625
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Three-dimensional models of cochlear implants: A review of their development and how they could support management and maintenance of cochlear implant performance

&
Pages 67-106 | Received 30 Nov 2015, Accepted 08 Mar 2016, Published online: 02 May 2016

References

  • Adunka O, Kiefer J. 2006. Impact of electrode insertion depth on intracochlear trauma. Otolaryngol Head Neck Surg. 135(3):374–382.
  • Albuquerque AAS, Rossato M, De Oliveira JAA, Hyppolito MA. 2009. Understanding the anatomy of ears from guinea pigs and rats and its use in basic otologic research. Braz. J. Otorhinolaryngol. 75(1):43–49.
  • Arnoldner C, Riss D, Kaider A, Mair A, Wagenblast J, Baumgartner W-D, Gstöttner W, Hamzavi J-S. 2008. The intensity-pitch relation revisited: monopolar versus bipolar cochlear stimulation. Laryngoscope. 118(9):1630–1636.
  • Black RC, Clark GM, Tong YC, Patrick JF. 1983. Current distributions in cochlear stimulation. Ann NY Acad Sci. 405:137–145.
  • Blamey P, Arndt P, Bergeron F, Bredberg G, Brimacombe J, Facer G, Larky J, LindstrA m B, Nedzelski J, Peterson A, et al. 1996. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiol Neuro-Otol. 1(5):293–306.
  • Boëx C, de Balthasar C, Maria-Izabel K, Pelizzone M. 2003. Electrical field interactions in different cochlear implant systems. J Acoust Soc Am. 114(4):2049–2057.
  • Bookstein FL. 1997. Shape and the information in medical images: a decade of the morphometric synthesis. Comput Vision Image Understanding. 66(2):97–118.
  • Briaire JJ, Frijns JHM. 2000a. 3D mesh generation to solve the electrical volume conduction problem in the implanted inner ear. Simul Pract Theory. 8(1–2):57–73.
  • Briaire JJ, Frijns JHM. 2000b. Field patterns in a 3D tapered spiral model of the electrically stimulated cochlea. Hear Res. 148(1–2):18–30.
  • Briaire JJ, Frijns JHM. 2005. Unraveling the electrically evoked compound action potential. Hear Res. 205(1–2):143–156.
  • Briaire JJ, Frijns JHM. 2006. The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear Res. 214(1–2):17–27.
  • Bruce IC, Irlicht LS, White MW, O’Leary SJ, Clark GM. 2000. Renewal-process approximation of a stochastic threshold model for electrical neural stimulation. J Comput Neurosci. 9(2):119–132.
  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Clark GM. 1999a. The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE Trans Biomed Eng. 46(12):1393–1404.
  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Dynes S, Javel E, Clark GM. 1999b. A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE Trans Biomed Eng. 46(6):617–629.
  • Cannon MWJ. 1976. Electrical impedances, current pathways, and voltage sources in the guinea pig cochlea. Syracuse (NY): Institute for Sensory Research, Syracuse University.
  • Ceresa M, Mangado N, Andrews RJ, Gonzalez Ballester MA. 2015. Computational models for predicting outcomes of neuroprosthesis implantation: the case of cochlear implants. Mol Neurobiol. 52(2):934–941.
  • Chaturvedi A, Mohan C, Mahajan SB, Kakkar V. 2006. Imaging of cochlear implants. Indian J Radiol Imaging. 16:385–392.
  • Choi CTM, Hsu CH. 2009. Conditions for generating virtual channels in cochlear prosthesis systems. Ann Biomed Eng. 37(3):614–624.
  • Choi CTM, Lai WD, Chen YB. 2005. Comparison of the electrical stimulation performance of four cochlear implant electrodes. IEEE Trans Magn. 41(5):1920–1923.
  • Choi CTM, Lai WD, Lee SS. 2006. A novel approach to compute the impedance matrix of a cochlear implant system incorporating an electrode-tissue interface based on finite element method. IEEE Trans Magn. 42(4):1375–1378.
