249
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets

, , , , , , , , , , , & show all
Pages 480-485 | Received 23 May 2014, Accepted 30 Jun 2014, Published online: 07 Aug 2014

References

  • Jackson SP. The growing complexity of platelet aggregation. Blood 2007;109:5087–5095
  • Maxwell MJ, Dopheide SM, Turner SJ, Jackson SP. Shear induces a unique series of morphological changes in translocating platelets: Effects of morphology on translocation dynamics. Arterioscler Thromb Vasc Biol 2006;26:663–669
  • Zhang JN, Bergeron AL, Yu Q, Sun C, McBride L, Bray PF, Dong JF. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation. Thromb Haemost 2003;90:672–678
  • Zhang JN, Bergeron AL, Yu Q, Sun C, McIntire LV, López JA, Dong JF. Platelet aggregation and activation under complex patterns of shear stress. Thromb Haemost 2002;88:817–821
  • Clauser S, Cramer-Bordé E. Role of platelet electron microscopy in the diagnosis of platelet disorders. Semin Thromb Hemost 2009;35:213–223
  • Brunk U, Collins VP, Arro E. The fixation, dehydration, drying and coating of cultured cells of SEM. J Microsc 1981;123:121–131
  • Celi A, Merrill-Skoloff G, Gross P, Falati S, Sim DS, Flaumenhaft R, Furie BC, Furie B. Thrombus formation: Direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscopy. J Thromb Haemost 2003;1:60–68
  • Hermann M, Nussbaumer O, Knöfler R, Hengster P, Nussbaumer W, Streif W. Real-time live confocal fluorescence microscopy as a new tool for assessing platelet vitality. Transfus Med Hemother 2010;37:299–305
  • Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ. Atomic force microscopy of biological samples. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2:618–634
  • Fritz M, Radmacher M, Gaub HE. Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys J 1994;66:1328–1334
  • You HX, Lau JM, Zhang S, Yu L. Atomic force microscopy imaging of living cells: A preliminary study of the disruptive effect of the cantilever tip on cell morphology. Ultramicroscopy 2000;82:297–305
  • Fritz M, Radmacher M, Gaub HE. In vitro activation of human platelets triggered and probed by atomic force microscopy. Exp Cell Res 1993;205:187–190
  • Hansma PK, Drake B, Marti O, Gould SA, Prater CB. The scanning ion-conductance microscope. Science 1989;243:641–643
  • Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ. Scanning ion conductance microscopy of living cells. Biophys J 1997;73:653–658
  • Happel P, Thatenhorst D, Dietzel ID. Scanning ion conductance microscopy for studying biological samples. Sensors (Basel) 2012;12:14983–15008
  • Zhang Y, Gorelik J, Sanchez D, Shevchuk A, Lab M, Vodyanoy I, Klenerman D, Edwards C, Korchev Y. Scanning ion conductance microscopy reveals how a functional renal epithelial monolayer maintains its integrity. Kidney Int 2005;68:1071–1077
  • Gorelik J, Zhang Y, Sánchez D, Shevchuk A, Frolenkov G, Lab M, Klenerman D, Edwards C, Korchev Y. Aldosterone acts via an ATP autocrine/paracrine system: The Edelman ATP hypothesis revisited. Proc Natl Acad Sci USA 2005;102:15000–15005
  • Zhang Y, Sanchez D, Gorelik J, Klenerman D, Lab M, Edwards C, Korchev Y. Basolateral P2X4-like receptors regulate the extracellular ATP-stimulated epithelial Na+ channel activity in renal epithelia. Am J Physiol Renal Physiol 2007;292:F1734–F1740
  • Rheinlaender J, Geisse NA, Proksch R, Schäffer TE. Comparison of scanning ion conductance microscopy with atomic force microscopy for cell imaging. Langmuir 2011;27:697–704
  • Zhang S, Cho SJ, Busuttil K, Wang C, Besenbacher F, Dong M. Scanning ion conductance microscopy studies of amyloid fibrils at nanoscale. Nanoscale 2012;4:3105–3110
  • Ushiki T, Nakajima M, Choi M, Cho SJ, Iwata F. Scanning ion conductance microscopy for imaging biological samples in liquid: A comparative study with atomic force microscopy and scanning electron microscopy. Micron 2012;43:1390–1398
  • Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nature Methods 2009;6:279–281
  • Liu X, Yang X, Zhang B, Zahng X, Lu H, Zhang J, Zhang Y. High-resolution morphological identification and characterization of living neuroblastoma SK-N-SH cells by hopping probe ion conductance microscopy. Brain Res 2011;1386:35–40
  • Yang X, Liu X, Zhang X, Lu H, Zhang J, Zhang Y. Investigation of morphological and functional changes during neuronal differentiation of PC12 cells by combined Hopping Probe Ion Conductance Microscopy and patch-clamp technique. Ultramicroscopy 2011;111:1417–1422
  • Yang X, Liu X, Lu H, Zhang X, Ma L, Gao R, Zhang Y. Real-time investigation of acute toxicity of ZnO nanoparticles on human lung epithelia with Hopping Probe Ion Conductance Microscopy. Chem Res Toxicol 2012;25:297–304
  • Shevchuk AI, Frolenkov GI, Sánchez D, James PS, Freedman N, Lab MJ, Jones R, Klenerman D, Korchev YE. Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew Chem Int Ed Engl 2006;45(14):2212–2216
  • Zhang Y, Liu X, Liu L, Zaske AM, Zhou Z, Fu Y, Yang X, Conyers JL, Li M, Dong JF, Zhang J. Contact- and agonist-regulated microvesiculation of human platelets. Thromb Haemost 2013;110:331–339
  • Sivaraman B, Latour RA. The relationship between platelet adhesion on surfaces and the structure versus the amount of adsorbed fibrinogen. Biomaterials 2010;31:832–839
  • Salzman EW, Lindon J, McManama G, Ware JA. Role of fibrinogen in activation of platelets by artificial surfaces. Ann NY Acad Sci 1987;516:184--186
  • Ikeda M, Ariyoshi H, Kambayashi J, Sakon M, Kawasaki T, Monden M. Simultaneous digital imaging analysis of cytosolic calcium and morphological change in platelets activated by surface contact. J Cell Biochem 1996;61:292–300
  • Ando T, Uchihashi T, Kodera N. High-speed AFM and applications to biomolecular systems. Annu Rev Biophys 2013;42:393–414
  • Ando T, Uchihashi T, Kodera N, Yamamoto D, Taniguchi M, Miyagi A, Yamashita H. High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 2007;20(6):448–458
  • Ando T, Kodera N, Naito Y, Kinoshita T, Furuta K, Toyoshima YY. A high-speed atomic force microscope for studying biological macromolecules in action. Chemphyschem 2003;4:1196–1202
  • Mohammad SF, Chuang HY, Crowther PE, Mason RG. Interactions of poly (L-lysine) with human platelets. Correlation of binding with induction of platelet aggregation. Thromb Res 1979;15:781–791
  • Stenberg PE, Barrie RJ, Pestina TI, Steward SA, Arnold JT, Murti AK, Hutson NK, Jackson CW. Prolonged bleeding time with defective platelet filopodia formation in the Wistar Furthe rat. Blood 1998;91:1599–1608
  • Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2008;28:403–412

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.