119
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Pinacidil stimulates osteoblast function in osteoblastic MC3T3-E1 cells

, &
Pages 359-364 | Received 06 Dec 2012, Accepted 01 Feb 2013, Published online: 06 Mar 2013

References

  • Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA. High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of Osteoporotic Fractures Research Group. Lancet 1999;354:971–5
  • Nishiya Y, Sugimoto S. Effects of various antihypertensive drugs on the function of osteoblast. Biol Pharm Bull 2001;24:628–33
  • Ploug KB, Boni LJ, Baun M, et al. K(ATP) channel expression and pharmacological in vivo and in vitro studies of the K(ATP) channel blocker PNU-37883A in rat middle meningeal arteries. Br J Pharmacol 2008;154:72–81
  • Friedel HA, Brogden RN. Pinacidil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the treatment of hypertension. Drugs 1990;39:929–67
  • Jahangir A, Terzic A. KATP channel therapeutics at the bedside. J Mol Cell Cardiol 2005;39:99–112
  • Chen JY, Cheng KI, Tsai YL, et al. Potassium-channel openers KMUP-1 and pinacidil prevent subarachnoid hemorrhage-induced vasospasm by restoring the BKCa-channel activity. Shock 2012;38:203–12
  • Xu J, Li T, Yang G, Liu L. Pinacidil pretreatment improves vascular reactivity after shock through PKCα and PKCε in rats. J Cardiovasc Pharmacol 2012;59:514–22
  • Hanley PJ, Daut J. K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms. J Mol Cell Cardiol 2005;39:17–50
  • Yang L, Yu T. Prolonged donor heart preservation with pinacidil: the role of mitochondria and the mitochondrial adenosine triphosphate-sensitive potassium channel. J Thorac Cardiovasc Surg 2010;139:1057–63
  • James MD, Amanda MD, Michael VC. Signaling pathways in ischemic preconditioning. Heart Fail Rev 2007;12:181–8
  • Barbaric I, Jones, M, Buchner K, et al. Pinacidil enhances survival of cryopreserved human embryonic stem cells. Cryobiology 2011;63:298–305
  • Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun 2001;280:874–7
  • Sudo H, Kodama H, Amagai Y, et al. In vitro differentiation and calcification in new clonal osteogenic cell line derived from newborn mouse calvariae. J Cell Biol 1983;96:191–8
  • Quarles LD, Yohay DA, Lever LW, et al. Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of osteoblast development. J Bone Miner Res 1992;7:683–92
  • Tullberg-Reinert H, Jundt G. In situ measurement of collagen synthesis by human bone cells with a sirius red-based colorimetric microassay: effects of transforming growth factor beta2 and ascorbic acid 2-phosphate. Histochem Cell Biol 1999;112:271–6
  • Han YH, Park WH. Growth inhibition in antimycin A treated-lung cancer Calu-6 cells via inducing a G1 phase arrest and apoptosis. Lung Cancer 2009;65:150–60
  • Aulak KS, Miyagi M, Yan L, et al. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA 2001;98:12056–61
  • Sendur OF, Turan Y, Tastaban E, Serter M. Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 2009;76:514–18
  • Teitelbaum SL. Bone resorption by osteoclasts. Science 2000;289:1504–8
  • Kearns AE, Khosla S, Kostenuik P. RANKL and OPG regulation of bone remodeling in health and disease. Endocr Rev 2008;29:155–92
  • Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Mineral Res 2000;15:2–12
  • Dong L, Xia S, Gao F, et al. 3,3′-Diindolylmethane attenuates experimental arthritis and osteoclastogenesis. Biochem Pharmacol 2010;79:715–21
  • Lerner UH. New molecules in the tumor necrosis factor ligand and receptor superfamilies with importance for physiological and pathological bone resorption. CRC Crit Rev Oral Biol Med 2004;15:64–81
  • Han SY, Lee NK, Kim KH, et al. Transcriptional induction of cyclooxygenase-2 in osteoclast precursors is involved in RANKL-induced osteoclastogenesis. Blood 2005;106:1240–5
  • Kwan Tat S, Padrines M, The´oleyre S, et al. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004;15:49–60
  • Matsuo K, Irie N. Osteoclast–osteoblast communication. Arch Biochem Biophys 2008;473:201–9
  • Kim JH, Jin HM, Kim K, et al. The mechanism of osteoclast differentiation induced by IL-1. J Immunol 2009;183:1862–70
  • Ardeshirpour L, Dann P, Adams DJ, et al. Weaning triggers a decrease in receptor activator of nuclear factor-κB ligand expression, widespread osteoclast apoptosis, and rapid recovery of bone mass after lactation in mice. Endocrinology 2007;148:3875–86
  • Azuma Y, Kaji K, Katogi R, et al. Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts. J Biol Chem 2000;275:4858–64
  • Roggia C, Gao Y, Cenci S, et al. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci USA 2001;98:13960–5
  • Kotake S, Sato K, Kim KJ, et al. Interleukin-6 and soluble interleukin 6 receptors in the synovial fluids from rheumatoid arthritis patient are responsible for osteoclast-like cell formation. J Bone Miner Res 1996;11:88–95
  • Liu X, Miller MJS, Joshi MS, et al. Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. J Biol Chem 1998;273:18709–13
  • Clementi E, Brown GC, Foxwell N, Moncada S. On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci USA 1999;96:1559–62
  • Ghafourifar P, Colton CA. Compartmentalized nitrosation and nitration in mitochondria. Antioxid Redox Signal 2003;5:349–54
  • Poderoso JJ, Lisdero C, Schopfer F, et al. The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol. J Biol Chem 1999;274:37709–16
  • Cadenas E. Mitochondrial free radical production and cell signaling. Mol Aspects Med 2004;25:17–26
  • O’Rourke B, Ramza BM, Marbán E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science 1994;265:962–6
  • Hoppeler H, Vogt M, Weibel ER, Flück M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 2003;88:109–19
  • Kane GC, Liu XK, Yamada S, et al. Cardiac KATP channels in health and disease. J Mol Cell Cardiol 2005;38:937–43
  • Costa AD, Quinlan CL, Andrukhiv A, et al. The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol 2006;290:H406–15
  • Halestrap AP. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta 1989;973:355–82
  • Facundo HT, de Paula JG, Kowaltowski AJ. Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production. Free Radic Biol Med 2007;42:1039–48
  • Dzeja PP, Bast P, Ozcan C, et al. Targeting nucleotide-requiring enzymes: implications for diazoxideinduced cardioprotection. Am J Physiol Heart Circ Physiol 2003;284:H1048–56
  • Minners J, Lacerda L, Yellon DM, et al. Diazoxideinduced respiratory inhibition – a putative mitochondrial KATP channel independent mechanism of pharmacological preconditioning. Mol Cell Biochem 2007;294:11–18
  • Garlid KD, Paucek P. Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta 2003;1606:23–41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.