634
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Oxidative stress in dry age-related macular degeneration and exfoliation syndrome

, , , &
Pages 12-27 | Received 19 Jun 2014, Accepted 19 Sep 2014, Published online: 16 Oct 2014

References

  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol 1997;82:291–5
  • Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 2014;73:26–33
  • Aslan M, Dogan S, Kucuksayan E. Oxidative stress and potential applications of free radical scavengers in glaucoma. Redox Rep 2013;18:76–87
  • Klein R. Overview of progress in the epidemiology of age-related macular degeneration. Ophthalmic Epidemiol 2007;14:184–7
  • Beatty S, Koh H, Phil M, et al. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000;45:115–34
  • Khandhadia S, Lotery A. Oxidation and age-related macular degeneration: insights from molecular biology. Expert Rev Mol Med 2010;12:e34. doi: 10.1017/S146239941000164X
  • Jager RD, Mieler WF, Miller JW. Age-related macular degeneration. N Engl J Med 2008;358:2606–17
  • Schlotzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol 2006;141:921–37
  • Ritch R, Schlotzer-Schrehardt U, Konstas AG. Why is glaucoma associated with exfoliation syndrome? Prog Retin Eye Res 2003;22:253–75
  • Friedman DS, O'Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004;122:564–72
  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014;2:e106–16
  • Ringvold A. Epidemiology of the pseudo-exfoliation syndrome. Acta Ophthalmol Scand 1999;77:371–5
  • Bialasiewicz AA, Wali U, Shenoy R, Al-Saeidi R. Patients with secondary open-angle glaucoma in pseudoexfoliation (PEX) syndrome among a population with high prevalence of PEX. Clinical findings and morphological and surgical characteristics. Ophthalmology 2005;102:1064–8
  • Belovay GW, Varma DK, Ahmed, II. Cataract surgery in pseudoexfoliation syndrome. Curr Opin Ophthalmol 2010;21:25–34
  • Quigley HA. Glaucoma. Lancet 2011;377:1367–77
  • Schlotzer-Schrehardt U. Oxidative stress and pseudoexfoliation glaucoma. Klin Monbl Augenheilkd 2010;227:108–13
  • Lin T, Walker GB, Kurji K, et al. Parainflammation associated with advanced glycation endproduct stimulation of RPE in vitro: implications for age-related degenerative diseases of the eye. Cytokine 2013;62:369–81
  • Suzuki M, Kamei M, Itabe H, et al. Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration. Mol Vis 2007;13:772–8
  • Bazan NG. Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 2006;29:263–71
  • Tan JS, Wang JJ, Flood V, et al. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology 2008;115:334–41
  • Kokotas H, Grigoriadou M, Petersen MB. Age-related macular degeneration: genetic and clinical findings. Clin Chem Lab Med 2011;49:601–16
  • Crabb JW, Miyagi M, Gu X, et al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 2002;99:14682–7
  • Gu X, Meer SG, Miyagi M, et al. Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 2003;278:42027–35
  • Hollyfield JG, Bonilha VL, Rayborn ME, et al. Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 2008;14:194–8
  • Sun M, Finnemann SC, Febbraio M, et al. Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions. J Biol Chem 2006;281:4222–30
  • Schutt F, Ueberle B, Schnolzer M, et al. Proteome analysis of lipofuscin in human retinal pigment epithelial cells. FEBS Lett 2002;528:217–21
  • Schutt F, Bergmann M, Holz FG, Kopitz J. Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2003;44:3663–8
  • Rodriguez Diez G, Sanchez Campos S, Giusto NM, Salvador GA. Specific roles for Group V secretory PLA(2) in retinal iron-induced oxidative stress. Implications for age-related macular degeneration. Exp Eye Res 2013;113:172–81
  • Age-Related Eye Disease Study Research Group. Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: Age-Related Eye Disease Study Report Number 3. Ophthalmology 2000;107:2224–32
