243
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Epigallocatechin gallate stimulates the neuroreactive salivary secretomotor system in autoimmune sialadenitis of MRL-Faslpr mice via activation of cAMP-dependent protein kinase A and inactivation of nuclear factor κB

, , &
Pages 379-388 | Received 09 Dec 2014, Accepted 07 Mar 2015, Published online: 27 Aug 2015

References

  • Ishikawa, Y., G. Cho, Z. Yuan, et al. 2006. Water channels and zymogen granles in salivary glands. J. Pharmacol. Sci. 100: 495–512
  • Proctor, G. B., and G. H. Carpenter. 2007. Regulation of salivary gland function by autonomic nerves. Autonom. Neurosci.: Basic Clinic. 133: 3–18
  • Jhon, D.-Y., H.-H. Lee, D. Park, et al. 1993. Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-β3. J. Biol. Chem. 268: 6654–6661
  • Harden, T. K., and J. Sondek. 2006. Regulation of phospholipase C isozymes by Ras superfamily GTPases. Annu. Rev. Pharmacol. Toxicol. 46: 355–379
  • Avellar, M. C. W., M. F. M. Lazari, and C. S. Porto. 2009. Expression and function of G-protein-coupled receptors in the male reproductive tract. Ann. Brazil. Acad. Sci. 81: 321–344
  • Siryk-Bathgate, A., S. Dabul, and A. Lymperopoulos. 2013. Current and future G protein-coupled receptor signaling targets for heart failure therapy. Drug Design Develop. Ther. 7: 1209–1222
  • Coronado, R., J. Morrissette, M. Sukhareva, et al. 1994. Structure and function of ryanodine receptors. Am. J. Physiol. Cell Physiol. 266: C1485–C1504
  • Matsuki, M., S. Hashimoto, M. Shimono, et al. 2005. Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J. Membrane Biol. 203: 119–126
  • Ishikawa, Y., T. Eguchi, M. T. Skowronski, et al. 1998. Acetylcholine acts on M3 muscarinic receptors and induces the translocation of aquaporin5 water channel via cytosolic Ca2+ elevation in rat parotid glands. Biochem. Biophys. Res. Commun. 245: 835–840
  • Gresz, V., T. H. Kwon, P. T. Hurley, et al. 2001. Identification and localization of aquaporin water channels in human salivary glands. Am. J. Physiol. Gastrointest. Liver Physiol. 281: G247–G254
  • Krane, C. M., J. E. Melvin, H-V. Nguyen, et al. 2001. Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J. Biol. Chem. 276: 23413–23420
  • Parvin, M. N., S. Kurabuchi, K. Murdiastuti, et al. 2005. Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner's gland of the rat duodenum. Am. Physyol. Gastrointest. Liver Physiol. 288: G1283–G1291
  • Asai, T., K. Maruyama, and H. Kusama. 2009. Salivation triggered by pilocarpine involves aquaporin-5 in normal rats but not in irradiated rats. Clin. Experim. Pharmacol. Physiol. 36: 531–538
  • Ishikawa, Y., M. T. Skowronski, and H. Ishida. 2000. Persistent increase in the amount of aquaporin-5 in the apical plasma membrane of rat parotid acinar cells induced by a muscarinic agonist SNI-2011. FEBS Lett. 477: 253–257
  • Ishikawa, Y., Z. Yuan, N. Inoue, et al. 2005. Identification of AQP5 in lipid rafts and its translocation to apical membranes by activation of M3 mAChRs in interlobular ducts of rat parotid gland. Am. J. Physiol. Cell Physiol. 289: C1303–C1311
  • Ishikawa, Y., M. T. Skowronski, N. Inoue, et al. 1999. α1-Adrenoceptor-induced trafficking of aquaporin-5 to the apical plasma membrane of rat parotid cells. Biochem. Biopys. Res. Commun. 265: 94–100
  • Manni, S., J. H. Mauban, C. W. Ward, et al. 2008. Phosphorylation of the cAMP-dependent protein kinase (PKA) regulation subunit modulates PKA–AKAP interaction, substrate phosphorylation, and calcium signaling in cardiac cells. J. Biol. Chem. 283: 24145–24154
