201
Views
6
CrossRef citations to date
0
Altmetric
EFFECTS OF EMF RADIATIONS

p25/CDK5 is partially involved in neuronal injury induced by radiofrequency electromagnetic field exposure

, , , , , , , & show all
Pages 976-984 | Received 04 Oct 2012, Accepted 13 Jun 2013, Published online: 29 Jul 2013

References

  • Abraha A, Ghoshal N, Gamblin TC, Cryns V, Berry RW, Kuret J, Binder LI. 2000. C-terminal inhibition of tau assembly in vitro and in Alzheimer's disease. Journal of Cell Science 113(Pt 21):3737–3745.
  • Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A, Seymour PA, Burkhardt JE, Nelson RB, McNeish JD. 2000. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proceedings of the National Academy of Sciences of the USA 97:2910–2915.
  • Arioka M, Tsukamoto M, Ishiguro K, Kato R, Sato K, Imahori K, Uchida T. 1993. Tau protein kinase II is involved in the regulation of the normal phosphorylation state of tau protein. Journal of Neurochemistry 60:461–468.
  • Augustinack JC, Sanders JL, Tsai LH, Hyman BT. 2002. Colocalization and fluorescence resonance energy transfer between cdk5 and AT8 suggests a close association in pre-neurofibrillary tangles and neurofibrillary tangles. Journal of Neuropathology & Experimental Neurology 61:557–564.
  • Bas O, Odaci E, Kaplan S, Acer N, Ucok K, Colakoglu S. 2009. 900 MHz electromagnetic field exposure affects qualitative and quantitative features of hippocampal pyramidal cells in the adult female rat. Brain Research 1265:178–185.
  • Baumann K, Mandelkow EM, Biernat J, Piwnica-Worms H, Mandelkow E. 1993. Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Letters 336:417–424.
  • Broom KA, Whitehill K, Sienkiewicz Z. 2012. Effects of mobile phone signals on neurobiology. Mutagenesis 27:121.
  • Buttiglione M, Roca L, Montemurno E, Vitiello F, Capozzi V, Cibelli G. 2007. Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells. Journal of Cellular Physiology 213:759–767.
  • Camins A, Verdaguer E, Folch J, Canudas AM, Pallas M. 2006. The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News & Perspectives 19:453–460.
  • Campisi A, Gulino M, Acquaviva R, Bellia P, Raciti G, Grasso R, Musumeci F, Vanella A, Triglia A. 2010. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neuroscience Letters 473:52–55.
  • Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH. 2003. Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483.
  • Cruz JC, Kim D, Moy LY, Dobbin MM, Sun X, Bronson RT, Tsai LH. 2006. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. Journal of Neuroscience 26:10536–10541.
  • Das G, Misra AK, Das SK, Ray K, Ray J. 2012. Role of tau kinases (CDK5R1 and GSK3B) in Parkinson's disease: A study from India. Neurobiology of Aging 33(1485):e1489–1415.
  • Del Vecchio G, Giuliani A, Fernandez M, Mesirca P, Bersani F, Pinto R, Ardoino L, Lovisolo GA, Giardino L, Calzà L. 2009. Effect of radiofrequency electromagnetic field exposure on in vitro models of neurodegenerative disease. Bioelectromagnetics 30:564–572.
  • Dhavan R, Tsai LH. 2001. A decade of CDK5. Nature Reviews Molecular Cell Biology 2:749–759.
  • Evans DB, Rank KB, Bhattacharya K, Thomsen DR, Gurney ME, Sharma SK. 2000. Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau's ability to promote microtubule assembly. Journal of Biological Chemistry 275:24977–24983.
  • Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, Avila J. 2005. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies. Current Alzheimer Research 2:3–18.
  • Finnie JW, Cai Z, Manavis J, Helps S, Blumbergs PC. 2010. Microglial activation as a measure of stress in mouse brains exposed acutely (60 minutes) and long-term (2 years) to mobile telephone radiofrequency fields. Pathology 42:151–154.
  • Goedert M, Jakes R, Qi Z, Wang JH, Cohen P. 1995. Protein phosphatase 2A is the major enzyme in brain that dephosphorylates tau protein phosphorylated by proline-directed protein kinases or cyclic AMP-dependent protein kinase. Journal of Neurochemistry 65: 2804–2807.
  • Gong CX, Iqbal K. 2008. Hyperphosphorylation of microtubule-associated protein tau: A promising therapeutic target for Alzheimer disease. Current Medicinal Chemistry 15:2321–2328.
  • Gong CX, Liu F, Grundke-Iqbal I, Iqbal K. 2005. Post-translational modifications of tau protein in Alzheimer's disease. Journal of Neural Transmission 112:813–838.
  • Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K. 2000. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. Journal of Biological Chemistry 275:5535–5544.
  • Guo Q. 2003. Cyclin-dependent kinase 5 – a neuronal killer?Science of Aging Knowledge Environment 2003:pe36.
  • Hamdane M, Buee L. 2007. The complex p25/Cdk5 kinase in neurofibrillary degeneration and neuronal death: The missing link to cell cycle. Biotechnology Journal 2:967–977.
  • Hamdane M, Sambo AV, Delobel P, Begard S, Violleau A, Delacourte A, Bertrand P, Benavides J, Buee L. 2003. Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex. Journal of Biological Chemistry 278:34026–34034.
  • Hao Y, Yang X, Chen C, Yuan W, Wang X, Li M, Yu Z. 2010. STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields. International Journal of Radiation Biology 86:27–36.
  • Hirose H, Sasaki A, Ishii N, Sekijima M, Iyama T, Nojima T, Ugawa Y. 2010. 1950 MHz IMT-2000 field does not activate microglial cells in vitro. Bioelectromagnetics 31:104–112.
  • Joubert V, Bourthoumieu S, Leveque P, Yardin C. 2008. Apoptosis is induced by radiofrequency fields through the caspase-independent mitochondrial pathway in cortical neurons. Radiation Research 169:38–45.
  • Joubert V, Leveque P, Cueille M, Bourthoumieu S, Yardin C. 2007. No apoptosis is induced in rat cortical neurons exposed to GSM phone fields. Bioelectromagnetics 28:115–121.
  • Kesari KK, Kumar S, Behari J. 2012. Pathophysiology of microwave radiation: Effect on rat brain. Applied Biochemistry and Biotechnology 166:379–388.
  • Kusakawa G, Saito T, Onuki R, Ishiguro K, Kishimoto T, Hisanaga S. 2000. Calpain-dependent proteolytic cleavage of the p35 cyclin-dependent kinase 5 activator to p25. Journal of Biological Chemistry 275:17166–17172.
  • Lai H. 2004. Interaction of microwaves and a temporally incoherent magnetic field on spatial learning in the rat. Physiology & Behavior 82:785–789.
  • Lai H, Singh NP. 1995. Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics 16:207–210.
  • Lai H, Singh NP. 1996. Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. International Journal of Radiation Biology 69:513–521.
  • Lai H, Singh NP. 2005. Interaction of microwaves and a temporally incoherent magnetic field on single and double DNA strand breaks in rat brain cells. Electromagnetic Biology and Medicine 24:23–29.
  • Lai H, Horita A, Guy AW. 1994. Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics 15:95–104.
  • Lai H, Carino MA, Horita A, Guy AW. 1989. Low-level microwave irradiation and central cholinergic systems. Pharmacology Biochemistry & Behavior 33:131–138.
  • Lau LF, Ahlijanian MK. 2003. Role of cdk5 in the pathogenesis of Alzheimer's disease. Neurosignals 12:209–214.
  • Lee KY, Clark AW, Rosales JL, Chapman K, Fung T, Johnston RN. 1999. Elevated neuronal Cdc2-like kinase activity in the Alzheimer disease brain. Neuroscience Research 34:21–29.
  • Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. 2000. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405:360–364.
  • Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH. 1994. A brain-specific activator of cyclin-dependent kinase 5. Nature 371:423–426.
  • Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. 2005. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. European Journal of Neuroscience 22:1942–1950.
  • Lu Y, Xu S, He M, Chen C, Zhang L, Liu C, Chu F, Yu Z, Zhou Z, Zhong M. 2012. Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure. Physiology & Behavior 106:631–637.
  • Mandelkow EM, Biernat J, Drewes G, Gustke N, Trinczek B, Mandelkow E. 1995. Tau domains, phosphorylation, and interactions with microtubules. Neurobiology of Aging 16:355–362; discussion 362–353.
  • Munton RP, Vizi S, Mansuy IM. 2004. The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Letters 567:121–128.
  • Narayanan SN, Kumar RS, Potu BK, Nayak S, Bhat PG, Mailankot M. 2010. Effect of radio-frequency electromagnetic radiations (RF-EMR) on passive avoidance behaviour and hippocampal morphology in Wistar rats. Upsala Journal of Medical Sciences 115:91–96.
  • Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, Davies P, Burns M, Veeranna, Nixon R, Dickson D, Matsuoka Y, Ahlijanian M, Lau LF, Duff K. 2003. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38:555–565.