  • Choi CTM, Wang SP. 2014. Modeling ECAP in cochlear implants using the FEM and equivalent circuits. IEEE Trans Magn. 50(2).
  • Cohen LT. 2009. Practical model description of peripheral neural excitation in cochlear implant recipients: 2. Spread of the effective stimulation field (ESF), from ECAP and FEA. Hear Res. 247(2):100–111.
  • Community TA-CI. 2008. Cochlear Implant Statistics [accessed 2015 Nov 12]. http://aslci.blogspot.co.za/2008/03/cochlear-implant-statistics.html.
  • Connor SE, Bell DJ, O’Gorman R, Fitzgerald-O’Connor A. 2009. CT and MR imaging cochlear distance measurements may predict cochlear implant length required for a 360 degrees insertion. AJNR. 30(7):1425–1430.
  • Dang K, Clerc M, Vandersteen C, Guevara N, Gnansia D. 2015. In situ validation of a parametric model of electrical field distribution in an implanted cochlea. International IEEE/EMBS Conference on Neural Engineering 2015 April 22-24; The Corum, Montpellier, France; NER; p. 667–670.
  • De Quesada S. 1995. Statistics and notes about cochlear implants as of 1995 [accessed 2015 Nov 12]. http://www.zak.co.il/d/deaf-info/old/ci-facts.
  • Disorders NIoDaOC. 2014. Cochlear Implants [accessed 2015 Nov 10]. http://www.nidcd.nih.gov/health/hearing/pages/coch.aspx.
  • Drennan WR, Oleson JJ, Gfeller K, Crosson J, Driscoll VD, Won JH, Anderson ES, Rubinstein JT. 2015. Clinical evaluation of music perception, appraisal and experience in cochlear implant users. Int J Audiol. 54(2):114–123.
  • Erixon E, Högstorp H, Wadin K, Rask-Andersen H. 2009. Variational anatomy of the human cochlea: implications for cochlear implantation. Otol Neurotol. 30(1):14–22.
  • Escudé B, James C, Deguine O, Cochard N, Eter E, Fraysse B. 2006. The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurotol. 11(Suppl. 1):27–33.
  • Finley CC, Holden TA, Holden LK, Whiting BR, Chole RA, Neely GJ, Hullar TE, Skinner MW. 2008. Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol Off Publ Am Otol Soc Am Neurotol Soc Eur Acad Otol Neurotol. 29(7):920–928.
  • Finley CC, Wilson BS, White MW. 1990. Models of neural responsiveness to electrical stimulation. In: Miller JM, Spelman FA, editors. Cochlear implants. New York (NY): Springer-Verlag Inc.; p. 55–96.
  • Fishman AJ. 2012. Imaging and anatomy for cochlear implants. Otolaryngol Clin North Am. 45(1):1–24.
  • Fredelake S, Hohmann V. 2012. Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation. Hear Res. 287(1–2):76–90.
  • Frijns JHM, Briaire JJ, Grote JJ. 2001. The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol Neurotol. 22(3):340–349.
  • Frijns JHM, Briaire JJ, Schoonhoven R. 2000a. Integrated use of volume conduction and neural models to simulate the response to cochlear implants. Simul Pract Theory. 8(1–2):75–97.
  • Frijns JHM, Briaire JJ, Schoonhoven R. 2000b. Integrated use of volume conduction and neural models to simulate the response to cochlear implants. Simul Pract Theory. 8:75–97.
  • Frijns JHM, de Snoo SL, Schoonhoven R. 1995. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res. 87(1–2):170–186.
  • Frijns JHM, de Snoo SL, Ten Kate JH. 1996. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear Res. 95(1–2):33–48.
  • Gantz BJ, Woodworth GG, Knutson JF, Abbas PJ, Tyler RS. 1993. Multivariate predictors of audiological success with multichannel cochlear implants. Ann Otol Rhinol Laryngol. 102(12):909–916.
