539
Views
51
CrossRef citations to date
0
Altmetric
Review Article

The emerging role of circulating microRNAs as biomarkers in autoimmune diseases

, , &
Pages 419-429 | Received 28 Nov 2013, Accepted 25 May 2014, Published online: 23 Jun 2014

References

  • Lewis, J. E., S. M. Fu, and F. Gaskin. 2013. Autoimmunity, end organ damage, and the origin of autoantibodies and autoreactive T cells in systemic lupus erythematosus. Discov. Med. 15: 85–92
  • Finnegan, A., S. Ashaye, and K. M. Hamel. 2012. B effector cells in rheumatoid arthritis and experimental arthritis. Autoimmunity. 45:353–363
  • Chang, C. 2014. Unmet needs in the treatment of autoimmunity: from aspirin to stem cells. Autoimmun. Rev. 13: 331–346
  • Bartel, D. P. 2009. MicroRNAs: target recognition and regulatory functions. Cell. 136: 215–233
  • Ruan, K., X. Fang, and G. Ouyang. 2009. MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett. 285: 116–126
  • Miska, E. A. 2005. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev. 15: 563–568
  • Pauley, K. M., S. Cha, and E. K. Chan. 2009. MicroRNA in autoimmunity and autoimmune diseases. J. Autoimmun. 32: 189–194
  • Neilson, J. R., G. X. Zheng, C. B. Burge, and P. A. Sharp. 2007. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 21: 578–589
  • Wu, H., J. R. Neilson, P. Kumar, et al. 2007. miRNA profiling of naive, effector and memory CD8 T cells. PLoS One. 2: e1020
  • Muljo, S. A., K. M. Ansel, C. Kanellopoulou, et al. 2005. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202: 261–269
  • Koralov, S. B., S. A. Muljo, G. R. Galler, et al. 2008. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell. 132: 860–874
  • Iborra, M., F. Bernuzzi, P. Invernizzi, and S. Danese. 2012. MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun. Rev. 11: 305–314
  • Eis, P. S., W. Tam, L. Sun, et al. 2005. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 102: 3627–3632
  • Bluml, S., Bonelli, M., Niederreiter, B., et al. 2011. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63: 1281–1288
  • O'Connell, R. M., D. Kahn, W. S. Gibson, et al. 2010. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 33: 607–619
  • Zen, K., and C. Y. Zhang. 2012. Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med. Res. Rev. 32: 326–348
  • Weber, J. A., D. H. Baxter, S. Zhang, et al. 2010. The microRNA spectrum in 12 body fluids. Clin. Chem. 56: 1733–1741
  • Hanson, E. K., H. Lubenow, and J. Ballantyne. 2009. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem. 387: 303–314
  • Zubakov, D., A. W. Boersma, Y. Choi, et al. 2010. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int. J. Legal. Med. 124: 217–226
  • Weickmann, J. L., and D. G. Glitz. 1982. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J. Biol. Chem. 257: 8705–8710
  • Gibbings, D. J., C. Ciaudo, M. Erhardt, and O. Voinnet. 2009. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat. Cell. Biol. 11: 1143–1149
  • Valadi, H., K. Ekstrom, A. Bossios, et al. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell. Biol. 9: 654–659
  • Wang, K., S. Zhang, J. Weber, et al. 2010. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids. Res. 38: 7248–7259
  • Iguchi, H., N. Kosaka, and T. Ochiya. 2010. Secretory microRNAs as a versatile communication tool. Commun. Integr. Biol. 3: 478–481
  • Camussi, G., M. C. Deregibus, S. Bruno, et al. 2010. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78: 838–848
  • Muralidharan-Chari, V., J. W. Clancy, A. Sedgwick, and C. D'Souza-Schorey. 2010. Microvesicles: mediators of extracellular communication during cancer progression. J. Cell. Sci. 123: 1603–1611
  • Pigati, L., S. C. Yaddanapudi, R. Iyengar, et al. 2010. Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One. 5: e13515