  • Enns, L. C., C. Pettan-Brewer, and W. Ladiges. 2010. Protein kinase A is a target for aging and the aging heart. Aging 2: 238–243
  • Moorthy, B. S., Y. Gao, and G. S. Anand. 2011. Phosphodiesterases catalyze hydrolysis of cAMP-bound to regulatory subunit of protein kinase A and mediate signal termination. Mol. Cell. Proteomics 10: M110.002295
  • Gonzalez, G. A., and M. R. Montminy. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59: 675–680
  • Wang, W., and M. Zheng. 2011. Role of cAMP-PKA/CREB pathway in regulation of AQP5 production in rat nasal epithelium. Rhinology 49: 464–469
  • Yang, F., J. D. Kawadia, and A. G. Menon. 2003. Cyclic AMP regulates aquaporin 5 expression at both transcriptional and post-transcriptional levels through a protein kinase A pathway. J. Biol. Chem. 278: 32173–32180
  • Sidhaye, V., J. D. Hoffert, and L. S. King. 2005. cAMP has distinct acute and chronic effects on aquaporin-5 in lung epithelial cells. J. Biol. Chem. 280: 3590–3596
  • Chen, G., C. Yao, T. Hasegawa, et al. 2014. Effects of isoproterenol on aquaporin 5 levels in the parotid gland of mice in vivo. Am. J. Physiol. Endocrinol. Metab. 306: E100–E108
  • Steinfeld, S., E. Cogan, L. S. King, et al. 2001. Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjögren's syndrome patients. Lab. Invest. 81: 143–148
  • Tsubota, K., S. Hirai, L. S. King, et al. 2001. Defective cellular trafficking of lacrimal gland aquaporin-5 in Sjögren's syndrome. Lancet 357: 688–689
  • Enger, T. B., M. H. Aure, J. L. Jensen, et al. 2014. Calcium signaling and cell volume regulation are altered in Sjögren's syndrome. Acta Odont. Scand. 72: 549–556
  • Wang, D., F. Iwata, M. Muraguchi, et al. 2009. Correlation between salivary secretion and salivary AQP5 level in health and disease. J. Med. Invest. 56: 350–353
  • Kovacs, L., E. Feher, I. Bodonar, et al. 2008. Demonstration of autoantibody binding to muscarinic acetylcholine receptors in the salivary gland in primary Sjögren's syndrome. Clin. Immunol. 128: 269–276
  • He, J., J-P. Guo, Y. Ding, et al. 2011. Diagnostic significance of measuring antibodies to cyclic type 3 muscarinic acetylcholine receptor peptides in primary Sjögren's syndrome. Rheumatology 50: 879–884
  • Sumida, T., H. Tsuboi, M. Iizuka, et al. 2013. Anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome. Mod. Rheumatol. 23: 841–845
  • Jin, M., S.-M. Hwang, A. J. Davies, et al. 2004. Autoantibodies in primary Sjögren's syndrome patients induce internalization of muscarinic type 3 receptors. Biochem. Biophys. Acta 1822: 161–167
  • Li, J., Y.-M. Ha, N.-Y Kü, et al. 2004. Inhibitory effects of autoantibodies on the muscarinic receptors in Sjögren's syndrome. Lab. Invest. 84: 1430–1438
  • Lee, B. H., A. E. Gauna, G. Perez, et al. 2013. Autoantibodies against muscarinic type 3 receptor in Sjögren's syndrome inhibit aquaporin 5 trafficking. Plos One 8: e53113
  • Hoffmann, A., and D. Baltimore. 2006. Circuitry of nuclear factor κB signaling. Immunol. Rev. 210: 171–186
  • Sisto, M., S. Lisi, D. D. Lofrumento, et al. 2011. A failure of TNFAIP3 negative regulation maintains sustained NF-κB activation in Sjögren's syndrome. Histochem. Cell. Biol. 135: 615–625
  • Lisi, S., M. Sisto, D. D. Lofrumento, et al. 2012. Sjögren's syndrome autoantibodies provoke changes in gene expression profiles of inflammatory cytokines triggering a pathway involving TACE/NF-κB. Lab. Invest. 92: 615–624
