212
Views
13
CrossRef citations to date
0
Altmetric
Review Article

The role of microRNAs in the pathogenesis of HIV-related lymphomas

, , , , , , , & show all
Pages 232-241 | Received 26 Nov 2014, Accepted 12 Mar 2015, Published online: 28 Jul 2015

References

  • Swerdlow SH, Campo E, Harris NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC, 2008;712–3
  • Hoffmann C, Hentrich M, Gillor D, et al. Hodgkin lymphoma is as common as non-Hodgkin lymphoma in HIV-positive patients with sustained viral suppression and limited immune deficiency: a prospective cohort study. HIV Med 2015;16:261–4
  • Davidson A, Wainwright RD, Stones DK, et al. Malignancies in South African children with HIV. J Pediatr Hematol Oncol 2014;36:111–17
  • Gopal S, Achenbach CJ, Yanik EL, et al. Moving forward in HIV associated cancer. J Clin Oncol 2014;32:876–80
  • Wiggill TM, Mayne ES, Willem P. Challenges in lymphoma diagnosis in HIV positive patients in South African setting. Transfus Apher Sci 2013;49:157–62
  • Barta SK, Xue X, Wang D, et al. Treatment factors affecting outcomes in HIV-associated non-Hodkin lymphomas: a pooled analysis of 1546 patients. Blood 2013;122:3251–62
  • Hentrich M, Hoffmann C, Mosthaf F, et al. Therapy of HIV-associated lymphoma-recommendations of the oncology working group of the German Study Group of Physicians in Private Practice treating HIV-Infected Patients (DAGNÄ), in cooperation with the German AIDS Society (DAIG). Ann Hematol 2014;93:913–21
  • Matsunaga A, Hishima T, Tanaka N, et al. DNA methylation profiling can classify HIV-associated lymphomas. AIDS 2014;28:503–10
  • Gloghini A, Dolcetti R, Carbone A. Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology. Semin Cancer Biol 2013;23:457–67
  • Chokunonga E, Borok MZ, Chirenje ZM, et al. Trends in the incidence of cancer in the black population of Harare, Zimbabwe 1991–2010. Int J Cancer 2013;133:721–9
  • Epeldegui M, Vendrame E, Martínez-Maza O. HIV-associated immune dysfunction and viral infection: role in the pathogenesis of AIDS-related lymphoma. Immunol Res 2010;48:72–83
  • Epeldegui M, Thapa DR, De la Cruz J, et al. CD40 ligand (CD154) incorporated into HIV virions induces activation-induced cytidine deaminase (AID) expression in human B lymphocytes. PLoS One 2010;5:e11448
  • Abayomi EA, Somers A, Grewal R, et al. Impact of the HIV epidemic and anti-retroviral treatment policy on lymphoma incidence and subtypes seen in the Western Cape of South Africa, 2002–2009: preliminary findings of the Tygerberg Lymphoma Study Group. Transfus Apher Sci 2011;44:161–6
  • Chetty M, Sudi S, Abayomi EA. Prevalence and spectrum of head and neck lymphomas at Tygerberg Hospital, South Africa, 2003 to 2007. SADJ 2012;67:270, 272–4, 276–7
  • Tanon A, Jaquet A, Ekouevi DK, et al. The spectrum of cancers in West Africa: associations with human immunodeficiency virus. PLoS One 2012;7:e48108
  • Wabinga HR, Nambooze S, Amulen PM, et al. Trends in the incidence of cancer in Kampala, Uganda 1991–2010. Int J Cancer 2014;135:432–9
  • Alkali NH, Bwala SA, Nyandaiti YW, Danesi MA. Neuro-AIDS in sub-Saharan Africa: a clinical review. Ann Afr Med 2013;12:1–10
  • Mbulaiteye SM, Pullarkat ST, Nathwani BN, et al. Epstein–Barr virus patterns in US Burkitt lymphoma tumors from the SEER residual tissue repository during 1979–2009. APMIS 2014;122:5–15
  • Pantanowitz L, Pihan G, Carbone A, Dezube BJ. Differentiating HIV-associated non-Hodgkin's lymphomas with similar plasmacellular differentiation. J HIV Ther 2009;14:24–33. 19839364
  • Carbone A, Gloghini A, Serraino D, Spina M. HIV-associated Hodgkinlymphoma. Curr Opin HIV AIDS 2009;4:3–10
  • Young LS, Murray PG. Epstein Barr virus and oncogenesis: from latent genes to tumours. Oncogene 2003;22:5108–21
  • Thorley-Lawson DA, Gross A. Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 2004;350:1328–37
  • Davidson-Moncada JK, McDuffee E, Roschewski M. CD5 + large B-cell lymphoma with hemophagocytosis. J Clin Oncol 2013;31:e76–9
  • Dunleavy K, Roschewski M, Wilson WH. Lymphomatoid granulomatosis and other Epstein–Barr virus associated lymphoproliferative processes. Curr Hematol Malig Rep 2012;7:208–15
  • Roschewski M, Wilson WH. EBV-associated lymphomas in adults. Best Pract Res Clin Haematol 2012;25:75–89