  • Kosaka, N., H. Iguchi, Y. Yoshioka, et al. 2010. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285: 17442–17452
  • Fichtlscherer, S., A. M. Zeiher, and S. Dimmeler. 2011. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler. Thromb. Vasc. Biol. 31: 2383–2390
  • Arroyo, J. D., J. R. Chevillet, E. M. Kroh, et al. 2011. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. U. S. A. 108: 5003–5008
  • Chen, X., Y. Ba, L. Ma, et al. 2008. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18: 997–1006
  • Gilad, S., E. Meiri, Y. Yogev, et al. 2008. Serum microRNAs are promising novel biomarkers. PLoS One. 3: e3148
  • Lawrie, C. H., S. Gal, H. M. Dunlop, et al. 2008. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141: 672–675
  • Mitchell, P. S., R. K. Parkin, E. M. Kroh, et al. 2008. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105: 10513–10518
  • Reid, G., M. B. Kirschner, and N. van Zandwijk. 2011. Circulating microRNAs: association with disease and potential use as biomarkers. Crit. Rev. Oncol. Hematol. 80: 193–208
  • Steer, C. J., and S. Subramanian. 2012. Circulating microRNAs as biomarkers: a new frontier in diagnostics. Liver Transpl. 18: 265–269
  • Weiland, M., X. H. Gao, L. Zhou, and Q. S. Mi. 2012. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 9: 850–859
  • Zhao, H., J. Shen, L. Medico, et al. 2010. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One. 5: e13735
  • Lin, P. Y., and P. C. Yang. 2011. Circulating miRNA signature for early diagnosis of lung cancer. EMBO Mol Med. 3: 436–437
  • Xu, J., J. Zhao, G. Evan, et al. 2012. Circulating microRNAs: novel biomarkers for cardiovascular diseases. J. Mol. Med. (Berl). 90: 865–875
  • Zahm, A. M., M. Thayu, N. J. Hand, et al. 2011. Circulating microRNA is a biomarker of pediatric Crohn disease. J. Pediatr. Gastroenterol. Nutr. 53: 26–33
  • Cermelli, S., A. Ruggieri, J. A. Marrero, et al. 2011. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 6: e23937
  • Ajit, S. K. 2012. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel). 12: 3359–3369
  • Pan, Y., and A. H. Sawalha. 2009. Epigenetic regulation and the pathogenesis of systemic lupus erythematosus. Transl. Res. 153: 4–10
  • Te, J. L., I. M. Dozmorov, J. M. Guthridge, et al. 2010. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 5: e10344
  • Liu, A., and A. La Cava. 2014. Epigenetic dysregulation in systemic lupus erythematosus. Autoimmunity. 47: 215–219
  • Ma, X., and Q. Liu. 2013. MicroRNAs in the pathogenesis of systemic lupus erythematosus. Int. J. Rheum. Dis. 16: 115–121
  • Wang, G., L. S. Tam, E. K. Li, et al. 2010. Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J. Rheumatol. 37: 2516–2522
  • Wang, G., L. S. Tam, E. K. Li, et al. 2011. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus. 20: 493–500
  • Wang, H., W. Peng, X. Ouyang, et al. 2012. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl. Res. 160: 198–206
  • Zhao, S., Y. Wang, Y. Liang, et al. 2011. MicroRNA-126 regulates DNA methylation in CD4 + T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 63: 1376–1386
  • Carlsen, A. L., A. L. Schetter, C. T. Nielsen, et al. 2013. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 65: 1324–1334
  • Muller-Ladner, U., C. Ospelt, S. Gay, et al. 2007. Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res. Ther. 9: 223. doi: 10.1186/ar2337
  • Filkova, M., A. Jungel, R. E. Gay, and S. Gay. 2012. MicroRNAs in rheumatoid arthritis: potential role in diagnosis and therapy. BioDrugs. 26: 131–141
  • Pauley, K. M., M. Satoh, A. L. Chan, et al. 2008. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 10: R101. doi: 10.1186/ar2493
  • Niimoto, T., T.Nakasa, M. Ishikawa, et al. 2010. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskelet. Disord. 11: 209
