61
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic analysis of enzyme enantioselectivity: a statistical approach by means of new differential HybridMIF descriptors

, , &
Pages 272-280 | Published online: 04 Oct 2013

References

  • Berendsen HJC, Postma JPM, Dinola A, Haak JR. 1984. Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690.
  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000. The protein data bank. Nucleic Acids Res 28:235–242.
  • Bommarius AS, Blum JK, Abrahamson MJ. 2011. Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200.
  • Bond SD, Leimkuhler BJ, Laird BB. 1999. The Nosé-Poincaré method for constant temperature molecular dynamics. J Comput Phys 151:114–134.
  • Braiuca P, Knapic L, Ferrario V, Ebert C, Gardossi L. 2009. A three-dimensional quantitative structure-activity relationship (3D-QSAR) model for predicting the enantioselectivity of Candida antarctica lipase B. Adv Synth Catal 351:1293–1302.
  • Felluga F, Pitacco G, Valentin E, Coslanich A, Fermeglia M, Ferrone M, Pricl S. 2003. Studying enzyme enantioselectivity using combined ab initio and free energy calculations: alfa-chymotrypsin and methyl cis- and trans-5-oxo-2-pentylpirrolidine-3-carboxylates. Tetrahedron Asymmetry 14:3385–3399.
  • Ferrario V, Braiuca P, Tessaro P, Knapic L, Gruber C, Pleiss J, Ebert C, Eichhorn E, Gardossi L. 2012. Elucidating the structural and conformational factors responsible for the activity and substrate specificity of alkanesulfonate mono oxygenase. J Biomol Struct Dyn 30:74–88.
  • Fox RJ, Huisman GW. 2008. Enzyme optimization: moving from blind evolution to statistical exploration of sequence-function space. Trends Biotechnol 26:132–138.
  • Goodford PJ. 1985. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857.
  • Hasan F, Shah AA, Hameed A. 2006. Industrial application of microbial lipases. Enzyme Microb Tech 39:235–251.
  • Henke E, Bornscheuer U, Schmid R, Pleiss J. 2003. A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. Chem Bio Chem 4:485–493.
  • Kazlauskas RJ, Weissfloch ANE, Rappaport AT, Cuccia LA. 1991. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J Org Chem 56:2656–2665.
  • Leonard V, Fransson L, Lamare S, Hult K, Graber M. 2007. A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity towards Pentan-2-ol. ChemBioChem 8:662–667.
  • Orrenius C, Haeffner F, Rotticci D, Ohrner N, Norin T, Hult K. 1998. Chiral recognition of alcohol enantiomers in acyl transfer reactions catalysed by Candida antarctica lipase B. Biocatal Biotransform 16:1–15.
  • Ottosson J, Fransson L, Hult K. 2002. Substrate entropy in enzyme enantioselectivity: an experimental and molecular modeling study of a lipase. Protein Sci 11:1462–1471.
  • Ottosson J, Rotticci-Mulder JC, Rotticci D, Hult K. 2001. Rational design of enantioselective enzymes requires consideration of entropy. Protein Sci 10:1769–1774.
  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT. 2009. The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131.
  • Pham VT, Phillips RS, Ljungdahl LG. 1989. Temperature-dependent enantiospecificity of secondary alcohol dehydrogenase from hermoanaerobacter ethanolicus. J Am Chem Soc 111:1935–1936.
  • Philips RS. 1992. Temperature effects on stereochemistry of enzymatic reactions. Enzyme Microb Technol 14:417–419.
  • Raza S, Fransson L, Hult K. 2001. Enantioselectivity in Candida antarctica lipase B: a molecular dynamics study. Protein Sci 10:329–338.
  • Strajbl M, Sham YY, Villa J, Chu ZT, Warshel A. 2000. Calculations of activation entropies of chemical reactions in solution. J Phys Chem B 104:4578–4584.
  • Uppenberg J, Hansen MT, Patkar S, Jones TA. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2:293–308.
  • Uppenberg J, Ohrner N, Norin M, Hult K, Kleywegt GJ, Patkar S, Waagen V, Anthonsen T, Jones TA. 1995. Crystallo grafic and molecular-modeling studies of lipase B from Candida antarctica reveals a stereospecificity pocket for secondary alcohols. Biochemistry 34:16838–16851.
  • Vallin M, Syren PO, Hult K. 2010. Mutant lipase-catalyzed kinetic resolution of bulky phenyl alkyl sec-alcohols: a thermodynamic analysis of enantioselectivity. ChemBioChem 11:411–416.
  • Villa J, Strajbl M, Glennon TM, Sham YY, Chu ZT, Warshel A. 2000. How important are entropic contributions to enzyme catalysis?Proc Natl Acad Sci USA 97:11899–11904.
  • Wold S, Esbensen K, Geladi P. 1987. Principal component analysis. Chemom Intell Lab Syst 2:37–52.
  • Wold S. 2001. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.