  • Girzon G. 1987. Investigation of current flow in the inner ear during electrical stimulation of intracochlear electrodes [ Msc]. Cambridge (MA): Massachusetts Institute of Technology.
  • Govindasamy R. 2012. Modelling subject-specific electrically evoked auditory neural responses in the guinea pig [Masters dissertation]. [Pretoria]: University of Pretoria.
  • Greenwood D. 1990. A cochlear frequency-position function for several species – 29 years later. J Acoust Soc Am. 87:2592–2605.
  • Gstoettner W, Franz P, Hamzavi J, Plenk H Jr, Baumgartner W, Czerny C. 1999. Intracochlear position of cochlear implant electrodes. Acta Otolaryngol. 119(2):229–233.
  • Hanekom T. 2001. Three-dimensional spiraling finite element model of the electrically stimulated cochlea. Ear Hear. 22(4):300–315.
  • Hanekom T. 2005. Modelling encapsulation tissue around cochlear implant electrodes. Med Biol Eng Comput. 43(1):47–55.
  • Hartley DEH, Vongpaisal T, Xu J, Shepherd RK, King AJ, Isaiah A. 2010. Bilateral cochlear implantation in the ferret: a novel animal model for behavioral studies. J Neurosci Methods. 190(2):214–228.
  • Hartmann R, Klinke R. 1990. Response characteristics of nerve fibres to patterned electrical stimulation. In: Miller JM, Spelman FA, editors. Cochlear implants. Models of the electrically stimulated ear. New York (NY): Springer; p. 135–160.
  • Hassanzadeh S, Farhadi M, Daneshi A, Emamdjomeh H. 2002. The effects of age on auditory speech perception development in cochlear-implanted prelingually deaf children. Otolaryngol Head Neck Surg. 126(5):524–527.
  • Hatsushika SI, Shepherd RK, Tong YC, Clark GM, Funasaka S. 1990. Dimensions of the scala tympani in the human and cat with reference to cochlear implants. Ann Otol Rhinol Laryngol. 99:871–876.
  • Irving S, Trotter MI, Fallon JB, Millard RE, Shepherd RK, Wise AK. 2013. Cochlear implantation for chronic electrical stimulation in the mouse. Hear Res. 306:37–45.
  • Isaiah A, Vongpaisal T, King AJ, Hartley DEH. 2014. Multisensory training improves auditory spatial processing following bilateral cochlear implantation. J Neurosci. 34(33):11119–11130.
  • Jeschke M, Moser T. 2015. Considering optogenetic stimulation for cochlear implants. Hear Res. 322:224–234.
  • Johnstone BM, Johnstone JR, Pugsley ID. 1966. Membrane resistance in endolymphatic walls of the first turn of the guinea-pig cochlea. J Acoust Soc Am. 40(6):1398–1404.
  • Kalkman RK, Briaire JJ, Dekker DM, Frijns JHM. 2014a. Place pitch versus electrode location in a realistic computational model of the implanted human cochlea. Hear Res. 315C:10–24.
  • Kalkman RK, Briaire JJ, Dekker DMT, Frijns JHM. 2014b. Place pitch versus electrode location in a realistic computational model of the implanted human cochlea. Hear Res. 315:10–24.
  • Kalkman RK, Briaire JJ, Frijns JHM. 2015. Current focussing in cochlear implants: an analysis of neural recruitment in a computational model. Hear Res. 322:89–98.
  • Kang S, Chwodhury T, Moon IJ, Hong SH, Yang H, Won JH, Woo J. 2015. Effects of electrode position on spatiotemporal auditory nerve fiber responses: a 3D computational model study. Comput Math Methods Med. 1–13.
  • Kendi TK, Arikan OK, Koç C. 2004. Magnetic resonance imaging of cochlear modiolus: determination of mid-modiolar area and modiolar volume. J Laryngol Otol. 118(7):496–499.
