220
Views
302
CrossRef citations to date
0
Altmetric
Research Article

Immunological Aspects of Experimental Allergic Encephalomyelitis and Multiple Sclerosis

, &
Pages 121-182 | Published online: 27 Sep 2008

References

  • Adams R. D., Kubik C. S. The morbid anatomy of the demyelinative diseases. Am J Med 1952; 12: 510–546
  • Quarles R. H., Morell P, McFarlin D. E. Diseases involving myelin. Basic neurochemistry, G. Siegel, B. Agranoff, R. W. Albers, P Molinoff. Raven, New York 1989; 697–713
  • Adams C. W. A colour atlas of multiple sclerosis and other myelin disorders. Wolfe Medical, London 1989
  • Suzuki K. Genetic disorders of lipid, glycoprotein, and mucopolysaccharide metabolism. Basic neurochemistry, C. Siegel, B. Agranoff, R. W. Albers, et al. Raven, New York 1989; 715–32
  • Moser H. W., Moser A. E., Singh I., et al. Adrenoleukodystrophy – survey of 303 cases: biochemistry, diagnosis and therapy. Ann Neurol 1984; 16: 628–41
  • Ludwin S. K. CNS demyelination and remyelination in the mouse. An ultrastructural study of cuprizone toxicity. Lab Invest 1978; 39: 597–612
  • Smith M. L., Benjamin J. A. Model systems for the perturbations of myelin metabolism. Myelin, P. Morell. Plenum Press, New York 1984; 441–87
  • Martin R., McFarland HF, McFarlin D. E. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992; 10: 153–87
  • Raine C. S. Multiple sclerosis and chronic relapsing EAE: comparative ultrastructural neuropathology. Multiple sclerosis, J. F. Hallpike, CW Adams, W. W. Tourtellotte. Williams & Wilkins, Baltimore 1983; 413–78
  • Waxman S. G. Structure and function of the myelinated fiber. Handbook of clinical neurology. Demyelinating diseases, P. J. Vinken, G. W. Bruyn, H. L. Klawans, et al. Elsevier Science Publishers Amsterdam, New York 1985; Vol. 3.: 1–28.
  • McFarlin D. E., McFarland H. F. Multiple sclerosis. Part I. N Engl J Med 1982; 307: 1183–88
  • McFarlin D. E., McFarland H. F. Multiple sclerosis. Part I. I. N Engl J Med 1982; 307: 1246–51
  • Johnson R. T., Griffin D. E. Virus-induced autoimmune demyelinating disease of the central nervous system. Concepts in viral pathogenesis II, A.L. Notkins, M.B.A. Oldstone. Springer, New York 1986; 203–09
  • Remlinger J. Accidents paralytiques au cours du traitment antirabique. Ann Inst Pasteur 1905; 19: 625–46
  • Rivers T. M., Sprunt DH, Berry G. P. Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 1933; 58: 39–53
  • Fritz R. B., McFarlin D. E. Encephalitogenic epitopes of myelin basic protein. Antigenic determinants and immune response, EE Sercarz. Kagen Basel, Chem Immunol, 46: 101–25
  • Zamvil SS, Steinman L. The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 1990; 8: 579–621
  • Raine C. S. Biology of disease: the analysis of autoimmune demyelination: its impact on multiple sclerosis. Lab Invest 1984; 50: 608–35
  • Massacesi L., Joshi N., Lee P. D., et al. Experimental allergic encephalomyelitis in cynomolgus monkeys. Quantitation of T cell responses in peripheral blood. J Clin Invest 1992; 90: 399–404
  • Fritz R. B., Skeen M. J., Jen-Chou C. H., et al. Major histocompatibility complex-linked control of the murine immune response to myelin basic protein. J Immunol 1985; 134: 2328–32
  • Williams K. A., Deber C. M. The structure and function of central nervous system myelin. Crit Rev Clin Lab Sci 1993; 30: 29–64
  • Diehl H-J, Schaich M., Budzinski R-M, et al. Individual exons encode the integral membrane domains of human myelin proteolipid protein. Proc Natl Acad Sci USA 1986; 83: 9807–11
