271
Views
24
CrossRef citations to date
0
Altmetric
DNA DAMAGE RESPONSE IN CD133+ CELLS FROM UMBILICAL CORD BLOOD

DNA damage response in CD133 + stem/progenitor cells from umbilical cord blood: Low level of endogenous foci and high recruitment of 53BP1

, , &
Pages 301-309 | Received 11 Jan 2012, Accepted 23 Nov 2012, Published online: 08 Jan 2013

References

  • Baird BJ, Dickey JS, Nakamura AJ, Redon CE, Parekh P, Griko YV, Aziz K, Georgakilas AG, Bonner WM, Martin OA. 2011. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing. Mutation Research 711:142–149.
  • Bajerska A, Liniecki J. 1969. The influence of temperature at irradiation in vitro on the yield of chromosomal aberrations in peripheral blood lymphocytes. International Journal of Radiation Biology 16:483–493.
  • Bao S, Wu Q, Mclendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760.
  • Belli JA, Bonte FJ. 1963. Influence of temperature on the radiation response of mammalian cells in tissue culture. Radiation Research 18:272–276.
  • Belyaev IY. 2010. Radiation-induced DNA repair foci: Spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Mutation Research 704:132–141.
  • Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. 2008. GammaH2AX and cancer. Nature reviews Cancer 8:957–967.
  • Bonnet D, Dick JE. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 3:730–737.
  • Brzozowska K, Johannes C, Obe G, Hentschel R, Morand J, Moss R, Wittig A, Sauerwein W, Liniecki J, Szumiel I, Wojcik A. 2009. Effect of temperature during irradiation on the level of micronuclei in human peripheral blood lymphocytes exposed to X-rays and neutrons. International Journal of Radiation Biology 85:891–899.
  • Chebel A, Bauwens S, Gerland LM, Belleville A, Urbanowicz I, De Climens AR, Tourneur Y, Chien WW, Catallo R, Salles G, Gilson E, Ffrench M. 2009. Telomere uncapping during in vitro T-lymphocyte senescence. Aging Cell 8:52–64.
  • Costes SV, Chiolo I, Pluth JM, Barcellos-Hoff MH, Jakob B. 2010. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutation Research 704:78–87.
  • D’Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, Carotenuto M. 1998. Flow cytometric characterization of human umbilical cord blood lymphocytes: Immunophenotypic features. Haematologica 83:197–203.
  • De Feraudy S, Revet I, Bezrookove V, Feeney L, Cleaver JE. 2010. A minority of foci or pan-nuclear apoptotic staining of gammaH2AX in the S phase after UV damage contain DNA double-strand breaks. Proceedings of the National Academy of Sciences of the USA. 107:6870–6875.
  • Ditullio RA Jr, Mochan TA, Venere M, Bartkova J, Sehested M, Bartek J, Halazonetis TD. 2002. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biology 4:998–1002.
  • Elmroth K, Erkell LJ, Hultborn R. 1999. Influence of temperature on radiation-induced inhibition of DNA supercoiling. Radiation Research 152:137–143.
  • Elmroth K, Nygren J, Erkell LJ, Hultborn R. 2000a. Effect of hypothermic irradiation of the growth characteristics of two human cell lines. Anticancer Research 20:3429–3433.
  • Elmroth K, Nygren J, Erkell LJ, Hultborn R. 2000b. Radiation-induced double-strand breaks in mammalian DNA: Influence of temperature and DMSO. International Journal of Radiation Biology 76: 1501–1508.
  • Feinberg AP, Ohlsson R, Henikoff S. 2006. The epigenetic progenitor origin of human cancer. Nature Reviews Genetics 7:21–33.
  • Feller N, Van Der Pol MA, Waaijman T, Weijers GW, Westra G, Ossenkoppele GJ, Schuurhuis GJ. 2005. Immunologic purging of autologous peripheral blood stem cell products based on CD34 and CD133 expression can be effectively and safely applied in half of the acute myeloid leukemia patients. Clinical Cancer Research 11:4793–4801.
  • Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, Naka K, Xia Z, Camerini-Otero RD, Motoyama N, Carpenter PB, Bonner W. M, Chen J, Nussenzweig A. 2002. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biology 4:993–997.
  • Filion TM, Qiao M, Ghule PN, Mandeville M, Van Wijnen AJ, Stein JL, Lian JB, Altieri DC, Stein GS. 2009. Survival responses of human embryonic stem cells to DNA damage. Journal of Cell Physiology 220:586–592.
  • Firat E, Gaedicke S, Tsurumi C, Esser N, Weyerbrock A, Niedermann G. 2011. Delayed cell death associated with mitotic catastrophe in gamma-irradiated stem-like glioma cells. Radiation Oncology 6:71.