  • Ketten DR. 1994. The role of temporal bone imaging in cochlear implants. Curr Opin Otolaryngol Head Neck Surg. 2(5):401–408.
  • Ketten DR, Skinner MW, Wang G, Vannier MW, Gates GA, Neely JG. 1998a. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol. 175(Suppl):1–16.
  • Ketten DR, Skinner MW, Wang G, Vannier MW, Gates GA, Neely JG. 1998b. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol Suppl. 175:1–16.
  • Kral A, Hartmann R, Mortazavi D, Klinke R. 1998. Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear Res. 121:11–28.
  • Krombach GA, van den Boom M, Di Martino E, Schmitz-Rode T, Westhofen M, Prescher A, Gunther RW, Wildberger JE. 2005. Computed tomography of the inner ear: size of anatomical structures in the normal temporal bone and in the temporal bone of patients with Meniere’s disease. Eur Radiol. 15(8):1505–1513.
  • Lane JI, Witte RJ, Driscoll CL, Shallop JK, Beatty CW, Primak AN. 2007. Scalar localization of the electrode array after cochlear implantation: clinical experience using 64-slice multidetector computed tomography. Otol Neurotol. 28(5):658–662.
  • Lau H, Ruys AJ, Carter P, Wang X, Li Q. 2011. Subject-specific modelling of electrical conduction in the body: a case study. J Biomimet Biomater Tissue Eng. 1314(10):45–53.
  • Le Breton A, Jegoux F, Pilet P, Godey B. 2015. Micro-CT scan, electron microscopy and optical microscopy study of insertional traumas of cochlear implants. Surg Radiol Anat. 37(7):815–823.
  • Lee CF, Li GJ, Wan SY, Lee WJ, Tzen KY, Chen CH, Song YL, Chou YF, Chen YS, Liu TC. 2010. Registration of micro-computed tomography and histological images of the guinea pig cochlea to construct an ear model using an iterative closest point algorithm. Ann Biomed Eng. 38(5):1719–1727.
  • Li PMMC, Wang H, Northrop C, Merchant SN, Nadol JB Jr. 2007. Anatomy of the round window and hook region of the cochlea with implications for cochlear implantation and other endocochlear surgical procedures. Otol Neurotol. 28(5):641–648.
  • Liu B, Gao XL, Yin HX, Luo SQ, Lu J. 2007. A detailed 3D model of the guinea pig cochlea. Brain Struct Funct. 212(2):223–230.
  • Maarefvand M, Marozeau J, Blamey PJ. 2013. A cochlear implant user with exceptional musical hearing ability. Int J Audiol. 52(6):424–432.
  • Malherbe TK, Hanekom T, Hanekom JJ. 2013. Can subject-specific single-fibre electrically evoked auditory brainstem response data be predicted from a model? Med Eng Phys. 35(7):926–936.
  • Malherbe TK, Hanekom T, Hanekom JJ. 2015a. Constructing a three-dimensional electrical model of a living cochlear implant user’s cochlea. Int J Numer Methods Biomed Eng. doi:10.1002/cnm.2751
  • Malherbe TK, Hanekom T, Hanekom JJ. 2015b. The effect of the resistive properties of bone on neural excitation and electric fields in cochlear implant models. Hear Res. 327:126–135.
  • Martinez-Monedero R, Niparko JK, Aygun N. 2011. Cochlear coiling pattern and orientation differences in cochlear implant candidates. Otol Neurotol. 32(7):1086–1093
  • Marx M, Risi F, Escude B, Durmo I, James C, Lauwers F, Deguine O, Fraysse B. 2014. Reliability of cone beam computed tomography in scalar localization of the electrode array: a radio histological study. Eur Arch Otorhinolaryngol. 271(4):673–679.
  • Melhem ER, Shakir H, Bakthavachalam S, MacDonald CB, Gira J, Caruthers SD, Jara H. 1998. Inner ear volumetric measurements using high-resolution 3D T2-weighted fast spin-echo MR imaging: initial experience in healthy subjects. Am J Neuroradiol. 19(10):1819–1822.