  • Kamholz J., de Ferra F., Puckett C., et al. Identification of three forms of human myelin basic protein by cDNA cloning. Proc Natl Acad Sci USA 1986; 83: 4962–66
  • Kamholz J., Toffenetti J, Lazzadni R. A. Organization and expression of the human myelin basic protein gene. J Neurosci Res 1988; 21: 62–70
  • Kurihara T., Takahashi Y., Nishiyama A., et al. cDNA cloning and amino acid sequence of human brain 2',3'-cyclic-nucleotide 3'-phosphodiesterase. BiochemBiophys Res Comm 1988; 152: 837–42
  • Sato S., Fujita N., Kurihara T., et al. cDNA cloning and amino acid sequence for human myelin-associated glycoprotein. Biochem Biophys Res Comm 1989; 163: 1473–80
  • Viskochil D., Cawthon R., O'Connell P., et al. The gene encoding the oligodendrocyte myelin glycoprotein is embedded within the neurofibromatous type 1 gene. Mol Cell Biol 1991; 11: 906–12
  • Wood D. D., Moscarello M. A. The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem. 1989; 264: 5121–27
  • Whitaker J. N., Kirk K. A., Herman P. K., et al. An immunochemical comparison of human myelin basic protein and its modified, citrullinated form, C8. J Neuroimmunol 1992; 36: 135–46
  • Deber C. M., Cheifetz S, Moscarello M. A. Microheterogeneity of bovine myelin basic protein studied by nuclear magnetic resonance spectroscopy. Biopolymers 1983; 22: 377–80
  • Moscarello M. A. Myelin basic protein: a dynamically changing structure. Dynamic interactions of myelin proteins. John Wiley & Sons, New York 1990; 25–48
  • Shiota C., Miura M, Mikoshiba K. Developmental profile and differential localization of mRNAs of myelin basic protein (MBP and PLP) in oligodendrocytes in the brain and in culture. Dev Brain Res 1989; 45: 83–94
  • Jordan C. A., Friedrich V. L., de Ferra F., et al. Differential exon expression in myelin basic protein transcripts during central nervous system (CNS) remyelination. Cell Mol Neurobiol 1990; 10: 3–18
  • Deibler G. E., Martenson RE, Kies M. W. Large-scale preparation of myelin basic protein from central nervous system tissue of several mammalian species. Prep Biochem 1972; 2: 139–65
  • Deibler G. E., Martenson R. E. Chromatographic fractionation of myelin basic protein. Partial characterization and methylarginine contents of multiple forms. J Biol Chem 1973; 248: 2392–96
  • Martenson R. E. Myelin basic protein speciation. Experimental allergic Encephalomyelitis: a useful model for multiple sclerosis, A. C. Alvord. Alan R. Liss, New York 1984; 146–511
  • Segal B. M., Raine C. S., McFarlin D. E., et al. Experimental allergic encephalomyelitis by the peptide encoded by exon 2 of the MBP gene – a peptide implicated in remyelination. J Neuroimmunol 1994, in press
  • Voskuhl R. R., McFarlin D. E., Stone R., et al. T-lymphocyte recognition of a portion of myelin basic protein encoded by an exon expressed during myelination. J Neuroimmunol 1993; 42: 187–92
  • Martin R., Whitaker J. N., Rhame L., et al. Citrulline-containing myelin basic protein is recognized by T-cell lines derived from multiple sclerosis patients and healthy individuals. Neurology 1994; 44: 123–9
  • Whitaker J. N. Myelin encephalitogenic protein fragments in cerebrospinal fluid of patients with multiple sclerosis. Neurology 1977; 27: 911–20
  • Whitaker J. N. The presence of immunoreactive myelin basic protein peptide in urine of persons with multiple sclerosis. Ann Neurol 1987; 22: 648–55
  • Lees M. B., Brostoff S. Proteins of myelin. Myelin 2nd ed. Plenum Press, New York 1984; 197–224.
