: 2647–2656
  • Urbonaviciute, V., B. G. Fürnrohr, S. Meister, et al. 2008. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 205: 3007–3018
  • Tian, J., A. M. Avalos, S. -Y. Mao, et al. 2007. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8: 487–496
  • Bianchi, M. E. 2009. HMGB1 loves company. J. Leukoc. Biol. 86: 573–576
  • Wähämaa, H., H. Schierbeck, H. S. Hreggvidsdottir, et al. 2011. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts. Arthritis Res. Ther. 13: R136. doi: 10.1186/ar3450
  • Pisetsky, D. 2011. Cell death in the pathogenesis of immune-mediated diseases: the role of HMGB1 and DAMP-PAMP complexes. Swiss Med. Wkly. 141: w13256. doi: 10.4414/smw.2011.13256
  • Koffler, D., V. Agnello, R. Thoburn, and H. G. Kunkel. 1971. Systemic lupus erythematosus: prototype of immune complex nephritis in man. J. Exp. Med. 134: 169–179
  • Shrivastav, M., and T. B. Niewold. 2013. Nucleic acid sensors and type I interferon production in systemic lupus erythematosus. Front. Immunol. 4: 319. doi: 10.3389/fimmu.2013.00319
  • Xu, J., X. Zhang, R. Pelayo, et al. 2009. Extracellular histones are major mediators of death in sepsis. Nat. Med. 15: 1318–1321
  • Pisetsky, D. S. 2012. Antinuclear antibodies in rheumatic disease: a proposal for a function-based classification. Scand. J. Immunol. 76: 223–228
  • Nakano, T., C. -L. Chen, and S. Goto. 2013. Nuclear antigens and auto/alloantibody responses: friend or foe in transplant immunology. Clin. Dev. Immunol. 2013: 267156. doi: 10.1155/2013/267156
  • Krishnan, M. R., C. Wang, and T. N. Marion. 2012. Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int. 82: 184–192
  • Pisetsky, D. S. 2011. Antinuclear antibodies in healthy people: the tip of autoimmunity’s iceberg? Arthritis Res. Ther. 13: 109. doi: 10.1186/ar3282

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.