  • Micco AG, Richter CP. 2006. Electrical resistivity measurements in the mammalian cochlea after neural degeneration. Laryngoscope. 116(8):1334–1341.
  • Murugasu E, Hans P, Jackson A, Ramsden RT. 1999. The application of three-dimensional magnetic resonance imaging rendering of the inner ear in assessment for cochlear implantation. Am J Otol. 20(6):752–757.
  • Naganawa S, Ito T, Iwayama E, Fukatsu H, Ishigaki T, Nakashima T, Ichinose N. 1999. MR imaging of the cochlear modiolus: area measurement in healthy subjects and in patients with a large endolymphatic duct and sac. Radiology. 213(3):819–823.
  • National Institute on Deafness and Other Communication Disorders. 2014. Science capsule: cochlear implants [accessed 2015 Nov 10]. http://www.nidcd.nih.gov/about/plans/2012-2016/Pages/Science-Capsule-Cochlear-Implants.aspx.
  • Neri E, Caramella D, Cosottini M, Zampa V, Jackson A, Berrettini S, Sellari-Franceschini S, Bartolozzi C. 2000. High-resolution magnetic resonance and volume rendering of the labyrinth. Eur Radiol. 10(1):114–118.
  • Newbold C, Mergen S, Richardson R, Seligman P, Millard R, Cowan R, Shepherd R. 2014. Impedance changes in chronically implanted and stimulated cochlear implant electrodes. Cochlear Implants Int. 15(4):191–199.
  • Nicoletti M, Wirtz C, Hemmert W. 2013. Modeling sound localization with cochlear implants. The technology of binaural listening. New York (NY): Springer; p. 309–331.
  • Noble JH, Labadie RF, Majdani O, Dawant BM. 2011. Automatic segmentation of intracochlear anatomy in conventional CT. IEEE Trans Biomed Eng. 58(9):2625–2632.
  • Noble JH, Rutherford RB, Labadie RF, Majdani O, Dawant BM. 2010. Modeling and segmentation of intra-cochlear anatomy in conventional CT. Proc. SPIE 7623. doi:10.1117/12.844747.
  • Nussbaum D, LaPorta R, Hinger J. 2002. Cochlear implants and sign language. Sharing ideas; 2002 April 11–12. Washington, DC: Gallaudet University, Laurent Clerc National Deaf Education Center; p. 1–85.
  • O’Leary SJ, Black RC, Clark GM. 1985. Current distributions in the cat cochlea: a modeling and electrophysiological study. Hear Res. 18:273–281.
  • Pelliccia P, Venail F, Bonafe A, Makeieff M, Iannetti G, Bartolomeo M, Mondain M. 2014. Cochlea size variability and implications in clinical practice. Acta Otorhinolaryngol Ital. 34(1):42–49.
  • Peters BR, Wyss J, Manrique M. 2010. Worldwide trends in bilateral cochlear implantation. Laryngoscope. 120(5):17–44.
  • Pfingst BE, Donaldson JA, Miller JM, Spelman FA. 1979. Psychophysical evaluation of cochlear prostheses in a monkey model. Ann Otol Rhinol Laryngol. 88(5 I):613–625.
  • Poznyakovskiy AA, Zahnert T, Kalaidzidis Y, Schmidt R, Fischer B, Baumgart J, Yarin YM. 2008. The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data. Hear Res. 243(1–2):95–104.
  • Rattay F. 1986. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 33(10):974–977.
  • Rattay F, Leao RN, Felix H. 2001a. A model of the electrically excited human cochlear neuron. II. Influence of the three-dimensional cochlear structure on neural excitability. Hear Res. 153(1–2):64–79.
  • Rattay F, Lutter P, Felix H. 2001b. A model of the electrically excited human cochlear neuron: I. Contribution of neural substructures to the generation and propagation of spikes. Hear Res. 153(1–2):43–63.