  • Lees M. B., Macklin W. B. Myelin proteolipidprotein. Neuronal and glial proteins: structure, function and clinical application, P. J. Marangos, IC Campbell, R. M. Cohen. Academic Press, San Diego 1988; 267–94.
  • Stoffel W., Giersiefen H., Hillen H., et al. Amino acid sequence of human and bovine brain myelin proteolipid protein (lipophilin) is completely conserved. Biol Chem Hoppe-Seyler 1985; 366: 627–35
  • Macklin W. B., Campagnoni C. W., Deininger P. L., et al. Structure and expression of the mouse myelin proteolipid protein gene. J Neurosci Res 1987; 18: 383–94
  • Trotter J. L., Clark H. B., Collins K. G., et al. Myelin proteolipid protein induces demyelinating disease in mice. J Neurol Sci 1987; 79: 173–88
  • Yoshimura T., Kunishita T., Sakai K., et al. Chronic experimental allergic encephalomyelitis in guinea pigs induced by proteolipid protein. J Neurol Sci 1985; 69: 47–58
  • Yamamura T., Namikawa T., Endoh M., et al. Experimental allergic encephalomyelitis induced by proteolipid apoprotein in Lewis rats. J Neuroimmunol 1986; 12: 143–53
  • Sobel R. A., van der Veen RC, Lees M. B. The immunopathology of chronic EAE induced in rabbits with bovine proteolipid protein. J Immunol 1986; 136: 157–63
  • Puckett C., Hudson L., Ono K., et al. Myelin-specific proteolipid protein is expressed in myelinating Schwann cells but is not incorporated into myelin sheaths. J Neurosci Res 1987; 18: 511–18
  • AgTawal H. C., Hartman B. K., Shearer W. T., et al. Purification and immunohistochemical localization of rat brain myelin proteolipid protein. J Neurochem 1977; 28: 495–508
  • Tabira T. Autoimmune demyelination in the central nervous system. Ann N Y Acad Sci 1988; 540: 187–201
  • Kennedy M. K., Tan L-J T, Dal Canto M. C., et al. Inhibition of murine relapsing experimental autoimmune encephalomyelitis by immune tolerance to proteolipid protein and its encephalitogenic peptides. J Immunol 1990; 144: 909–15
  • Kennedy M. K., Tan L-J, Dal Canto M. C., et al. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. J Immunol 1990; 145: 117–26
  • Linington C., Berger T., Perry L., et al. T cells specific for the myelin oligodendrocyte glycoprotein mediate an unusual autoimmune inflammatory response in the central nervous system. Eur J Immunol 1993; 23: 1364–72
  • Quarles R. H. Myelin-associated glycoprotein. Neurological research, vol II: neuronal and glial proteins, structures, function and clinical application, P. J. Marangos, I. Campbell, R. M. Cohen. Academic Press, New York 1988; 296–320
  • Steck A. J., Murray N., Justafre J. C., et al. Passive transfer studies in demyelinating neuropathy with IgM monoclonal antibodies to myelin-associated glycoprotein. J Neurol Neurosurg Psychiatry 1985; 48: 927–9
  • Steck A., Murray N., Meier C., et al. Demyelinating neuropathy and monoclonal IgM antibody to myelin-associated glycoprotein. Neurology 1988; 33: 19–23
  • Linington C., Bradl M., Lassmann H., et al. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelinJoligodendrocyte glycoprotein. Am J Pathol 1988; 130: 443–54
  • Cohen I. R. Multiple sclerosis-like disease induced in rabbits by immunization with brain gangliosides. Isr J Med Sci 1981; 17: 711–14
  • Moore GWR, Traugott U., Mokhtarian F., et al. Experimental autoimmune encephalomyelitis. A generation of demyelination by different myelin lipids. Lab Invest 1984; 51: 416–24
  • Levine S., Wenk E. J. A hyperacute form of allergic encephalomyelitis. Am J Pathol 1965; 47: 61–88
  • Bernard CCA, Camegie P. R. Experimental allergic encephalomyelitis in mice: immune response to mouse spinal cord and myelin basic protein. J Immunol 1973; 114: 1537–40