  • Yao, C., N. Purwanti, M. R. Karabasil, et al. 2010. Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-κB and p-c-Jun/c-Fos. Am. J. Pathol. 177: 724–734
  • Krane, C. M., J. E. Towne, and A. G. Menon. 1999. Cloning and characterization of murine Aqp5: evidence for a conserved aquaporin gene cluster. Mamm. Genome 10: 498–505
  • Wang, W., and M. Zheng. 2011. Nuclear factor kappa B pathway down-regulates aquaporin 5 in the nasal mucosa of rats with allergic rhinitis. Eur. Arch. Otorhinolaryngol. 268: 73–81
  • Saito, K., S. Mori, F. Date, et al. 2014. Epigallocatechin gallate inhibits oxidative stress-induced DNA damage and apoptosis in MRL-Faslpr mice with autoimmune sialadenitis via upregulation of heme oxygenase-1 and Bcl-2. Autoimmunity 47: 13–22
  • Yang, E. S., M. J. Choi, J. H. Kim, et al. 2011. Combination of withaferin A and X-ray irradiation enhances apoptosis in U937 cells. Toxicol. In Vitro 25: 1803–1810
  • Takahashi, A., H. Inoue, K. Mishima, et al. 2015. Evaluation of the effects of quercetin on damaged salivary secretion. PloS One 10: e0116008
  • Persad, S., V. Elimban, J. Kaila, et al. 1997. Biphasic alterations in cardiac beta-adrenoceptor signal transduction mechanism due to oxyradicals. J. Pharmacol. Exp. Ther. 282: 1623–1631
  • Milala, J., M. Armengot, P. Banuls, et al. 2012. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br. J. Pharmacol. 166: 2243–2262
  • Humphries, K. M., C. Juliano, and S. S. Taylor. 2002. Regulation of cAMP-dependent protein kinase activity by glutathionylation. J. Biol. Chem. 277: 43505–43511
  • Tsai, K.-H., W.-J. Wang, C.-W. Lin, et al. 2012. NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose. J. Cell. Physiol. 227: 1347–1357
  • Seo, B. N., J. M. Ryu, S. P. Yun, et al. 2013. Delphinidin prevents hypoxia-induced mouse embryonic stem cell apoptosis through reduction of intracellular NF-κB reactive oxygen species-mediated activation of JNK and NF-κB, and AKT inhibition. Apoptosis 18: 811–824
  • Liu, C.-J., J.-F. Lo, C.-H. Kuo, et al. 2009. Akt mediates 17β-estradiol and/or estrogen receptor-α inhibition of LPS-induced tumor necrosis factor-α expression and myocardial cell apoptosis by suppressing the JNK1/2-NF-κB pathway. J. Cell. Mol. Med. 13: 3655–3667
  • Lee, C. S., Y. J. Kim, E. R. Jang, et al. 2009. Fluoxetine induces apoptosis in ovarian carcinoma cell line OVCAR-3 through reactive oxygen species-dependent activation of nuclear factor-κB. Basic Clin. Pharmacol. Toxicol. 106: 446–453
  • Li, Q., and I. M. Verma. 2002. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2: 725–734
  • Xiao, G., A. B. Rabson, W. Young, et al. 2006. Alternative pathways of NF-κB activation: a double-edged sword in health and disease. Cytokine Growth Factor Rev. 17: 281–293
  • Lee, S., M. Lee, and S.-H. Kim. 2008. Eupatilin inhibits H2O2-induced apoptotic cell death through inhibition of mitogen-activated protein kinases and nuclear factor-κB. Food Chem. Toxicol. 46: 2865–2870
  • Li, H.-L., Y. Huang, C.-N. Zhang, et al. 2006. Epigallocatechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Rad. Biol. 40: 1756–1775
  • Chiao, P. J., S. Miyamoto, and I. M. Verma. 1994. Autoregulation of IκBα activity. Proc. Natl. Acad. Sci. USA. 91: 28–32
  • Giles, R. H., D. J. M. Peters, and M. H. Breuning. 1998. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14: 178–183
  • Zhong, H., M. J. May, E. Jimi, et al. 2002. The phosphorylation status of nuclear NF-κB determines its association with CBP/p300 or HDAC-1. Mol. Cell 9: 625–636