  • O’Hare MJ, Kushwaha N, Zhang Y, Aleyasin H, Callaghan SM, Slack RS, Albert PR, Vincent I, Park DS. 2005. Differential roles of nuclear and cytoplasmic cyclin-dependent kinase 5 in apoptotic and excitotoxic neuronal death. Journal of neuroscience 25:8954–8966.
  • Paglini G, Caceres A. 2001. The role of the Cdk5 – p35 kinase in neuronal development. European Journal of Biochemistry 268:1528–1533.
  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. 1999. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622.
  • Plattner F, Angelo M, Giese KP. 2006. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. Journal of Biological Chemistry 281:25457–25465.
  • Rademakers R, Sleegers K, Theuns J, Van den Broeck M, Bel Kacem S, Nilsson LG, Adolfsson R, van Duijn CM, Van Broeckhoven C, Cruts M. 2005. Association of cyclin-dependent kinase 5 and neuronal activators p35 and p39 complex in early-onset Alzheimer's disease. Neurobiology of Aging 26:1145–1151.
  • Rao VS, Titushkin IA, Moros EG, Pickard WF, Thatte HS, Cho MR. 2008. Nonthermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: Elucidation of calcium pathways. Radiation Research 169:319–329.
  • Sakurai T, Kiyokawa T, Narita E, Suzuki Y, Taki M, Miyakoshi J. 2011. Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields. Journal of Radiation Research 52:185–192.
  • Sengupta A, Wu Q, Grundke-Iqbal I, Iqbal K, Singh TJ. 1997. Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Molecular and Cellular Biochemistry 167:99–105.
  • Shahani N, Brandt R. 2002. Functions and malfunctions of the tau proteins. Cellular and Molecular Life Sciences 59:1668–1680.
  • Shelton SB, Johnson GV. 2004. Cyclin-dependent kinase-5 in neurodegeneration. Journal of Neurochemistry 88:1313–1326.
  • Shelton SB, Krishnamurthy P, Johnson GV. 2004. Effects of cyclin-dependent kinase-5 activity on apoptosis and tau phosphorylation in immortalized mouse brain cortical cells. Journal of Neuroscience Research 76:110–120.
  • Stoothoff WH, Johnson GV. 2005. Tau phosphorylation: Physiological and pathological consequences. Biochimica et Biophysica Acta 1739:280–297.
  • Tang D, Wang JH. 1996. Cyclin-dependent kinase 5 (Cdk5) and neuron-specific Cdk5 activators. Progress in Cell Cycle Research 2:205–216.
  • Tang D, Lee KY, Qi Z, Matsuura I, Wang JH. 1996. Neuronal Cdc2-like kinase: From cell cycle to neuronal function. Biochemistry and Cell Biology 74:419–429.
  • Terada M, Yasuda H, Kogawa S, Maeda K, Haneda M, Hidaka H, Kashiwagi A, Kikkawa R. 1998. Expression and activity of cyclin-dependent kinase 5/p35 in adult rat peripheral nervous system. Journal of Neurochemistry 71:2600–2606.
  • Tsai LH, Lee MS, Cruz J. 2004. Cdk5, a therapeutic target for Alzheimer's disease?Biochimica et Biophysica Acta 1697:137–142.
  • Verdaguer E, Alvira D, Jimenez A, Rimbau V, Camins A, Pallas M. 2005. Inhibition of the cdk5/MEF2 pathway is involved in the antiapoptotic properties of calpain inhibitors in cerebellar neurons. British Journal of Pharmacology 145:1103–1111.
  • Verdaguer E, Jorda EG, Canudas AM, Jimenez A, Pubill D, Escubedo E, Camarasa J, Pallas M, Camins A. 2004. Antiapoptotic effects of roscovitine in cerebellar granule cells deprived of serum and potassium: A cell cycle-related mechanism. Neurochemistry International 44:251–261.
  • Wang B, Lai H. 2000. Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics 21: 52–56.
  • Wang Q, Cao ZJ, Bai XT. 2005. [Effect of 900 Mhz electromagnetic fields on energy metabolism in postnatal rat cerebral cortical neurons]. Wei Sheng Yan Jiu (Journal of Hygiene Research) 34:155–158.
  • Yang X, He G, Hao Y, Chen C, Li M, Wang Y, Zhang G, Yu Z. 2010. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells. Journal of Neuroinflammation 7:54.
  • Zhao TY, Zou SP, Knapp PE. 2007. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neuroscience Letters 412:34–38.
  • Zheng YL, Kesavapany S, Gravell M, Hamilton RS, Schubert M, Amin N, Albers W, Grant P, Pant HC. 2005. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. The EMBO Journal 24:209–220.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.