  • Wekerie H., Linington C., Lassmann H., et al. Cellular immune reactivity within the CNS. Trends Neuro Sci 1986; 9: 271–7
  • Cross A. H., Cannella B., Brosnan C. F., et al. Homing to central nervous system vasculature by antigen specific lymphocytes. I. Localization of 14C-labeled cells during acute, chronic and relapsing experimental allergic encephalomyelitis. Lab Invest 1990; 63: 162–70
  • Raine C. S., Cannella B., Duijvestijn A. M., et al. Homing to central nervous system vasculature by antigen-specific lymphocytes, n. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination. Lab Invest 1990; 63: 476–89
  • Paterson P. Y. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med 1960; 111: 119–33
  • Stone S. H. Transfer of allergic encephalomyelitis by lymph node cells in inbred guinea pigs. Science 1961; 134: 619–21
  • Panitch H. S., McFarlin D. E. Experimental allergic encephalomyelitis: enhancement of cell-mediated transfer by concanavalin A. J Immunol 1977; 119: 1134–7
  • Richeit J. R., Driscoll B. G., Kies M. W., et al. Adoptive transfer of experimental allergic encephalomyelitis: incubation of rat spleen cells with specific antigen. J Immunol 1979; 122: 494–6
  • Ben Nun A., Cohen I. R. Experimental autoimmune encephalomyelitis (EAE) mediated by T cell line: process of selection of lines and characterization of the T cells. J Immunol 1982; 129: 303–8
  • Pettinelli C. B., McFarlin D. E. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after. in vivo activation of lymph node cells by myelin basic protein: requirement for Lyt-1+2- T lymphocytes. J Immunol. 1981; 127: 1420–3
  • Zamvil S., Nelson P., Mitchell D., et al. T cell clones specific for myelin basic protein induce chronic relapsing EAE and demyelination. Nature 1985; 317: 355–8
  • Sakai K., Zamvil S. S., Mitchell D. J., et al. Prevention of experimental encephalomyelitis with peptides mat block interaction of T cells with major histocompatibility complex proteins. Proc Natl Acad Sci USA 1989; 86: 9470–4
  • Wraith D. C., Smilek D. E., Mitchell D. J., et al. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 1989; 59: 247–55
  • Urban J. L., Kumar V., Kono D. H., et al. Restricted use of the T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy. Cell 1988; 54: 577–92
  • Ben Nun A., Wekerie H., Cohen I. R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 1981; 11: 195–9
  • Zinkernagel R. M., Doherty P. C. Restriction of. in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974; 248: 701–2
  • Bjorkman P. J., Saper M. A., Samraoui B., et al. Structure of the human class I histocompatibility antigen HLA-A2. Nature 1987; 329: 506–12
  • Brown J. H., Jardetzky T. S., Gorga J. C., et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993; 364: 33–9
  • Rammensee H-G, Falk K, Rotzschke O. Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 1993; 11: 213–44
  • Germain R. N., Margulies D. H. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 1993; 11: 403–50
  • Nuchtern J. G., Biddison W. E., Klausner R. D. Class II MHC molecules can use the endogenous pathway of antigen presentation. Nature 1990; 339: 223–6
  • Jaraquemada D., Marti M, Long E. O. An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class Il-restricted T cells. J Exp Med 1990; 172: 947–54
  • Chothia C., Boswell DR, Lesk A. M. The outline structure of the T-cell alpha beta receptor. EMBO J 1988; 7: 3745–55
  • Jorgensen J. L., Reay P. A., Ehrich E. W., et al. Molecular components of T-cell recognition. Annu Rev Immunol 1992; 10: 835–73
  • Davis M. M., Bjorkman P. J. T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334: 395–402