  • Moriarty-Craige SE, Adkison J, Lynn M, et al. Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration. Am J Ophthalmol 2005;140:1020–6
  • The Age-Related Eye Disease Study 2 (AREDS2) Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 2013;309:2005–15
  • Klein ML, Francis PJ, Rosner B, et al. CFH and LOC387715/ARMS2 genotypes and treatment with antioxidants and zinc for age-related macular degeneration. Ophthalmology 2008;115:1019–25
  • Blasiak J, Glowacki S, Kauppinen A, Kaarniranta K. Mitochondrial and nuclear DNA damage and repair in age-related macular degeneration. Int J Mol Sci 2013;14:2996–3010
  • Cai J, Nelson KC, Wu M, et al. Oxidative damage and protection of the RPE. Prog Retin Eye Res 2000;19:205–21
  • Liang FQ, Godley BF. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 2003;76:397–403
  • Nordgaard CL, Karunadharma PP, Feng X, et al. Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 2008;49:2848–55
  • Karunadharma PP, Nordgaard CL, Olsen TW, Ferrington DA. Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci 2010;51:5470–9
  • Kanda A, Chen W, Othman M, et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA 2007;104:16227–32
  • Kinnunen K, Petrovski G, Moe MC, et al. Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 2012;90:299–309
  • Rivera A, Fisher SA, Fritsche LG, et al. Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Gen 2005;14:3227–36
  • Fritsche LG, Loenhardt T, Janssen A, et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Gen 2008;40:892–6
  • Canter JA, Olson LM, Spencer K, et al. Mitochondrial DNA polymorphism A4917G is independently associated with age-related macular degeneration. PLoS One 2008;3:e2091
  • Sharma RK, Netland PA, Kedrov MA, Johnson DA. Preconditioning protects the retinal pigment epithelium cells from oxidative stress-induced cell death. Acta Ophthalmol 2009;87:82–8
  • Schmidt S, Hauser MA, Scott WK, et al. Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration. Am J Hum Gen 2006;78:852–64
  • Kowalski M, Bielecka-Kowalska A, Oszajca K, et al. Manganese superoxide dismutase (MnSOD) gene (Ala-9Val, Ile58Thr) polymorphism in patients with age-related macular degeneration (AMD). Med Sci Monit 2010;16:CR190–6
  • Justilien V, Pang JJ, Renganathan K, et al. SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 2007;48:4407–20
  • Kasahara E, Lin LR, Ho YS, Reddy VN. SOD2 protects against oxidation-induced apoptosis in mouse retinal pigment epithelium: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci 2005;46:3426–34
  • Gorgun E, Guven M, Unal M, et al. Polymorphisms of the DNA repair genes XPD and XRCC1 and the risk of age-related macular degeneration. Invest Ophthalmol Vis Sci 2010;51:4732–7
  • Synowiec E, Blasiak J, Zaras M, et al. Association between polymorphisms of the DNA base excision repair genes MUTYH and hOGG1 and age-related macular degeneration. Exp Eye Res 2012;98:58–66
  • Synowiec E, Sliwinski T, Danisz K, et al. Association between polymorphism of the NQO1, NOS3 and NFE2L2 genes and AMD. Front Biosci (Landmark Ed) 2013;18:80–90
  • Kenney MC, Hertzog D, Chak G, et al. Mitochondrial DNA haplogroups confer differences in risk for age-related macular degeneration: a case control study. BMC Med Gen 2013;14:4. doi: 10.1186/1471-2350-14-4
  • Boulton M, Dayhaw-Barker P. The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye 2001;15:384–9
  • Hunter JJ, Morgan JI, Merigan WH, et al. The susceptibility of the retina to photochemical damage from visible light. Prog Retinal Eye Res 2012;31:28–42
  • Chalam KV, Khetpal V, Rusovici R, Balaiya S. A review: role of ultraviolet radiation in age-related macular degeneration. Eye Contact Lens 2011;37:225–32
