Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 18, 2015 - Issue 6
858
Views
24
CrossRef citations to date
0
Altmetric
Original Research Report

Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex

, &
Pages 654-667 | Received 04 May 2015, Accepted 07 Jul 2015, Published online: 21 Aug 2015

References

  • Bagley J, Moghaddam B. (1997). Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 77:65–73
  • Berridge CW, Mitton E, Clark W, Roth RH. (1999). Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress. Synapse 32:187–97
  • Bloss EB, Janssen WG, Ohm DT, Yuk FJ, Wadsworth S, Saardi KM, McEwen BS, Morrison JH. (2011). Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex. J Neurosci 31:7831–9
  • Bories C, Husson Z, Guitton MJ, De Koninck Y. (2013). Differential balance of prefrontal synaptic activity in successful versus unsuccessful cognitive aging. J Neurosci 33:1344–56
  • Brake WG, Sullivan RM, Gratton A. (2000). Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats. J Neurosci 20:5538–43
  • Carlson JN, Fitzgerald LW, Keller RW Jr, Glick SD. (1991). Side and region dependent changes in dopamine activation with various durations of restraint stress. Brain Res 550:313–18
  • Carlson JN, Fitzgerald LW, Keller RW Jr, Glick SD. (1993). Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat. Brain Res 630:178–87
  • Carr DB, Sesack SR. (2000). Dopamine terminals synapse on callosal projection neurons in the rat prefrontal cortex. J Comput Neurol 425:275–83
  • Cerqueira JJ, Taipa R, Uylings HBM, Almeida OFX, Sousa N. (2007). Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. Cereb Cortex 17:1998–2006
  • Cochran WC, Cox GM. (1957). Experimental designs. 2nd ed. New York: John Wiley & Sons
  • Cook SC, Wellman CL. (2004). Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–48
  • Crombag HS, Gorny G, Li Y, Kolb B, Robinson TE. (2005). Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb Cortex 15:341–8
  • Ferino F, Thierry AM, Saffroy M, Glowinski J. (1987). Interhemispheric and subcortical collaterals of medial prefrontal cortical neurons in the rat. Brain Res 417:257–66
  • Gilabert-Juan J, Castillo-Gomez E, Guirado R, Moltó MD, Nacher J. (2013). Chronic stress alters inhibitory networds in the medial prefrontal cortex of adult mice. Brain Struct Funct 218:1591–605
  • Goldwater DS, Pavildes C, Hunter RG, Bloss EB, Hof PR, McEwen BS, Morrison JH. (2009). Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 164:798–808
  • Gratton A, Sullivan RM. (2005). Role of the prefrontal cortex in stress responsivity. In: Steckler T, Kalin N, Reul JMHM, editors. Handbook of stress and the brain, Pt 1. The neurobiology of stress. Vol. 15. Amsterdam: Elsevier Science. p 807–18
  • Hasbani MJ, Viquez NM, Goldberg MP. (2001). NMDA receptors mediate hypoxic spine loss in cultured neurons. Neuroreport 12:2731–5
  • Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–91
  • Iki J, Inoue A, Bito H, Okabe S. (2005). Bi-directional regulation of postsynaptic cortactin distribution by BDNF and NMDA receptor activity. Eur J Neurosci 22:2985–994
  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. (2003). Structure–stability–function relationships of dendritic spines. Trends Neurosci 26:360–8
  • Katz LC, Burkhalter A, Dreyer WJ. (1984). Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310:498–500
  • Koleske AJ. (2013). Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14:536–50
  • Liston C, Gan WB. (2011). Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc Natl Acad Sci USA 108:16074–9
  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS. (2006). Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26:7870–4
  • Liu RJ, Aghajanian GK. (2008). Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc Natl Acad Sci USA 105:359–64
  • Lupinsky D, Moquin L, Gratton A. (2010). Interhemispheric regulation of the medial prefrontal cortical glutamate stress response in rats. J Neurosci 30:7624–33
  • Magariños AM, McEwen BS. (1995). Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69:89–98
  • Martin KP, Wellman CL. (2011). NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex. Cereb Cortex 21:2366–73
  • Mateos JM, Lüthi A, Savic N, Stierli B, Streit P, Gähwiler BH, McKinney RA. (2007). Synaptic modifications at the CA3-CA1 synapse after chronic AMPA receptor blockade in rat hippocampal slices. J Physiol 581:129–38
  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H. (2001). Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–92
  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–6
  • McEwen BS. (2004). Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann NY Acad Sci 1032:1–7
  • McKinney RA. (2010). Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 588:107–16
  • McKinney RA, Capogna M, Dürr R, Gähwiler BH, Thompson SM. (1999). Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 2:44–9
  • Mizoguchi K, Tuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T. (2000). Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20:1568–74
  • Paxinos G, Watson C. (1996). The rat brain in stereotaxic coordinates. New York:Academic
  • Perez-Cruz C, Muller-Keuker JIH, Heilbronner U, Fuchs E, Flugge G. (2007). Morphology of pyramidal neurons in the rat prefrontal cortex: lateralized dendritic remodeling by chronic stress. Neural Plast 2007:46276
  • Peters A, Kaiserman-Abramof IR. (1970). The small pyramidal neurons of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 127:321–55
  • Petrak LJ, Harris KM, Kirov SA. (2005). Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J Comput Neurol 484:183–90
  • Portera-Cailliau C, Pan DT, Yuste R. (2003). Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23:7129–42
  • Radley JJ, Anderson RA, Hamilton BA, Alcock JA, Romig-Martin SA. (2013). Chronic stress-induced alterations of dendritic spine subtypes predict functional decrements in an hypthalamo-pituitary-adrenal-inhibitory prefrontal circuit. J Neurosci 3:14379–91
  • Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH. (2006). Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16:313–20
  • Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH. (2004). Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6
  • Seib LM, Wellman CL. (2003). Daily injections alter spine density in rat medial prefrontal cortex. Neuroscience 337:29–32
  • Shansky RM, Hamo C, Hof PR, McEwen BS, Morrison JH. (2009). Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex 19:2479–84
  • Stalnaker TA, España RA, Berridge CW. (2009). Coping behavior causes asymmetric changes in neuronal activation in the prefrontal cortex and amygdala. Synapse 63:82–5
  • Steciuk M, Kram M, Kramer GL, Petty F. (2000). Immobilization-induced glutamate efflux in medial prefrontal cortex: blockade by (+)-Mk-801, a selective NMDA receptor antagonist. Stress 3:195–9
  • Stevenson CW, Sullivan RW, Gratton A. (2003). Effects of basolateral amygdala dopamine depletion on the nucleus accumbens and medial prefrontal cortical dopamine responses to stress. Neuroscience 116:285–93
  • Sullivan RM, Szechtman H. (1995). Asymmetrical influence of mesocortical dopamine depletion on stress ulcer development and subcortical dopamine systems in rats: implications for psychopathology. Neuroscience 65:757–66
  • Wallace W, Bear MF. (2004). A morphological correlate of synaptic scaling in visual cortex. J Neurosci 24:6928–38
  • Wallace M, Luine V, Arallanos A, Frankfurt M. (2006). Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Res 1126:176–82
  • Yuste R, Bonhoeffer T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Ann Rev Neurosci 24:1071–89

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.