  • Chen, L.-F., Y. Mu, and W. C. Greene. 2002. Acetylation of RelA at discrete sites regulates distinct nuclear function of NF-κB. EMBO J. 21: 6539–6548
  • Ogryzko, V. V., L. Schiltz, V. Russanova, et al. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferasees. Cell 87: 953–959
  • Lee, D. Y., J. J. Hayes, D. Pruss, et al. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72: 73–84
  • Tse, C., T. Sera, A. P. Wolfe, et al. 1998. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18: 4629–4638
  • Ashburner, B. P., S. D. Westerheide, and A. S. Baldwin, Jr 2001. The p65 (RelA) submit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol. 21: 7065–7077
  • Liu, Y., P. W. Smith, and D. R. Jones. 2006. Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing HDAC-1 mediated deacetylation of RelA/p65 and promoting apoptosis. Mol. Cell. Biol. 26: 8683–8696
  • Gilmour P. S., I. Rahman, K. Donaldson, et al. 2003. Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am. J. Physiol. Lung Cell Physiol. 284: L533–L540
  • Ortiz, J. L., J. Milara, J. Lluch, et al. 2013. Phosphodiesterase-4 inhibition improves corticosteroid insensitivity in pulmonary endothelial cells under oxidative stress. Allergy 68: 64–73
  • Syed, D. N., F. Afaq, M-H. Kweon, et al. 2007. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-κB activation in normal human bronchial epithelial cells. Oncogene 26: 673–682
  • Valenti, D., D. D. Rasmo, A. Signorile, et al. 2013. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down's syndrome. Bichem. Biophys. Acta 1832: 542–552
  • Lin, X., J.-X. Song, P.-C. Shaw, et al. 2011. An autoimmunized mouse model recapitulates key features in the pathogenesis of Sjögren's syndrome. Int. Immunol. 23: 613–624
  • Nakamura, M., T. Saga, K. Watanabe, et al. 2013. An immunohistochemistry-based on aquaporin (AQP)-1, 3, 4, 5 and 8 in the parotid glands, submandibular glands and sublingual glands of Sjögren's syndrome mouse models chronically administered cevimeline. Kurume Med. J. 60: 7–19
  • Ma, T., Y. Song, A. Gillespie, et al. 1999. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J. Biol. Chem. 274: 20071–20074
  • Pan, Y., F. Iwata, D. Wang, et al. 2009. Identification of aquaporin-5 and lipid rafts in human resting saliva and their release into cevimeline-stimulated saliva. Biochem. Biophys. Acta 1790: 49–56
  • Soejima, K., H. Nakamura, M. Tamai, et al. 2007. Activation of MKK4 (SEK1), JNK, and c-Jun in labial salivary infiltrating T cells in patients with Sjögren's syndrome. Rheumatol. Int. 27: 329–333
  • Sisto, M., S. Lisi, D. D. Domenico, et al. 2013. Salivary gland expression level of IκBα regulatory protein in Sjögren's syndrome. J. Mol. Hist. 44: 447–454
  • Shenkar, R., H.-K. Yum, J. Arcaroli, et al. 2001. Interaction between CBP, NF-κB, and CREB in the lungs after hemorrhage and endotoxemia. Am. J. Physiol. Lung Cell Mol. Physiol. 281: L418–L426
  • Kwok, R. P. S., J. R. Lundblad, J. C. Chrivia, et al. 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370: 223–226
  • Delgado, M., and D. Ganea. 2001. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit nuclear factor-κB-dependent gene activation at multiple levels in the human monocytic cell line THP-1. J. Biol. Chem. 276: 369–380
  • Choi, K.-C., M. G. Jung, Y.-H. Lee, et al. 2009. Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res. 69: 583–592