  • Rozanowski B, Burke JM, Boulton ME, et al. Human RPE melanosomes protect from photosensitized and iron-mediated oxidation but become pro-oxidant in the presence of iron upon photodegradation. Invest Ophthalmol Vis Sci 2008;49:2838–47
  • Kaarniranta K, Hyttinen J, Ryhanen T, et al. Mechanisms of protein aggregation in the retinal pigment epithelial cells. Front Biosci (Elite Ed) 2010;2:1374–84
  • Wielgus AR, Collier RJ, Martin E, et al. Blue light induced A2E oxidation in rat eyes – experimental animal model of dry AMD. Photochem Photobiol Sci 2010;9:1505–12
  • Tolleson WH, Cherng SH, Xia Q, et al. Photodecomposition and phototoxicity of natural retinoids. Int J Environ Res Public Health 2005;2:147–55
  • Vives-Bauza C, Anand M, Shiraz AK, et al. The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells. J Biol Chem 2008;283:24770–80
  • Wu Y, Yanase E, Feng X, et al. Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci USA 2010;107:7275–80
  • Rozanowska M, Sarna T. Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 2005;81:1305–30
  • Ni Dhubhghaill SS, Cahill MT, Campbell M, et al. The pathophysiology of cigarette smoking and age-related macular degeneration. Adv Exp Med Biol 2010;664:437–46
  • Tan JS, Mitchell P, Kifley A, et al. Smoking and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Arch Ophthalmol 2007;125:1089–95
  • Lois N, Abdelkader E, Reglitz K, et al. Environmental tobacco smoke exposure and eye disease. Br J Ophthalmol 2008;92:1304–10
  • Khan JC, Thurlby DA, Shahid H, et al. Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation. Br J Ophthalmol 2006;90:75–80
  • Fujihara M, Nagai N, Sussan TE, et al. Chronic cigarette smoke causes oxidative damage and apoptosis to retinal pigmented epithelial cells in mice. PLoS One 2008;3:e3119
  • Woodell A, Rohrer B. A mechanistic review of cigarette smoke and age-related macular degeneration. Adv Exp Med Biol 2014;801:301–7
  • Bamonti F, Novembrino C, Ippolito S, et al. Increased free malondialdehyde concentrations in smokers normalise with a mixed fruit and vegetable juice concentrate: a pilot study. Clin Chem Lab Med 2006;44:391–5
  • Bruno RS, Traber MG. Vitamin E biokinetics, oxidative stress and cigarette smoking. Pathophysiology 2006;13:143–9
  • Dudek EJ, Shang F, Valverde P, et al. Selectivity of the ubiquitin pathway for oxidatively modified proteins: relevance to protein precipitation diseases. FASEB J 2005;19:1707–9
  • Medicherla B, Goldberg AL. Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J Cell Biol 2008;182:663–73
  • Plafker SM. Oxidative stress and the ubiquitin proteolytic system in age-related macular degeneration. Adv Exp Med Biol 2010;664:447–56
  • Osburn WO, Kensler TW. Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 2008;659:31–9
  • Yu X, Kensler T. Nrf2 as a target for cancer chemoprevention. Mutat Res 2005;591:93–102
  • Gao X, Talalay P. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage. Proc Natl Acad Sci USA 2004;101:10446–51
  • Ha KN, Chen Y, Cai J, Sternberg P Jr. Increased glutathione synthesis through an ARE-Nrf2-dependent pathway by zinc in the RPE: implication for protection against oxidative stress. Invest Ophthalmol Vis Sci 2006;47:2709–15
  • Cano M, Thimmalappula R, Fujihara M, et al. Cigarette smoking, oxidative stress, the anti-oxidant response through Nrf2 signaling, and age-related macular degeneration. Vis Res 2010;50:652–64
  • Zhao Z, Chen Y, Wang J, et al. Age-related retinopathy in NRF2-deficient mice. PLoS One 2011;6:e19456
  • Kong L, Tanito M, Huang Z, et al. Delay of photoreceptor degeneration in tubby mouse by sulforaphane. J Neurochem 2007;101:1041–52
  • Malhotra D, Thimmulappa R, Navas-Acien A, et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 2008;178:592–604
  • Shadrach KG, Rayborn ME, Hollyfield JG, Bonilha VL. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE). PLoS One 2013;8:e67983
