Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 22, 2010 - Issue 4
280
Views
64
CrossRef citations to date
0
Altmetric
Research Article

Acute pulmonary response of mice to multi-wall carbon nanotubes

, &
Pages 340-347 | Received 29 Jul 2009, Accepted 23 Sep 2009, Published online: 12 Jan 2010

References

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. 2009. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466.
  • Ajayan PM. 1999. Nanotubes from carbon. Chem. Rev 99:1787–1800.
  • Andrews R, Jacques D, Qian D, Rantell T. 2002. Multiwall carbon nanotubes: Synthesis and application. Acc. Chem. Res 35:1008–1107.
  • Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J. 1999. Continuous production of aligned carbon nanotubes: A step closer to commercial realization. Chem. Phys. Lett 303:467–474.
  • Atochina EN, Beers MF, Tomer Y, Scanlon ST, Russo SJ, Panettieri RA Jr, Haczku A. 2003. Attenuated allergic airway hyperresponsiveness in C57BL/6 mice is associated with enhanced surfactant protein (SP)-D production following allergic sensitization. Respir. Res 4:15.
  • Borchers MT, Wert SE, Leikauf GD. 1998. Acrolein-induced MUC5ac expression in rat airways. Am. J. Physiol 274:L573–L581.
  • Casey J, Kaplan J, Atochina-Vasserman EN, Gow A. J, Kadire H, Tomer Y, Fisher JH, Hawgood S, Savani RC, Beers MF. 2005. Alveolar surfactant protein D content modulates bleomycin-induced lung injury. Am. J. Respir. Crit. Care. Med 172:869–877.
  • Demou E, Peter P, Hellweg S. 2008. Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann. Occup. Hyg 52: 695–706.
  • Danahay H, Jackson AD. 2005. Epithelial mucus-hypersecretion and respiratory disease. Curr. Drug Targets Inflamm. Allergy 4:651–664.
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. 2006. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci 92:5–22.
  • Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, Fubini B. 2006. Reactivity of carbon nanotubes: Free radical generation or scavenging activity? Free Radic. Biol. Med 40:1227–1233.
  • Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Pinero E, Beguin F, Fonseca A, Nagy JB, Lison D, Fubini B. 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Physicochemical aspects. Chem. Res. Toxicol 21:1690–1697.
  • Fischer HC, Chan WC. 2007. Nanotoxicity: The growing need for in vivo study. Curr. Opin. Biotechnol 18:565–571.
  • Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC. 1986. Hydroxyl free radical adduct of deoxyguanosine: Sensitive detection and mechanisms of formation. Free Radic. Res. Commun 1:163–172.
  • Fubini B, Hubbard A. 2003. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med 34:1507–1516.
  • Gwinn MR, Vallyathan V. 2006. Nanoparticles: Health effects-pros and cons. Environ. Health Perspect 114:1818–1825.
  • Han SG, Andrews R, Gairola CG, Bhalla DK. 2008. Acute pulmonary effects of combined exposure to carbon nanotubes and ozone in mice. Inhal. Toxicol 20:391–398.
  • Henderson RF. 2005. Use of bronchoalveolar lavage to detect respiratory tract toxicity of inhaled material. Exp. Toxicol. Pathol 57(Suppl 1):155–159.
  • Hink HU, Santanam N, Dikalov S, McCann L, Nguyen AD, Parthasarathy S, Harrison DG, Fukai T. 2002. Peroxidase properties of extracellular superoxide dismutase: role of uric acid in modulating in vivo activity. Arterioscler. Thromb. Vasc. Biol 22:1402–1408.
  • Inoue K, Takano H, Yanagisawa R, Sakurai M, Abe S, Yoshino S, Yamaki K, Yoshikawa T. 2007. Effects of nanoparticles on lung physiology in the presence or absence of antigen. Int. J. Immunopathol. Pharmacol 20:737–744.
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, Shvedova AA. 2006. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol. Lett 165:88–100.
  • Kierstein S, Poulain FR, Cao Y, Grous M, Mathias R, Kierstein G, Beers MF, Salmon M, Panettieri RA Jr, Haczku A. 2006. Susceptibility to ozone-induced airway inflammation is associated with decreased levels of surfactant protein D. Respir. Res 7:85.
  • Kimura S, Yamauchi H, Hibino Y, Iwamoto M, Sera K, Ogino K. 2006. Evaluation of urinary 8-hydroxydeoxyguanine in healthy Japanese people. Basic Clin. Pharmacol. Toxicol 98:496–502.
  • Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KB, Madan T, Chakraborty T. 2006. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol. Immunol 43:1293–1315.
  • Klumpp C, Kostarelos K, Prato M, Bianco A. 2006. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta 1758:404–412.