  • Campbell DM, Rappocciolo G, Jenkins FJ, Rinaldo CR. Dendritic cells: key players in human herpesvirus 8 infection and pathogenesis. Front Microbiol 2014 Aug 28;5:452. doi: 10.3389/fmicb.2014.00452. eCollection 2014
  • Song JY, Jaffe ES. HHV-8-positive but EBV-negative primary effusion lymphoma. Blood 2013;122:3712
  • Kashiwagi T, Minagawa K, Kawano H, et al. HIV-negative, HHV-8-unrelated primary effusion lymphoma-like lymphoma with genotypic infidelity and c-MYC expression. Ann Hematol 2014;93:1609–10
  • Baresova P, Musilova J, Pitha PM, Lubyova B. p-53 tumor suppressor protein stability and transcriptional activity are targeted by Kaposi's sarcoma-associated herpesvirus encoded viral interferon regulatory factor 3. Mol Cell Biol 2014;34:386–99
  • Mesri EA, Cavallin LE, Ashlock BM, et al. Molecular studies and therapeutic targeting of Kaposi's sarcoma herpes virus (KSHV/HHV-8) oncogenesis. Immunol Res 2013;57:159–65
  • Chen D, Gao Y, Nicholas J. Human herpesvirus-8 interleukin-6 contributes to primary effusion lymphoma cell viability via suppression of proapoptotic cathepsin D, a cointeraction partner of vitamin K epoxide reductase complex subunit 1 variant 2. J Virol 2014;88:1025–38
  • Cousins E, Nicholas J. Molecular biology of human herpesvirus 8: novel functions and virus-host interactions implicated in viral pathogenesis and replication. Rec Results Cancer Res 2014;193:227–68
  • Cousins E, Nicholas J. Role of human herpesvirus 8 interleukin-6 activated gp130 signal transducer in primary effusion lymphoma cell growth and viability. J Virol 2013;87:10816–27
  • Sneller MC, Lane HC. HIV/IL-2 and EBV-associated lymphoproliferative diseases: cause and effect or coincidence? HIV Med 2014;15:1–2
  • Kowalkowski MA, Mims MP, Amiran ES, et al. Effect of immune reconstitution on the incidence of HIV-related Hodgkin lymphoma. PLoS One 2013;8:e77409
  • Caccuri F, Giagulli C, Bugatti A, et al. HIV-1 matrix protein p17 promotes angiogenesis via chemokine receptors CXCR1 and CXCR2. Proc Natal Accad Sci USA 2012;109:14580–5
  • Kanıtez M, Kapmaz M, Allay N, et al. Hemophagocytic syndrome associated with immune reconstitution inflammatory syndrome in a patient with AIDS related Burkitt's leukemia/lymphoma. Case Rep Med 2014;2014:308081
  • Xicoy B, Ribera JM, Müller M, et al. Dose intensive chemotherapy including rituximab is highly effective but toxic in human immunodeficiency virus-infected patients with Burkitt lymphoma/leukemia: parallel study of 81 patients. Leuk Lymphoma 2014;55:2341–8
  • Komatsu N, Kawase-Koga Y, Mori Y, et al. HIV-associated Burkitt lymphoma in a Japanese patient with early submandibular swelling. BMC Res Notes 2013;6:557
  • Coutinho R, Pria AD, Gandhi S, et al. HIV status does not impair the outcome of patients diagnosed with diffuse large B-cell lymphoma treated with R-CHOP in the cART era. AIDS 2014;28:689–97
  • Prokesch BC, Shiloh MU. EBV-driven HIV-associated diffuse large B-cell lymphoma causing profound lactic acidosis. Blood 2014;124:842
  • Dalia S, Chavez J, Little B, et al. Serum albumin retains independent prognostic significance in diffuse large B-cell lymphoma in the post-rituximab era. Ann Hematol 2014;93:1305–12
  • de Lastours V, LeGoff J, Brière J, et al. Lymphoma and Epstein–Barr virus DNA in blood during interleukin-2 therapy in antiretroviral naïve HIV-1-infected patients: a substudy of the ANRS 119 trial. HIV Med 2014;15:23–90
  • Cesarman E. Pathology of lymphoma in HIV. Curr Opin Oncol 2013;25:487–94
  • Gopal S, Patel MR, Yanik EL, et al. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J Natal Cancer Inst 2013;105:1221–9
  • Nagahata Y, Kato A, Imai Y, Ishikawa T. HIV-related NK/T-cell lymphoma in the brain relapsed during intensive chemotherapy but regressed after chemotherapy discontinuation: the importance of maintaining cellular immunity. Int J Hematol 2014;100:402–6
  • Manley K, Dunning J, Nelson M, Bower M. HIV-associated gastric natural killer/T-cell lymphoma. Int J STD AIDS 2012;23:66–7
  • D'Souza GA, Sunad R, Rajagopalan N, et al. NK/T-cell lymphoma in AIDS. J Assoc Physicians India 2006;54:890–2
  • Morscio J, Dierickx D, Nijs J, et al. Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: single-center series of 25 cases and meta-analyses of 277 reported cases. Am J Surg Pathol 2014;38:875–86
  • Gong J, Alkan S, Anand S. A case of cutaneous plasmablastic lymphoma in HIV/AIDS with disseminated cryptoccocus. Case Rep Oncol Med 2013;2013:862585