  • Ford AM, Palmi C, Bueno C, Hong D, Cardus P, Knight D, Cazzaniga G, Enver T, Greaves M. 2009. The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. Journal of Clinical Investigation 119:826–836.
  • Ghardi M, Moreels M, Chatelain B, Chatelain C, Baatout S. 2012. Radiation-induced double strand breaks and subsequent apoptotic DNA fragmentation in human peripheral blood mononuclear cells. International Journal of Molecular Medicine 29:769–780.
  • Greaves MF, Wiemels J. 2003. Origins of chromosome translocations in childhood leukaemia. Nature Reviews Cancer 3:639–649.
  • Gumrich K, Virsik-Peuckert RP, Harder D. 1986. Temperature and the formation of radiation-induced chromosome aberrations. I. The effect of irradiation temperature. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine 49:665–672.
  • Harfouche G, Martin MT. 2010. Response of normal stem cells to ionizing radiation: A balance between homeostasis and genomic stability. Mutation Research 704:167–174.
  • Henriquez Hernandez LA, Lara PC, Pinar B, Bordon E, Rodriguez Gallego C, Bilbao C, Fernandez Perez L, Flores Morales A. 2009. Constitutive gene expression profile segregates toxicity in locally advanced breast cancer patients treated with high-dose hyperfractionated radical radiotherapy. Radiation Oncology 4:17.
  • Horn S, Barnard S, Rothkamm K. 2011. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure. PLoS One 6:e25113.
  • Inomata K, Aoto T, Binh NT, Okamoto N, Tanimura S, Wakayama T, Iseki S, Hara E, Masunaga T, Shimizu H, Nishimura EK. 2009. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell 137:1088–1099.
  • Ivashkevich AN, Martin OA, Smith AJ, Redon CE, Bonner WM, Martin RF, Lobachevsky PN. 2011. gammaH2AX foci as a measure of DNA damage: A computational approach to automatic analysis. Mutation Research 711:49–60.
  • Kronenwett R, Butterweck U, Steidl U, Kliszewski S, Neumann F, Bork S, Blanco E.D, Roes N, Graf T, Brors B, Eils R, Maercker C, Kobbe G, Gattermann N, Haas R. 2005. Distinct molecular phenotype of malignant CD34(+) hematopoietic stem and progenitor cells in chronic myelogenous leukemia. Oncogene 24:5313–5324.
  • Lobrich M, Rief N, Kuhne M, Heckmann M, Fleckenstein J, Rube C, Uder M. 2005. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proceedings of the National Academy of Sciences of the USA. 102:8984–8989.
  • Lopez MC, Palmer BE, Lawrence DA. 2008. Phenotypic differences between cord blood and adult peripheral blood. Cytometry part B Clinical Cytometry 76B:37–46.
  • Markova E, Torudd J, Belyaev I. 2011. Long time persistence of residual 53BP1/gamma-H2AX foci in human lymphocytes in relationship to apoptosis, chromatin condensation and biological dosimetry. International Journal of Radiation Biology 87:736–745.
  • Mason AJ, Giusti V, Green S, Af Rosenschold PM, Beynon TD, Hopewell JW. 2011. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. International Journal of Radiation Biology 87:1162–1172.
  • Maynard S, Swistowska AM, Lee JW, Liu Y, Liu ST, Da Cruz AB, Rao M, De Souza-Pinto NC, Zeng X, Bohr VA. 2008. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells 26:2266–2274.
  • Mchale CM, Smith MT. 2004. Prenatal origin of chromosomal translocations in acute childhood leukemia: Implications and future directions. American Journal Hematology 75:254–257.
  • Mognato M, Girardi C, Fabris S, Celotti L. 2009. DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with gamma-rays. Mutation Research 663: 32–39.
  • Nakamura AJ, Redon CE, Bonner WM, Sedelnikova OA. 2009. Telomere-dependent and telomere-independent origins of endogenous DNA damage in tumor cells. Aging (Albany NY) 1:212–218.
  • Olive PL. 2009. Endogenous DNA breaks: gammaH2AX and the role of telomeres. Aging (Albany NY) 1:154–156.
  • Rassool FV. 2003. DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Letters 193:1–9.
  • Redon CE, Dickey JS, Bonner WM, Sedelnikova OA. 2009. [gamma]-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin. Advances in Space Research 43:1171–1178.
  • Redon CE, Nakamura AJ, Gouliaeva K, Rahman A, Blakely WF, Bonner WM. 2010. The use of gamma-H2AX as a biodosimeter for total-body radiation exposure in non-human primates. PLoS One 5:e15544.