  • Wang, L., Y. Tang, P. A. Cole, et al. 2008. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr. Opin. Struc. Biol. 18: 741–747
  • Sun, J. J., H. J. Kim, H. G. Seo, et al. 2008. YS 49, 1-(α-naphtylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, regulates angiotensin II-stimulated ROS production, JNK phosphorylation and vascular smooth muscle cell proliferation via the induction of heme oxygenase-1. Life Sci. 82: 600–607
  • Seldon, M. P., G. Silva, N. Pejanovic, et al. 2007. Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-κB RelA phosphorylation at serine 276. J. Immunol. 179: 7840–7851
  • Kim, H. J., K. S. Yum, J.-H. Sung, et al. 2004. Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores. N-S Arch. Pharmacol. 369: 260–267
  • Feng, W., G. Cherednichenko, C. W. Ward, et al. 2010. Green tea catechins are potent sensitizers of ryanodine receptor type1 (RyR1). Biochem. Pharmacol. 80: 512–521
  • Lee, B. S., S. Sessanna, S. G. laychock, et al. 2002. Expression and cellular localization of a modified type 1 ryanodine receptor and L-type channel proteins in non-muscle cells. J. Membrane Biol. 189: 181–190
  • Antos, C. A., N. Frey, S. O. Marx, et al. 2001. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ. Res. 89: 997–1004
  • Tanimura, A., A. Nezu, Y. Tojyo, et al. 1999. Isoproterenol potentiates α-adrenergic and muscarinic receptor-mediated Ca2 + response in rat parotid cells. Am. J. Physiol. Cell Physiol. 276: C1282–C1287
  • Bruce, J. I. E., T. J. Shuttleworth, D. R. Giovanucci, et al. 2002. Phosphorylation of inositol 1.4.5-triphosphate receptors in parotid acinar cells. J. Biol. Chem. 277: 1340–1348
  • Dawson, L. J., J. Stanbury, N. Venn, et al. 2006. Antimuscarinic antibodies in primary Sjögren's syndrome reversibly inhibit the mechanism of fluid secretion by human submandibular salivary acinar cells. Arth. Rheum. 54: 1165–1773
  • Hsu, S. D., D. P. Dickinson, H. Qin, et al. 2007. Green tea polyphenols reduce autoimmune symptoms in a murine model for human Sjögren's syndrome and protect hunam salivary acinar cells from TNF-α-induced cytotoxicity. Autoimmunity 40: 138–147
  • Cha, S., E. Singson, J. Cornelius, et al. 2006. Muscarinic acetylcholine type-3 receptor desensitization due to chronic exposure to Sjögren's syndrome-associated autoantibodies. J. Rheumatol. 33: 296–306
  • Leung, K. C. M., A. S. McMillan, M. C. M. Wang, et al. 2008. The efficacy of cevimeline hydrochloride in the treatment of xerostomia in Sjögren's syndrome in southern Chinese patients: a randomized double-blind, placebo-controlled crossover study. Clin. Immunol. 27: 429–436
  • Susa, T., N. Sawai, T. Aoki, et al. 2013. Effects of repeated administration of pilocarpine and isoproterenol on aquaporin-5 expression in rat salivary glands. Acta Histochem. Cytochem. 46: 187–197
  • Asmussen, S., M. Salter, D. S. Prough, et al. 2014. Isoproterenol increases vascular volume expansion and urinary output after a large crystalloid bolus in healthy volunteers. Shock 42: 407–414
  • Noaiseh, G., J. F. Baker, and F. B. Vivino. 2014. Comparison of discontinuation rates and side-effect profiles of pilocarpine and cevimeline for for xerostomia in primary Sjögren's syndrome. Clin. Exp. Rheumatol. 32: 575–577
  • Saleh, F., R. Raghupathy, S. Asfar, et al. 2014. Analysis of the effect of the active compound of green tea (EGCG) on the proliferation of peripheral blood mononuclear cells. BMC Complem. Altern. Med. 14: 322

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.