  • Rau TS, Hussong A, Herzog A, Majdani O, Lenarz T, Leinung M. 2011. Accuracy of computer-aided geometric 3D reconstruction based on histological serial microgrinding preparation. Comput Methods Biomech Biomed Eng. 14(7):581–594.
  • Rebscher SJ, Hetherington AM, Snyder RL, Leake PA, Bonham BH. 2007. Design and fabrication of multichannel cochlear implants for animal research. J Neurosci Methods. 166(1):1–12.
  • Reda FA, McRackan TR, Labadie RF, Dawant BM, Noble JH. 2014. Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients. Med Image Anal. 18(3):605–615.
  • Rodt T, Ratiu P, Becker H, Bartling S, Kacher DF, Anderson M, Jolesz FA, Kikinis R. 2002. 3D visualisation of the middle ear and adjacent structures using reconstructed multi-slice CT datasets, correlating 3D images and virtual endoscopy to the 2D cross-sectional images. Neuroradiology. 44(9):783–790.
  • Rubinstein JT. 2004. An introduction to the biophysics of the electrically evoked compound action potential. Int J Audiol. 43( Suppl. 1):S3–S9.
  • Samp C. 2010. Cochlear implants in the deaf community: current circumstances of cochlear implant users among the deaf youth in Sweden’s educational system. Rochester (NY): Rochester Institute of Technology.
  • Seemann MD, Seemann O, Bonél H, Suckfüll M, Englmeier KH, Naumann A, Allen CM, Reiser MF. 1999. Evaluation of the middle and inner ear structures: comparison of hybrid rendering, virtual endoscopy and axial 2D source images. Eur Radiol. 9(9):1851–1858.
  • Seitz J, Held P, Waldeck A, Strotzer M, Volk M, Strutz J, Feuerbach S. 2001. Value of high-resolution MR in patients scheduled for cochlear implantation. Acta Radiol. 42(6):568–573.
  • Shpizner BA, Holliday RA, Roland JT, Cohen NL, Waltzman SB, Shapiro WH. 1995. Postoperative imaging of the multichannel cochlear implant. AJNR. 16(7):1517–1524.
  • Skinner MW, Ketten DR, Holden LK, Harding GW, Smith PG, Gates GA, Neely JG, Kletzker GR, Brunsden B, Blocker B. 2002. CT-derived estimation of cochlear morphology and electrode array position in relation to word recognition in nucleus-22 recipients. JARO. 3(3):332–350.
  • Skinner MW, Ketten DR, Vannier MW, Gates GA, Yoffie RL, Kalender WA. 1994. Determination of the position of nucleus cochlear implant electrodes in the inner ear. Am J Otol. 15(5):644–651.
  • Sladen DP, Zappler A. 2015. Older and younger adult cochlear implant users: speech recognition in quiet and noise, quality of life, and music perception. Am J Audiol. 24(1):31–39.
  • Snel-Bongers J, Briaire JJ, Van Der Veen EH, Kalkman RK, Frijns JHM. 2013. Threshold levels of dual electrode stimulation in cochlear implants. JARO. 14(5):781–790.
  • Sobrinho FP, Lazarini PR, Yoo HJ, Abreu Júnior L, de Sá Meira A. 2009. A method for measuring the length of the cochlea through magnetic resonance imaging. Braz. J Otorhinolaryngol. 75(2):261–267.
  • Spelman FA, Clopton BM, Pfingst BE. 1982. Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis. Ann Otol Rhinol Laryngol Suppl (US). 91(Suppl. 98):3–8.
  • Stakhovskaya O, Sridhar D, Bonham BH, Leake PA. 2007. Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. JARO. 8(2):220–233.
  • Strelioff D. 1973a. A computer simulation of the generation and distribution of cochlear potentials. J Acoust Soc Am. 54(3):620–629.
  • Strelioff D. 1973b. A computer simulation of the generation and distribution of cochlear potentials. J Acoust Soc Am. 54(3):620–629.
