353
Views
12
CrossRef citations to date
0
Altmetric
Short Communication

Expansion of CD8+ cells in autoimmune hemolytic anemia

, , , , , , & show all
Pages 147-154 | Received 15 Jan 2015, Accepted 29 Dec 2015, Published online: 01 Feb 2016

References

  • Zeerleder, S. 2011. Autoimmune haemolytic anaemia – a practical guide to cope with a diagnostic and therapeutic challenge. Neth. J. Med. 69: 177–184
  • Leddy, J. P., J. L. Falany, G. R. Kissel, et al. 1993. Erythrocyte membrane proteins reactive with human (warm reacting) anti-red cell autoantibodies. J. Clint. Invest. 91: 1672–1680
  • Stern, M., A. S. Buser, A. Lohri, et al. 2007. Autoimmunity and malignancy in hematology – more than an association. Crit. Rev. Oncol. Hematol. 63: 100–110
  • Hoffman, P. C. 2009. Hematology. Am. Soc. Hematol. Educ. Program. 2009: 80–86
  • Gehrs, B. C., and R. C. Friedberg. 2002. Autoimmune hemolytic anemia. Am. J. Hematol. 69: 258–271
  • Garvey, B. 2008. Rituximab in the treatment of autoimmune haematological disorders. Br. J. Haematol. 141: 149–169
  • Michel, M. 2011. Classification and therapeutic approaches in autoimmune hemolytic anemia: an update. Expert Rev. Hematol. 4: 607–618
  • Tsvetaeva, N. V., O. F. Nikulina, E. V. Grecov, et al. 2006. Rituximab – a new opportunity to treat refractory autoimmune hemolytic anemia (AIHA). Probl. Hematol. 1: 82
  • Elson, C. J., and R. N. Barker. 2000. Helper T cells in antibody-mediated, organ-specific autoimmunity. Curr. Opin. Immunol. 12: 664–669
  • Hall, A. M., M. A. Vickers, R. N. Barker, and L. P. Erwig. 2009. Helper T cells point the way to specific immunotherapy for autoimmune disease. Cardiovasc. Hematol. Disord. Drug Targets. 9: 159–166
  • Fagiolo, E., and L. Abenante. 1996. Lymphocyte activation and cytokine production in autoimmune hemolytic anaemia (AIHA). Autoimmunity. 24: 147–156
  • Fagiolo, E., and C. Toriani-Terenzi. 2003. Mechanisms of immunological tolerance loss versus erythrocyte self-antigens and autoimmune hemolytic anemia. Autoimmunity. 36: 199–204. Review
  • Chen, S. Y., Y. Takeoka, A. A. Ansari, et al. 1996. The natural history of disease expression in CD4 and CD8 gene-deleted New Zealand black (NZB) mice. J. Immunol. 157: 2676–2684
  • Oliveira, G. G., P. R. Hutching, I. M. Roitt, and P. M. Lydyard, 1994. Production of erythrocyte autoantibodies in NZB mice is inhibited by CD4 antibodies. Clin. Exp. Immunol. 96: 297–302
  • Perry, F. E., R. N. Barker, G. Mazza, et al. 1996. Autoreactive T cell specificity in autoimmune hemolytic anemia of the NZB mouse. Eur. J. Immunol. 26: 136–141
  • Barker, R. N., and C. J. Elson, 1994. Multiple self epitopes on the Rhesus polypeptides stimulate immunologically ignorant human T cells in vitro. Eur. J. Immunol. 24: 1578–1582
  • Barker, R. N., A. M. Hall, G. R. Standen, et al. 1997. Identification of T-cell epitopes on the Rhesus polypeptides in autoimmune hemolytic anemia. Blood. 90: 2701–2715
  • Barker, R. N., C. R. Shen, G. Mazza, et al. 1997. T-cell subset in autoimmune haemolytic anemia. Soc. Trans. 25: 312S
  • Steinman, L. 2007. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13: 139–145
  • Hoyer, K. K., W. F. Kuswanto, E. Gallo, and A. K. Abbas. 2009. Distinct roles of helper T-cell subsets in a systemic autoimmune disease. Blood. 113: 389–395
  • Xu, L., T. Zhang, Z. Liu, et al. 2012. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp. Hematol. 40: 994–1004
  • Hall, A. M., F. J. Ward, M. A. Vickers, et al. 2002. Interleukin-10 mediated regulatory T-cell responses to epitopes on a human autoantigen. Blood. 100: 4529–4536