  • Roch-Lefevre S, Mandina T, Voisin P, Gaetan G, Mesa JE, Valente M, Bonnesoeur P, Garcia O, Voisin P, Roy L. 2010. Quantification of gamma-H2AX foci in human lymphocytes: A method for biological dosimetry after ionizing radiation exposure. Radiation Research 174:185–194.
  • Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beausejour CM, Kim SH, Davalos AR, Campisi J. 2011. DNA-SCARS: Distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. Journal of Cell Science 124:68–81.
  • Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. 2000. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. The Journal of Biological Chemistry 275:9390–9395.
  • Ropolo M, Daga A, Griffero F, Foresta M, Casartelli G, Zunino A, Poggi A, Cappelli E, Zona G, Spaziante R, Corte G, Frosina G. 2009. Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Molecular Cancer Research 7:383–392.
  • Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V. 2007. Leukocyte DNA damage after multi-detector row CT: A quantitative biomarker of low-level radiation exposure. Radiology 242:244–251.
  • Rube CE, Fricke A, Widmann TA, Furst T, Madry H, Pfreundschuh M, Rube C. 2011. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 6:e17487.
  • Sak A, Grehl S, Erichsen P, Engelhard M, Grannass A, Levegrun S, Pottgen C, Groneberg M, Stuschke M. 2007. gamma-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: Dependence on the dose-distribution, irradiated site and time from start of treatment. International Journal of Radiation Biology 83:639–652.
  • Sak A, Stuschke M. 2010. Use of gammaH2AX and other biomarkers of double-strand breaks during radiotherapy. Seminars in Radiation Oncology 20:223–231.
  • Scherthan H, Hieber L, Braselmann H, Meineke V, Zitzelsberger H. 2008. Accumulation of DSBs in gamma-H2AX domains fuel chromosomal aberrations. Biochemical and Biophysical Research Communications 371:694–697.
  • Secco M, Zucconi E, Vieira NM, Fogaca LL, Cerqueira A, Carvalho MD, Jazedje T, Okamoto OK, Muotri AR, Zatz M. 2008. Multipotent stem cells from umbilical cord: Cord is richer than blood!Stem Cells 26:146–150.
  • Sedelnikova OA, Horikawa I, Redon C, Nakamura A, Zimonjic D. B, Popescu NC, Bonner WM. 2008. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell 7:89–100.
  • Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. 2004. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nature Cell Biology 6:168–170.
  • Soltysova A, Altanerova V, Altaner C. 2005. Cancer stem cells. Neoplasma 52:435–440.
  • Takahashi K, Monzen S, Hayashi N, Kashiwakura I. 2010. Correlations of cell surface antigens with individual differences in radiosensitivity in human hematopoietic stem/progenitor cells. Radiation Research 173:184–190.
  • Torudd J, Protopopova M, Sarimov R, Nygren J, Eriksson S, Markova E, Chovanec M, Selivanova G, Belyaev IY. 2005. Dose-response for radiation-induced apoptosis, residual 53BP1 foci and DNA-loop relaxation in human lymphocytes. International Journal of Radiation Biology 81:125–138.
  • Vilasova Z, Rezacova M, Vavrova J, Tichy A, Vokurkova D, Zoelzer F, Rehakova Z, Osterreicher J, Lukasova E. 2008. Changes in phosphorylation of histone H2A.X and p53 in response of peripheral blood lymphocytes to gamma irradiation. Acta Biochimica Polonica 55:381–390.
  • Wang B, Matsuoka S, Carpenter PB, Elledge SJ. 2002. 53BP1, a mediator of the DNA damage checkpoint. Science 298:1435–1438.
  • Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, Von Zglinicki T. 2009. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:311–323.
  • Yamauchi M, Oka Y, Yamamoto M, Niimura K, Uchida M, Kodama S, Watanabe M, Sekine I, Yamashita S, Suzuki K. 2008. Growth of persistent foci of DNA damage checkpoint factors is essential for amplification of G1 checkpoint signaling. DNA Repair (Amst) 7: 405–417.
  • Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW. 1997. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012.
  • Zgheib O, Huyen Y, Ditullio RA Jr, Snyder A, Venere M, Stavridi ES, Halazonetis TD. 2005. ATM signaling and 53BP1. Radiotherapy and Oncology 76:119–122.
  • Zwicker F, Swartman B, Sterzing F, Major G, Weber KJ, Huber PE, Thieke C, Debus J, Herfarth K. 2011. Biological in-vivo measurement of dose distribution in patients’ lymphocytes by gamma-H2AX immunofluorescence staining: 3D conformal- vs. step-and-shoot IMRT of the prostate gland. Radiation Oncology 6:62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.