  • Strydom T, Hanekom JJ. 2011. An analysis of the effects of electrical field interaction with an acoustic model of cochlear implants. J Acoust Soc Am. 129(4):2213–2226.
  • Taha T, Wahba H, Ibrahim AS, AbdElazim Y. 2015. Cochlear implant tailored imaging protocol: what clinicians need to know. Egypt J Radiol Nucl Med. 46(1):33–43.
  • Teymouri J, Hullar TE, Holden TA, Chole RA. 2011. Verification of computed tomographic estimates of cochlear implant array position: a micro-CT and histologic analysis. Otol Neurotol. 32(6):980–986.
  • Tran P, Sue A, Wong P, Li Q, Carter P. 2014. Development of HEATHER for cochlear implant stimulation using a new modeling workflow. IEEE Trans Biomed Eng. 62(2):728–735.
  • Vaid S, Vaid N. 2014. Imaging for cochlear implantation: structuring a clinically relevant report. Clin Radiol. 69(7):e9–e24.
  • van der Marel KS, Briaire JJ, Wolterbeek R, Snel-Bongers J, Verbist BM, Frijns JH. 2014. Diversity in cochlear morphology and its influence on cochlear implant electrode position. Ear Hear. 35(1):e9–e20.
  • van Wermeskerken GK, Prokop M, van Olphen AF, Albers FW. 2007. Intracochlear assessment of electrode position after cochlear implant surgery by means of multislice computer tomography. Eur Arch Otorhinolaryngol. 264(12):1405–1407.
  • Vanpoucke F, Zarowski A, Casselman J, Frijns J, Peeters S. 2004a. The facial nerve canal: an important cochlear conduction path revealed by clarion electrical field imaging. Otol Neurotol. 25(3):282–289.
  • Vanpoucke F, Zarowski A, Peeters S. 2004b. Identification of the impedance model of an implanted cochlear prosthesis from intracochlear potential measurements. IEEE Trans Biomed Eng. 51(12):2174–2183.
  • Verbist BM, Ferrarini L, Briaire JJ, Zarowski A, dmiraal-Behloul F, Olofsen H, Reiber JHC, Frijns JHM. 2009. Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery. Otol Neurotol. 30(4):471–477.
  • Verbist BM, Joemai RM, Briaire JJ, Teeuwisse WM, Veldkamp WJ, Frijns JH. 2010a. Cochlear coordinates in regard to cochlear implantation: a clinically individually applicable 3 dimensional CT-based method. Otol Neurotol. 31(5):738–744.
  • Verbist BM, Joemai RMS, Teeuwisse WM, Veldkamp WJH, Geleijns J, Frijns JHM. 2008. Evaluation of 4 multisection CT systems in postoperative imaging of a cochlear implant: a human cadaver and phantom study. Am J Neuroradiol. 29(7):1382–1388.
  • Verbist BM, Skinner MW, Cohen LT, Leake PA, James C, Boex C, Holden TA, Finley CC, Roland PS, Roland JT Jr, et al. 2010b. Consensus panel on a cochlear coordinate system applicable in histologic, physiologic, and radiologic studies of the human cochlea. Otol Neurotol. 31(5):722–730.
  • Vermeire K, Landsberger DM, Van de Heyning PH, Voormolen M, Kleine Punte A, Schatzer R, Zierhofer C. 2015. Frequency-place map for electrical stimulation in cochlear implants: change over time. Hear Res. 326:8–14.
  • Voie AH, Burns DH, Spelman FA. 1993. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc. 170(3):229–236.
  • Voie AH, Spelman FA. 1995. Three-dimensional reconstruction of the cochlea from two-dimensional images of optical sections. Comput Med Imaging Graphics. 19(5):377–384.
  • von Békésy G. 1951. The coarse pattern of the electrical resistance in the cochlea of the guinea pig (electroanatomy of the cochlea). J Acoust Soc Am. 23(1):18–28.