  • Chou MY, Hartvigsen K, Hansen LF, et al. Oxidation-specific epitopes are important targets of innate immunity. J Intern Med 2008;263:479–88
  • Barnett BP, Handa JT. Retinal microenvironment imbalance in dry age-related macular degeneration: a mini-review. Gerontology 2013;59:297–306
  • Drobek-Slowik M, Karczewicz D, Safranow K. The potential role of oxidative stress in the pathogenesis of the age-related macular degeneration (AMD). Postepy Hig Med Dosw (Online) 2007;61:28–37
  • Weismann D, Hartvigsen K, Lauer N, et al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 2011;478:76–81
  • Kanthan GL, Mitchell P, Burlutsky G, et al. Pseudoexfoliation syndrome and the long-term incidence of cataract and cataract surgery: the blue mountains eye study. Am J Ophthalmol 2013;155:83–8.e1
  • Zoric L, Miric D, Milenkovic S, et al. Pseudoexfoliation syndrome and its antioxidative protection deficiency as risk factors for age-related cataract. Eur J Ophthalmol 2006;16:268–73
  • Borazan M, Karalezli A, Kucukerdonmez C, et al. Aqueous humor and plasma levels of vascular endothelial growth factor and nitric oxide in patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. J Glaucoma 2010;19:207–11
  • Koliakos GG, Konstas AG, Schlotzer-Schrehardt U, et al. 8-Isoprostaglandin F2a and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol 2003;87:353–6
  • Gartaganis SP, Georgakopoulos CD, Patsoukis NE, et al. Glutathione and lipid peroxide changes in pseudoexfoliation syndrome. Curr Eye Res 2005;30:647–51
  • Gartaganis SP, Patsoukis NE, Nikolopoulos DK, Georgiou CD. Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome. Eye 2007;21:1406–11
  • Yimaz A, Adiguzel U, Tamer L, et al. Serum oxidant/antioxidant balance in exfoliation syndrome. Clin Exp Ophthalmol 2005;33:63–6
  • Yilmaz A, Ayaz L, Tamer L. Selenium and pseudoexfoliation syndrome. Am J Ophthalmol 2011;151:272–6
  • Yagci R, Ersoz I, Erdurmus M, et al. Protein carbonyl levels in the aqueous humour and serum of patients with pseudoexfoliation syndrome. Eye 2008;22:128–31
  • Yagci R, Gurel A, Ersoz I, et al. The activities of paraoxonase, xanthine oxidase, adenosine deaminase and the level of nitrite in pseudoexfoliation syndrome. Ophthalmic Res 2009;42:155–9
  • Yagci R, Gurel A, Ersoz I, et al. Oxidative stress and protein oxidation in pseudoexfoliation syndrome. Curr Eye Res 2006;31:1029–32
  • Beyazyildiz E, Cankaya AB, Beyazyildiz O, et al. Disturbed oxidant/antioxidant balance in aqueous humour of patients with exfoliation syndrome. Jpn J Ophthalmol 2014;58:353–8
  • Cumurcu T, Gunduz A, Ozyurt H, et al. Increased oxidative stress in patients with pseudoexfoliation syndrome. Ophthalmic Res 2010;43:169–72
  • Demirdogen BC, Ceylan OM, Isikoglu S, et al. Evaluation of oxidative stress and paraoxonase phenotypes in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Clin Lab 2014;60:79–86
  • Tanito M, Kaidzu S, Takai Y, Ohira A. Status of systemic oxidative stresses in patients with primary open-angle glaucoma and pseudoexfoliation syndrome. PLoS One 2012;7:e49680
  • Yildirim Z, Ucgun NI, Kilic N, et al. Pseudoexfoliation syndrome and trace elements. Ann NY Acad Sci 2007;1100:207–12
  • Ucakhan OO, Karel F, Kanpolat A, et al. Superoxide dismutase activity in the lens capsule of patients with pseudoexfoliation syndrome and cataract. J Cataract Refract Surg 2006;32:618–22
  • Strzalka-Mrozik B, Prudlo L, Kimsa MW, et al. Quantitative analysis of SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens epithelium of patients with pseudoexfoliation syndrome. Mol Vis 2013;19:1341–9
  • Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 2007;317:1397–400
  • Chiras D, Tzika K, Kokotas H, et al. Development of novel LOXL1 genotyping method and evaluation of LOXL1, APOE and MTHFR polymorphisms in exfoliation syndrome/glaucoma in a Greek population. Mol Vis 2013;19:1006–16