  • Mqadmi, A., X. Zheng, and K. Yazdanbakhsh. 2005. CD4+CD25+ regulatory T cell control induction of autoimmune hemolitic anemia. Blood. 105: 3746–3748
  • Ward, F. J., A. M. Hall, L. S. Cairns, et al. 2008. Clonal regulatory T cells specific for a red blood cell autoantigen in human autoimmune hemolytic anemia. Blood. 111: 680–687
  • Ahmad, E., T. Elgohary, and H. Ibrahim. 2011. Naturally occurring regulatory T cells and interleukins 10 and 12 in the pathogenesis of idiopathic warm autoimmune hemolytic anemia. J. Investig. Allergol. Clin. Immunol. 21: 297–304
  • Stephens, L. A., С. Mottet, D. Mason, F. Powrie. 2000. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity. Eur. J. Immunol. 31: 1247–1254
  • Suri-Payer, E., A. Z. Amar, A. M. Thornton, and E. M. Shevach. 1998. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160: 1212–1218
  • Willcox, A., S. J. Richardson, A. J. Bone, et al. 2009. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155: 173–181
  • Lucchinetti, C. F., B. F. Popescu, R. F. Bunyan, et al. 2011. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med. 365: 2188–2197
  • Huseby, E. S., D. Liggitt, T. Brabb, et al. 2001. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med. 194: 669–676
  • Anderson, A. C., R. Chandwaskar, D. H. Lee, et al. 2012. A transgenic model of central nervous system autoimmunity mediated by CD4+ and CD8+ T and B cells. J. Immunol. 188: 2084–2092
  • Reynolds, J., V. A. Norgan, U. Bhambra, et al. 2002. Anti-CD8 monoclonal antibody therapy is effective in the prevention and treatment of experimental autoimmune glomerulonephritis. J. Am. Nephrol. 13: 359–369
  • Zhang, G. X., C. G. Ma, B. G. Xiao, et al. 1995. Depletion of CD8+ T cells suppresses the development of experimental autoimmune myasthenia gravis in Lewis rats. Eur. J. Immunol. 25: 1191–1198
  • Raposo, B. R., P. Rodrigues-Santos, H. Carvalheiro, et al. 2010. Monoclonal anti-CD8 therapy induces disease amelioration in the K/BxN mouse model of spontaneous chronic poly-arthritis. Arthritis Rheum. 62: 2953–2962
  • Gravano, D. M., and K. K. Hoyer. 2013. Promotion and prevention of autoimmune disease by CD8+ T cells. J. Autoimmun. 45: 68–79
  • Coutelier, J. P., S. J. Johnston, El. Idrissi, et al. 1994. Involvement of CD4+ cells in lymphocytic choriomeningitis virus-induced autoimmune anaemia and hypergammaglobulinaemia. J. Autoimmun. 7: 589–599
  • Naysmith J. D., M. G. Ortega-Pierres, and C. Elson. 1981. Rat erythrocyte-induced anti-erytrocyte autoantibody production and control in normal mice. Immunol. Rev. 55: 55–87
  • Hoyer, K. K., K. Wolslegel, H. Dooms, and A. K. Abbas. 2007. Targeting T cell-specific costimulators and growth factors in a model of autoimmune hemolytic anemia. J. Immunol. 179: 2844–2850
  • Dongen, J. J., A. W. Langerak, M. Bruggemann, et al. 2003. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 17: 2257–2317
  • Boone, E., B. Verhaaf, and A. W. Langerak. 2013. PCR-based analysis of rearranged immunoglobulin or T-cell receptor genes by GeneScan analysis or heteroduplex analysis for clonality assessment in lymphoma diagnostics. Methods Mol. Biol. 971: 65–91
  • Sidorova, Ju. V., E. A. Nikitin, M. Peklo, et al. 2003. Experience in the use of PCR to identify T-cell clonality. Ther. Arch. 7: 48–52
  • Nikitin, E. A., Sidorova, Ju. V., Ryzhikova, N. V., et al. 2006. Identification of T-cell clonality by gamma-chain T-cell receptor: final data. Ther. Arch. 7: 52–57