  • Sharma A, Tilak TV, Lodha R, et al. Long-term survivor of human immunodeficiency virus-associated plasmablastic lymphoma. Indian J Med Paediatr Oncol 2013;34:96–8
  • Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961;3:318–56
  • Lee RC, Feinbaum RL, Ambros V. The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54
  • Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009;136:642–55
  • Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian miRNAs are conserved targets of microRNAs. Genome Res 2009;19:92–105
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215–33
  • Rigoutsos I. New tricks for animal microRNAs: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res 2009;69:3245–8
  • Song JH, Meltzer SJ. MicroRNAs in pathogenesis, diagnosis and treatment of gastroesophageal cancers. Gastroenterology 2012;143:35–47.e2
  • Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J 2007;26:775–83
  • Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 2011;12:846–60
  • Altuvia Y, Landgraf P, Lithwick G, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 2005;33:2697–706
  • Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004;23:4051–60
  • Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006;13:1097–101
  • Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415–19
  • Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the microprocessor complex. Nature 2004;432:231–5
  • Gregory RI, Yan KP, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNAs. Nature 2004;432:235–40
  • Schwarz DS, Hutvágner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003;115:199–208
  • Ambros V. The functions of animal microRNAs. Nature 2004;431:350–5
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 2004;116:281–97
  • Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004;431:343–9
  • Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell 2007;26:611–23
  • Pasquinelli AE, Reinhart BJ, Slack F, et al.Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000;408:86–9
  • Giraldez AJ, Mishima Y, Rihel J, et al. Zebrafish MIR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006;312:75–9
  • Cohen SM, Brennecke J. Developmental biology. Mixed messages in early development. Science 2006;312:65–6
  • Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natal Accad Sci USA 2006;103:4034–9
  • Baek D, Villén J, Shin C, et al. The impact of mRNA on protein output. Nature 2008;455:64–71
  • Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNAs levels. Nature 2010;466:835–40
  • Yang W, Chendrimada TP, Wang Q, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006;13:13–21
  • Hunter T. Cooperation between oncogenes. Cell 1991;64:249–70
  • Weinberg RA. Tumor suppressor genes. Science 1991;254:1138–346
  • Croce CM, Calin GA. miRNAs, cancer and stem cell division. Cell 2005;122:6–7
  • Yamanaka S, Olaru AV, An F, et al. MicroRNA21 inhibits Serpini1 a gene with novel tumour suppressive effects in gastric cancer. Dig Liver Dis 2012;44:589–96
  • Calin GA, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005;353:1793–801
  • Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259–69
  • Calin GA, Croce CM. MicroRNA signature in human cancers. Nat Rev Cancer 2006;6:857–66
  • Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancer. Proc Natal Accad Sci USA 2004;101:2999–3004
  • Croce CM. Oncogenes and cancer. N Engl J Med 2008;358:502–11
  • Esteller M. Epigenetics in cancer. N Engl J Med 2008;358:1148–59
  • Fandy TE, Gore SD. Epigenetic targets in human neoplasms. Epigenomics 2010;2:221–32
  • Thomson JM, Newman M, Parker JS, et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006;20:2202–7
  • Karube Y, Tanaka H, Osada H, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005;96:111–15
  • Harris KS, Zhang Z, McManus MT, et al. Dicer function is essential for lung epithelium morphogenesis. Proc Natal Accad Sci USA 2006;103:2208–13
  • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501–12
  • Fu M, Wang C, Li Z, et al. Minireview: CyclinD1: normal and abnormal functions. Endocrinology 2004;145:5439–47
  • Jiang W, Kahn SM, Tomita N, et al. Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res 1992;52:2980–3
  • Lee RJ, Albanese C, Fu M, et al. Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 2000;20:672–83