  • Stanczyk, J., D. M. Pedrioli, F. Brentano, et al. 2008. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58: 1001–1009
  • Stanczyk, J., C. Ospelt, E. Karouzakis, et al. 2011. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 63: 373–381
  • Nakamachi, Y., S. Kawano, M. Takenokuchi, et al. 2009. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis. Rheum. 60: 1294–1304
  • Nakasa, T., H. Shibuya, Y. Nagata, et al. 2011. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 63: 1582–1590
  • Murata, K., H. Yoshitomi, S. Tanida, et al. 2010. Plasma and synovial fluid microRNAs as potential biomarkers of rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 12: R86. doi: 10.1186/ar3013
  • Murata, K., M. Furu, H. Yoshitomi, et al. 2013. Comprehensive microRNA analysis identifies miR-24 and miR-125a-5p as plasma biomarkers for rheumatoid arthritis. PLoS One. 8: e69118
  • Nakahara, J., M. Maeda, S. Aiso, and N. Suzuki. 2012. Current concepts in multiple sclerosis: autoimmunity versus oligodendrogliopathy. Clin. Rev. Allergy. Immunol. 42: 26–34
  • Slavin, A., L. Kelly-Modis, M. Labadia, et al. 2010. Pathogenic mechanisms and experimental models of multiple sclerosis. Autoimmunity. 43: 504–513
  • Page, W. F., T. M. Mack, J. F. Kurtzke, et al. 1995. Epidemiology of multiple sclerosis in US veterans. 6. Population ancestry and surname ethnicity as risk factors for multiple sclerosis. Neuroepidemiology. 14: 286–96
  • Thamilarasan, M., D. Koczan, M. Hecker, et al. 2012. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmun. Rev. 11: 174–179
  • Poser, C. M. 1994. The epidemiology of multiple sclerosis: a general overview. Ann. Neurol. 36(Suppl 2):S180–S193
  • Siegel, S. R., J. Mackenzie, G. Chaplin, et al. 2012. Circulating microRNAs involved in multiple sclerosis. Mol. Biol. Rep. 39: 6219–6225
  • Fenoglio, C., E. Ridolfi, C. Cantoni, et al. 2013. Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Mult. Scler. 19: 1938–1942
  • Søndergaard, H. B., D. Hesse, M. Krakauer, et al. 2013. Differential microRNA expression in blood in multiple sclerosis. Mult. Scler. 19: 1849–1857
  • Gandhi, R., B. Healy, T. Gholipour, et al. 2013. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann. Neurol. 73: 729–740
  • Monteleone, G., F. Pallone, T. T. MacDonald, et al. 2011. Psoriasis: from pathogenesis to novel therapeutic approaches. Clin. Sci. (Lond). 120: 1–11
  • Grayson, M. 2012. Psoriasis. Nature. 492: S49. doi: 10.1038/492S49a
  • Chua, R. A., and J. L. Arbiser. 2009. The role of angiogenesis in the pathogenesis of psoriasis. Autoimmunity. 42: 574–579
  • Ji, X., R. Takahashi, Y. Hiura, et al. 2009. Plasma miR-208 as a biomarker of myocardial injury. Clin. Chem. 55: 1944–1949
  • Ichihara, A., M. Jinnin, K. Yamane, et al. 2011. microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris. Br. J. Dermatol. 165: 1003–1010
  • Oyama, R., M. Jinnin, A. Kakimoto, et al. 2011. Circulating microRNA associated with TNF-alpha signaling pathway in patients with plaque psoriasis. J. Dermatol. Sci. 61: 209–211
  • Tokura, Y., T. Mori, and R. Hino. 2010. Psoriasis and other Th17-mediated skin diseases. J. UOEH. 32: 317–328
  • Ichihara, A., M. Jinnin, R. Oyama, et al. 2012. Increased serum levels of miR-1266 in patients with psoriasis vulgaris. Eur. J. Dermatol. 22: 68–71
  • Pivarcsi, A., F. Meisgen, N. Xu, et al. 2013. Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-alpha therapy. Br. J. Dermatol. 169: 563–570
  • Guo, S., W. Zhang, C. Wei, et al. 2013. Serum and skin levels of miR-369-3p in patients with psoriasis and their correlation with disease severity. Eur. J. Dermatol. 23: 608–613
  • Melgar, S., and F. Shanahan. 2010. Inflammatory bowel disease-from mechanisms to treatment strategies. Autoimmunity. 43: 463–477