  • Kroupis C, Chiras D, Tzika K, Kokotas H. Molecular genetics of pseudoexfoliation syndrome (PXFS) and glaucoma (PXFG). J Genet Syndr Gene Ther 2013;4:e118. doi: 10.4172/2157-7412.1000e118
  • Schlotzer-Schrehardt U. Genetics and genomics of pseudoexfoliation syndrome/glaucoma. Middle East Afr J Ophthalmol 2011;18:30–6
  • Kang JH, Loomis S, Wiggs JL, et al. Demographic and geographic features of exfoliation glaucoma in 2 United States-based prospective cohorts. Ophthalmology 2012;119:27–35
  • Stein JD, Pasquale LR, Talwar N, et al. Geographic and climatic factors associated with exfoliation syndrome. Arch Ophthalmol 2011;129:1053–60
  • Oleggini R, Gastaldo N, Di Donato A. Regulation of elastin promoter by lysyl oxidase and growth factors: cross control of lysyl oxidase on TGF-beta1 effects. Matrix Biol 2007;26:494–505
  • Voloshenyuk TG, Hart AD, Khoutorova E, Gardner JD. TNF-alpha increases cardiac fibroblast lysyl oxidase expression through TGF-beta and PI3Kinase signaling pathways. Biochem Biophys Res Commun 2011;413:370–5
  • Majora M, Wittkampf T, Schuermann B, et al. Functional consequences of mitochondrial DNA deletions in human skin fibroblasts: increased contractile strength in collagen lattices is due to oxidative stress-induced lysyl oxidase activity. Am J Pathol 2009;175:1019–29
  • Kliment CR, Oury TD. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med 2010;49:707–17
  • Abu-Amero KK, Kondkar AA, Mousa A, et al. Decreased total antioxidants status in the plasma of patients with pseudoexfoliation glaucoma. Mol Vis 2011;17:2769–75
  • Zenkel M, Krysta A, Pasutto F, et al. Regulation of lysyl oxidase-like 1 (LOXL1) and elastin-related genes by pathogenic factors associated with pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci 2011;52:8488–95
  • Yuksel B, Schlotzer-Schrehardt U, Pehlivan O, Topaloglu E. A 13-year-old girl with presumed pseudoexfoliation. Acta Ophthalmol Scand 2005;83:626–7
  • Konstas AG, Ritch R, Bufidis T, et al. Exfoliation syndrome in a 17-year-old girl. Arch Ophthalmol 1997;115:1063–7
  • Amini H, Daneshvar R, Eslami Y, et al. Early-onset pseudoexfoliation syndrome following multiple intraocular procedures. J Ophthalmic Vis Res 2012;7:190–6
  • Arnarsson A, Jonasson F, Damji KF, et al. Exfoliation syndrome in the Reykjavik Eye Study: risk factors for baseline prevalence and 5-year incidence. Br J Ophthalmol 2010;94:831–5
  • Pasquale LR, Wiggs JL, Willett WC, Kang JH. The Relationship between caffeine and coffee consumption and exfoliation glaucoma or glaucoma suspect: a prospective study in two cohorts. Invest Ophthalmol Vis Sci 2012;53:6427–33
  • Christensen B, Mosdol A, Retterstol L, et al. Abstention from filtered coffee reduces the concentrations of plasma homocysteine and serum cholesterol – a randomized controlled trial. Am J Clin Nutr 2001;74:302–7
  • Xu F, Zhang L, Li M. Plasma homocysteine, serum folic acid, serum vitamin B12, serum vitamin B6, MTHFR and risk of pseudoexfoliation glaucoma: a meta-analysis. Graefe's Arch Clin Exp Ophthalmol 2012;250:1067–74
  • Tyagi N, Sedoris KC, Steed M, et al. Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 2005;289:H2649–56
  • Maron BA, Loscalzo J. Should hyperhomocysteinemia be treated in patients with atherosclerotic disease? Curr Atheroscler Rep 2007;9:375–83
  • Pinar-Sueiro S, Martinez-Alday N. Treatment of intraocular-pressure-independent phenomena in pseudoexfoliation syndrome. Arch Soc Espanol Oftalmol 2011;86:275–6
  • Tosun M, Erdurmus M, Bugdayci G, et al. Aqueous humour and serum concentration of asymmetric dimethyl arginine in pseudoexfoliation syndrome. Br J Ophthalmol 2012;96:1137–40