  • Sidorova, Ju. V., T. V. Sorokina, B. V. Biderman, et al. 2011. Determination of minimal residual disease in patients with B-cell chronic lymphocytic leukemia by the patient-specific PCR. Clin. Lab. Diagnos. 12: 22–35
  • Clambey, E. T., J. W. Kappler, P. Marrack. 2007. CD8 T cell clonal expansions and aging: heterogeneous phenomenon with a common outcome. Exp Gerontol. 42: 407–411
  • Posnett, D. N., R. Sinha, S. Kabak, and C. Russo. 1994. Clonal populations of T cells in normal eldery humans: the T cell equivalent to “benign monoclonal gammapathy”. J. Exp. Med. 179: 609–618
  • D’Arena G., R. Guariglia, F. La Rocca, et al. 2013. Autoimmune cytopenias in chronic lymphocytic leukemia. Clin Dev Immunol. 2013: 730131
  • Moreno, C., K. Hodgson, G. Ferrer, et al. 2010. Autoimmune cytopenia in chronic lymphocytic leukemia: prevalence, clinical associations, and prognostic significance. Blood. 116: 4771–4776
  • Hamblin, T. J. 2006. Autoimmune complications of chronic lymphocytic leukemia. Semin. Oncol. 33: 230–239
  • Economopoulos, T., N. Stathakis, M. Constantinidou, et al. 1995. Cold agglutinin disease in non-Hodgkin’s lymphoma. Eur. J. Haematol. 55: 69–71
  • Grønbaek, K., F. D’Amore, and K. Schmidt. 1995. Autoimmune phenomena in non-Hodgkin’s lymphoma. Leuk. Lymphoma. 18: 311–316
  • Rose, M. G., and N. Berliner. 2004. T-cell large granular lymphocyte leukemia and related disorders. Oncologist. 29: 247–258
  • Hauswirth, A. W., C. Skrabs, C. Schützinger, et al. 2007. Autoimmune hemolytic anemias, Evans’ syndromes, and pure red cell aplasia in non-Hodgkin lymphomas. Leuk. Lymphoma. 48: 1139–1149
  • Sallah, S., G. Sigounas, P. Vos, et al. 2000. Autoimmune hemolytic anemia in patients with non-Hodgkin’s lymphoma: characteristics and significance. Ann. Oncol. 11: 1571–1577
  • Takeuchi, T., T. Abe, J. Koide, et al. 1984. Cellular mechanism of DNA-specific antibody synthesis by lymphocytes from systemic lupus erythematosus patients. Arthritis Rheum. 27: 766–773
  • Desai-Mehta, A., C. Mao, S. Rajagopalan, et al. 1995. Structure and specificity of T cell receptors expressed by potentially pathogenic anti-DNA autoantibody-inducing T cells in human lupus. J. Clin. Invest. 95: 531–541
  • Kolowos, W., U. S. Gaipl, R. E. Voll, et al. 2001. CD4 positive peripheral T cells from patients with systemic lupus erythematosus (SLE) are clonally expanded. Lupus. 10: 321–331
  • Kato, T., M. Kurokawa, H. Sasakawa, et al. 2000. Analysis of accumulated T cell clonotypes in patients with systemic lupus erythematosus. Arthritis Rheum. 43: 2712–2721
  • Jang, E., H. R. Kim, S. H. Cho, et al. 2006. Prevention of spontaneous arthritis by inhibiting homeostatic expansion of autoreactive CD4+T cells in the K/BxN mouse model. Arthritis Rheum. 54: 492–498
  • Kadowaki, K. M., H. Matsuno, H. Tsuji, and Tunru I. 1994. CD4+ T cells from collagen-induced arthritic mice are essential to transfer arthritis into severe combined immunodeficient mice. Clin. Exp. Immunol. 97: 212–218
  • Okada, Y., C. Terao, K. Ikari, et al. 2012. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat Genet. 44: 511–516
  • Scally, S. W., J. Petersen, S. C. Law, et al. 2013. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210: 2569–2582
  • Cope, A. P., H. Schulze-Koops, and M. Aringer. 2007. The central role of T cells in rheumatoid arthritis. Clin. Exp. Rheumatol. 25: S4–S11
  • Sempere-Ortells, J. M., V. Pérez-García, G. Marín-Alberca, et al. 2009. Quantification and phenotype of regulatory T cells in rheumatoid arthritis according to disease activity score-28. Autoimmunity. 42: 636–645

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.