  • Hisamatsu, T., T. Kanai, Y. Mikami, et al. 2013. Immune aspects of the pathogenesis of inflammatory bowel disease. Pharmacol. Ther. 137: 283–297
  • Paraskevi, A., G. Theodoropoulos, I. Papaconstantinou, et al. 2012. Circulating MicroRNA in inflammatory bowel disease. J. Crohns. Colitis. 6: 900–904
  • Chen, Y., Ge, W., Xu, L., et al. 2012. miR-200b is involved in intestinal fibrosis of Crohn's disease. Int. J. Mol. Med. 29: 601–606
  • Iborra M, F. Bernuzzi, C. Correale, et al. 2013. Identification of serum and tissue micro-RNA expression profiles in different stages of inflammatory bowel disease. Clin. Exp. Immunol. 173: 250–258
  • Pekow, J. R., and J. H. Kwon. 2012. MicroRNAs in inflammatory bowel disease. Inflamm. Bowel. Dis. 18: 187–193
  • Fasseu, M., X. Treton, C. Guichard, et al. 2010. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One. 5: e13160
  • Nakanuma, Y., and G. Ohta. 1979. Histometric and serial section observations of the intrahepatic bile ducts in primary biliary cirrhosis. Gastroenterology. 76: 1326–1332
  • Gatselis, N. K., K. Zachou, G. L. Norman, et al. 2013. Clinical significance of the fluctuation of primary biliary cirrhosis-related autoantibodies during the course of the disease. Autoimmunity. 46: 471–479
  • Hirschfield, G. M., X. Liu, C. Xu, et al. 2009. Primary biliary cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N. Engl. J. Med. 360: 2544–2555
  • Hirschfield, G. M., and P. Invernizzi. 2011. Progress in the genetics of primary biliary cirrhosis. Semin. Liver Dis. 31: 147–156
  • Gershwin, M. E., I. R. Mackay, A. Sturgess, and R. L. Coppel. 1987. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J. Immunol. 138: 3525–3531
  • Ninomiya, M., Y. Kondo, R. Funayama, et al. 2013. Distinct microRNAs expression profile in primary biliary cirrhosis and evaluation of miR 505-3p and miR197-3p as novel biomarkers. PLoS One. 8: e66086
  • Fett, N. 2013. Scleroderma: nomenclature, etiology, pathogenesis, prognosis, and treatments: facts and controversies. Clin. Dermatol. 31: 432–437
  • Sakkas, L. I. 2012. New developments in the pathogenesis of systemic sclerosis. Autoimmunity. 38: 113–116
  • Bhattacharyya, S., J. Wei, and J. Varga. 2012. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol. 8: 42–54
  • Zhu, H., H. Luo, and X. Zuo. 2013. MicroRNAs: their involvement in fibrosis pathogenesis and use as diagnostic biomarkers in scleroderma. Exp. Mol. Med. 45: e41. doi: 10.1038/emm.2013.71
  • Kawashita, Y., M. Jinnin, T. Makino, et al. 2011. Circulating miR-29a levels in patients with scleroderma spectrum disorder. J. Dermatol. Sci. 61: 67–69
  • Makino, K., M. Jinnin, I. Kajihara, et al. 2012. Circulating miR-142-3p levels in patients with systemic sclerosis. Clin. Exp. Dermatol. 37: 34–9
  • Sing, T., M. Jinnin, K. Yamane, et al. 2012. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford). 51: 1550–1556
  • Tanaka, S., A. Suto, K. Ikeda, et al. 2013. Alteration of circulating miRNAs in SSc: miR-30b regulates the expression of PDGF receptor beta. Rheumatology (Oxford). 52: 1963–1972
  • Hak, A. E., B. de Paepe, J. L. de Bleecker, et al. 2011. Dermatomyositis and polymyositis: new treatment targets on the horizon. Neth. J. Med. 69: 410–421
  • Eisenberg, I., A. Eran, I. Nishino, et al. 2007. Distinctive patterns of microRNA expression in primary muscular disorders. Proc. Natl. Acad. Sci. U. S. A. 104: 17016–17021
  • Shimada, S., M. Jinnin, A. Ogata, et al. 2013. Serum miR-21 levels in patients with dermatomyositis. Clin. Exp. Rheumatol. 31: 161–162
  • Oshikawa, Y., M. Jinnin, T. Makino, et al. 2013. Decreased miR-7 expression in the skin and sera of patients with dermatomyositis. Acta Derm. Venereol. 93: 273–276

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.