  • Kunadian I, Andrews R, Qian D, Menguc MP. 2009. Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method. Carbon 47:384–395.
  • Lacerda L, Bianco A, Prato M, Kosterlos K. 2006. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev 58:1460–1470.
  • Lam CW, James JT, McCluskey R, Hunter RL. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci 77:126–134.
  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. 2006. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol 36:189–217.
  • Liu X, Guo L, Morris D, Kane AB, Hurt RH. 2008. Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon N Y 46:489–500.
  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT. 2005. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 5:1676–1684.
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. 2004. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health A 67:87–107.
  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. 2007. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci 100:203–214.
  • Muller J, Huaux F, Moreau N, Misson P, Heilier J. F, Delos M, Arras >M, Fonseca A, Nagy JB, Lison D. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol 207:221–231.
  • Muller J, Huaux F, Fonseca A, Nagy J.B, Moreau N, Delos M, Raymundo-Piñero E, Béguin F, Kirsch-Volders M, Fenoglio I, Fubini B, Lison D. 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Toxicological aspects. Chem. Res. Toxicol 21:1698–1705.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Oberdorster G, Oberdorster E, Oberdorster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect 113:823–839.
  • Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D, Hoover MD, Castranova V, Vallyathan V. 2008. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ. Health Perspect 116:1211–1217.
  • Pastva AM, Wright JR, Williams KL. 2007. Immunomodulatory roles of surfactant proteins A and D: Implications in lung disease. Proc. Am. Thorac. Soc 4:252–257.
  • Pulskamp K, Diabaté S, Krug HF. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett 168:58–74.
  • Rose MC, Voynow JA. 2006. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev 86:245–278.
  • Savani RC, Godinez RI, Godinez MH, Wentz E, Zaman A, Cui Z, Pooler PM, Guttentag SH, Beers MF, Gonzales LW, Ballard PL. 2001. Respiratory distress after intratracheal bleomycin: Selective deficiency of surfactant proteins B and C. Am. J. Physiol. Lung Cell Mol. Physiol 281:L685–696.
  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P. 2003. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66:1909–1926.
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku B. K, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P. 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell Mol. Physiol 289:L698–L708.
  • Shvedova AA, Kisin ER, Murray AR, Gorelik O, Arepalli S, Castranova V, Young SH, Gao F, Tyurina YY, Oury TD, Kagan VE. 2007. Vitamin E deficiency enhances pulmonary inflammatory responses and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol. Appl. Pharmacol 221:339–348.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Yin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE. 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am. J. Physiol. Lung Cell Mol. Physiol 295:L552–L565.
  • Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B, Castranova V. 2009. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacol. Ther 121:192–204.
  • Tabet L, Bussy C, Amara N, Setyan A, Grodet A, Rossi M. J, Pairon JC, Boczkowski J, Lanone S. 2009. Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health A 72:60–73.
  • Tasaka S, Amaya F, Hashimoto S, Ishizaka A. 2008. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxid. Redox. Signal 10:739–753.
  • Vittorio O, Raffa V, Cuschieri A. 2009. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine
  • Voynow JA, Gendler SJ, Rose MC. 2006. Regulation of mucin genes in chronic inflammatory airway diseases. Am. J. Respir. Cell Mol. Biol 34:661–665.
  • Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJ. 2007. Biological properties of carbon nanotubes. J. Nanosci. Nanotechnol 7:1284–1297.
  • Wesselkamper SC, Chen LC, Gordon T. 2001. Development of pulmonary tolerance in mice exposed to zinc oxide fumes. Toxicol. Sci 60:144–151.
  • Xu H, Bai J, Meng J, Hao W, Xu H, Cao J. M. 2009. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells. Nanotechnology 20:285102.
  • Ye SF, Wu YH, Hou ZQ, Zhang QQ. 2009. ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem. Biophys. Res. Commun 379:643–648.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.