  • Wada H, Sugawara M, Kobayashi T, Hozawa K, Takasaka T. 1998. Measurement of guinea pig basilar membrane using computer-aided three-dimensional reconstruction system. Hear Res. 120(1–2):1–6.
  • Wang G, Vannier MW. 1998. Spiral CT image deblurring for cochlear implantation. IEEE Trans Med Imaging. 17(2):251–262.
  • Wang H, Northrop C, Burgess B, Liberman MC, Merchant SN. 2006. Three-dimensional virtual model of the human temporal bone: a stand-alone, downloadable teaching tool. Otol Neurotol. 27(4):452–457.
  • Westen AA, Dekker DM, Briaire JJ, Frijns JH. 2011. Stimulus level effects on neural excitation and eCAP amplitude. Hear Res. 280(1–2):166–176.
  • Whiten DM. 2007. Electro-anatomical models of the cochlear implant. Cambridge, MA: Massachusetts Institute of Technology; p. 225.
  • Whiting BR, Holden TA, Brunsden BS, Finley CC, Skinner MW. 2008. Use of computed tomography scans for cochlear implants. J Digit Imaging. 21(3):323–328.
  • Won JH, Jones GL, Moon IJ, Rubinstein JT. 2015. Spectral and temporal analysis of simulated dead regions in cochlear implants. JARO. 16(2):285–307.
  • Wong P, George S, Tran P, Sue A, Carter P, Li Q. 2016. Development and validation of a high fidelity finite element model of monopolar stimulation in the implanted guinea pig cochlea. IEEE Trans Biomed Eng. 63(1):188–198.
  • Wong P, Sue A, Tran P, Inguva C, Li Q, Carter P. 2015. Time-domain simulation of volume conduction in the guinea pig cochlea. Conference on Implantable Auditory Prostheses (CIAP). 2015 July 12-17; Granlibakken, Lake Tahoe, USA: Association for Research in Otolaryngology (ARO); p. 217.
  • Wurfel W, Lanfermann H, Lenarz T, Majdani O. 2014. Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res. 316:65–72.
  • Xu Y, Collins LM. 2004. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise. IEEE Trans Biomed Eng. 51(4):590–603.
  • Yoo KS, Wang G, Rubinstein JT, Skinner MW, Vannier MW. 2000a. Three-dimensional modeling and visualization of the cochlea on the internet. IEEE Trans Inf Technol Biomed. 4(2):144–151.
  • Yoo SK, Wang G, Collison F, Rubinstein JT, Vannier MW, Kim HJ, Kim NH. 2004. Three-dimensional localization of cochlear implant electrodes using epipolar stereophotogrammetry. IEEE Trans Biomed Eng. 51(5):838–846.
  • Yoo SK, Wang G, Rubinstein JT, Vannier MW. 2000b. Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Trans Biomed Eng. 47(10):1392–1402.
  • Zaidman-Zait A. 2010. Quality of life among cochlear implant recipients. In: Stone JH, Blouin M, editors. International encyclopedia of rehabilitation. Buffalo (NY): Center for International Rehabilitation Research Information and Exchange (CIRRIE).
  • Zeng FG, Rebscher S, Harrison W, Sun X, Feng H. 2008. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng. 1:115–142.
  • Zhang X, Gan RZ. 2011. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng. 58(10 PART 2):3024–3027.
  • Zhaol T, Hongxia Y, Shuqian L. 2007. Visualization of guinea pig cochlea by computed tomography of diffracttion enhanced imaging. IEEE/ICME International Conference on Complex Medical Engineering, 2007. CME 2007; 2007 May 23–27; Beijing, China; p. 994–997.
  • Zou J, Hannula M, Lehto K, Feng H, Lahelma J, Aula AS, Hyttinen J, Pyykko I. 2015. X-ray microtomographic confirmation of the reliability of CBCT in identifying the scalar location of cochlear implant electrode after round window insertion. Hear Res. 326:59–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.