  • Mikropoulos DG, Mallini P, Michopoulou A, et al. Asymmetric dimethyloarginin (ADMA) concentration in the aqueous humor of patients with exfoliation syndrome or exfoliative glaucoma. Curr Eye Res 2013;38:266–70
  • Liu X, Zhao Y, Gao J, et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Gen 2004;36:178–82
  • Zenkel M, Kruse FE, Naumann GO, Schlotzer-Schrehardt U. Impaired cytoprotective mechanisms in eyes with pseudoexfoliation syndrome/glaucoma. Invest Ophthalmol Vis Sci 2007;48:5558–66
  • Browne JG, Ho SL, Kane R, et al. Connective tissue growth factor is increased in pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 2011;52:3660–6
  • Djordjevic-Jocic J, Zlatanovic G, Veselinovic D, et al. Transforming growth factor beta1, matrix-metalloproteinase-2 and its tissue inhibitor in patients with pseudoexfoliation glaucoma/syndrome. Vojnosanit Pregl 2012;69:231–6
  • Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Rad Biol Med 2010;48:1–15
  • Wang H, Kochevar IE. Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Rad Biol Med 2005;38:890–7
  • Galli A, Svegliati-Baroni G, Ceni E, et al. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 2005;41:1074–84
  • Yang JJ, Tao H, Huang C, Li J. Nuclear erythroid 2-related factor 2: a novel potential therapeutic target for liver fibrosis. Food Chem Toxicol 2013;59:421–7
  • Purnomo Y, Piccart Y, Coenen T, et al. Oxidative stress and transforming growth factor-beta1-induced cardiac fibrosis. Cardiovasc Hematol Disord Drug Targets 2013;13:165–72
  • Schlotzer-Schrehardt U. New pathogenetic insights into pseudoexfoliation syndrome/glaucoma. Therapeutically relevant? Ophthalmologe 2012;109:944–51
  • Koliakos GG, Befani CD, Mikropoulos D, et al. Prooxidant-antioxidant balance, peroxide and catalase activity in the aqueous humour and serum of patients with exfoliation syndrome or exfoliative glaucoma. Graefe's Arch Clin Exp Ophthalmol 2008;246:1477–83
  • Ferreira SM, Lerner SF, Brunzini R, et al. Antioxidant status in the aqueous humour of patients with glaucoma associated with exfoliation syndrome. Eye 2009;23:1691–7
  • Zanon-Moreno V, Marco-Ventura P, Lleo-Perez A, et al. Oxidative stress in primary open-angle glaucoma. J Glaucoma 2008;17:263–8
  • Kokotas H, Kroupis C, Chiras D, et al. Biomarkers in primary open angle glaucoma. Clin Chem Lab Med 2012;50:2107–19
  • Puska P, Vesti E, Tomita G, et al. Optic disc changes in normotensive persons with unilateral exfoliation syndrome: a 3-year follow-up study. Graefe's Arch Clin Exp Ophthalmol 1999;237:457–62
  • Rao A. Normotensive pseudoexfoliation glaucoma: a new phenotype? Semin Ophthalmol 2013;28:256. doi: 10.3109/08820538.2013.771194. Epub 2013 Apr 29
  • Komur B, Kara S. Normotensive pseudoexfoliation glaucoma reports. Semin Ophthalmol 2013;28:256
  • Grodum K, Heijl A, Bengtsson B. Risk of glaucoma in ocular hypertension with and without pseudoexfoliation. Ophthalmology 2005;112:386–90
  • Li GY, Osborne NN. Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose)polymerase and apoptosis-inducing factor. Brain Res 2008;1188:35–43
  • Tezel G, Yang X. Caspase-independent component of retinal ganglion cell death, in vitro. Invest Ophthalmol Vis Sci 2004;45:4049–59
  • Tezel G, Yang X, Cai J. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest Ophthalmol Vis Sci 2005;46:3177–87
  • Izzotti A, Bagnis A, Sacca SC. The role of oxidative stress in glaucoma. Mutat Res 2006;612:105–14
  • Tezel G. The role of glia, mitochondria, and the immune system in glaucoma. Invest Ophthalmol Vis Sci 2009;50:1001–12
  • Park CH, Kim JW. Effect of advanced glycation end products on oxidative stress and senescence of trabecular meshwork cells. Korean J Ophthalmol 2012;26:123–31
  • Chrysostomou V, Rezania F, Trounce IA, Crowston JG. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol 2013;13:12–15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.