  • Yu Z, Wang C, Wang M, et al. A cyclinD1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 2008;182:509–17
  • Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834–8
  • Deshpande A, Pastore A, Deshpande AJ, et al. 3′ UTR mediated regulation of the cyclin D1 proto-oncogene. Cell Cycle 2009;8:3592–600
  • Wang C, Li Z, Lu Y, et al. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natal Accad Sci USA 2006;103:11567–72
  • Sakamaki T, Casimiro MC, Ju X, et al. Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol 2006;26:5449–69
  • Li Z, Jiao X, Wang C, et al. Cyclin D1 induction of cellular migration requires p27(KIP1). Cancer Res 2006;66:9986–94
  • Bahner I, Lamb J, Mayo MA, Hay RT. Expression of the genome of potato leaf roll virus: read through of the coat protein termination codon in vivo. J Gen Virol 1990;71:2251–6
  • Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med 2008;359:2814–23
  • Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 2007;8:444–8
  • Fuse M, Nohata N, Kojima S, et al. Restoration of mRNA-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol 2011;38:1093–101
  • Fidler IJ. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat Rev Cancer 2003;3:453–8
  • Langley RR, Fidler IJ. The seed and soil hypothesis revisited – the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 2011;128:2527–35
  • Zhao XL, Sun T, Che N, et al. Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial-mesenchymal transition regulator Twist1. J Cell Mol Med 2011;15:691–700
  • Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010;12:247–56
  • Tan HX, Wang Q, Chen LZ, et al. MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol 2010;27:654–60
  • Khew-Goodall Y, Goodall GJ. Myc-modulated mRNA-9 makes more metastasis. Nat Cell Biol 2010;12:209–11
  • Savagner P, Kusewitt DF, Carver EA, et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 2005;202:858–66
  • Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism and therapeutic intervention. J Am Soc Nephrol 2004;15:1–12
  • Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nat Rev Cancer 2002;2:442–54
  • Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008;22:894–907
  • Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008;283:14910–14
  • Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 2008;9:582–9
  • Ladeiro Y, Couchy G, Balabaud C, et al. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 2008;47:1955–63
  • Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007;67:8699–707
  • Nam EJ, Yoon H, Kim SW, et al. MicroRNA expression in serous ovarian carcinoma. Clin Cancer Res 2008;14:2690–5
  • Meng F, Henson R, Lang M, et al. Involvement of human microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006;130:2113–29
  • Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 2004;83:249–89
  • Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006;10:515–27
  • Mueller MM, Fusenig NE. Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004;4:839–49
  • Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004;432:332–7
  • Spaderna S, Schmalhofer O, Hlubek F, et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 2006;131:830–40
  • Ohira T, Gemmill RM, Ferguson K, et al. WNT7a induces E-cadherin in lung cancer cells. Proc Natal Accad Sci USA 2003;100:10429–34
  • Robertus JL, Harms G, Blokzijl T, et al. Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. Mod Pathol 2009;22:547–55
  • Danielson LS, Reavie L, Coussens M, et al. Limited miR-17–92 overexpression drives hematologic malignancies. Leuk Res 2015;39:335–41
  • Li Y, Choi PS, Casey SC, et al. MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 2014;26:262–72
  • Lenze D, Leoncini L, Hummel M, et al. The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia 2011;25:1869–76
  • Lawrie CH. MicroRNAs and haematology: small molecule, big function. Br J Haematol 2007;137:503–12
  • Lawrie CH. MicroRNA expression in lymphoma. Exp Opin Biol Ther 2007;7:1363–74
  • Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 2007;121:1156–61
  • Jongen-Lavrencic M, Sun SM, Dijkstra MK, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008;111:5078–85
  • Navarro A, Gaya A, Martinez A, et al. MicroRNA expression profiling in classic Hodgkin lymphoma. Blood 2008;111:2825–32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.