  • Wilson R. K., Lai E., Concannon P., et al. Structure, organization and polymorphism of murine and human T cell receptor α and β chain gene families. Immunol Rev 1986; 101: 149–72
  • Jorgensen J. L., Esser U., de Fazekas ST, Groth B., et al. Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature 1992; 355: 224–30
  • Hohlfeld R. Neurological autoimmune disease and the trimolecular complex of T lymphocytes. Ann Neurol 1989; 25: 531–8
  • Acha-Orbea H., Steinman L, McDevitt H. O. T cell receptors in murine autoimmune diseases. Annu Rev Immunol 1989; 7: 371–406
  • Kumar V., Kono D. H., Urban J. L., et al. T cell receptor repertoire and autoimmune diseases. Annu Rev Immunol 1989; 7: 657–82
  • Jansson L., Olsson T., Hojeberg B., et al. Chronic experimental autoimmune encephalomyelitis induced by the 89–101 myelin basic protein peptide in B10RIII (H-2r) mice. Eur J Immunol 1991; 21: 693–9
  • Hashim G., Vandenbark A. A., Gold D. P., et al. T cell lines specific for an immunodominant epitope of human basic protein define an encephalitogenic detemiinant for experimental autoimmune encephalomyelitis-resistant Lou/M rats. J Immunol 1991; 146: 515–20
  • McRae B. L., Kennedy M. K., Tan L. J., et al. Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunol 1992; 38: 229–40
  • Tuohy V. K., Lu Z., Sobel R. A., et al. A synthetic peptide from myelin proteolipid protein induces experimental allergic encephalomyelitis. J Immunol 1988; 141: 1126–30
  • Tuohy V. K., Lu Z., Sobel R. A., et al. Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol 1989; 142: 1523–7
  • Amor S., Baker D., Groome N., et al. Identification of a major encephalitogenic epitope of proteolipid protein (residues 56–70) for the induction of experimental allergic encephalomyelitis in Biozzi AB/H and nonobese diabetic mice. J Immunol 1993; 150: 5666–72
  • Offner H., Hashim G. A., Celnik B., et al. T cell determinants of myelin basic protein include a unique encephalitogenic I-E-restricted epitope for Lewis. rats. J Exp Med 1989; 170: 355–67
  • Fritz R. B., Skeen M. J., Chou C-H, et al. Localization of an encephalitogenic epitope for the SJL mouse in the N-terminal region of myelin basic protein. J Neuroimmunol 1990; 26: 239–43
  • Sercarz E. E., Lehmann P. V., Ametani A., et al. Dominance and crypticily of T cell antigenic determinants. Annu Rev Immunol 1993; 11: 729–66
  • Lehmann P. V., Forsthuber T., Miller A., et al. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 1992; 358: 155–7
  • Lehmann P. V., Sercarz E. E., Forsthuber T., et al. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today 1993; 14: 203–8
  • Chluba J., Steeg C., Becker A., et al. T cell receptor β chain usage in myelin basic protein-specific rat T lymphocytes. Eur J Immunol 1989; 19: 279–84
  • Bums F. R., Li X., Shen N., et al. Both rat and mouse T cell receptors specific for the encephalitogenic determinant of myelin basic protein use similar Voc and Vp chain genes even though the major histocompatibility complex and encephalitogenic determinants being recognized are different. J Exp Med 1989; 169: 27–39
  • Zamvil S. S., Mitchell D. J., Lee N. E., et al. Predominant expression of a T cell receptor VP gene subfamily in autoimmune encephalomyelitis. J Exp Med. 1988; 167: 1586–96
  • Acha-Orbea H., Mitchell L., Timmermann L., et al. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 1988; 54: 263–73
  • Burns F. R., Li X., Shen N., et al. Both rat and mouse T cell receptors specific for the encephalitogenic determinant of myelin basic protein use similar Vα and Vβ chain genes even though the major histocompatibility complex and encephalitogenic determinants being recognized are different. J Exp Med 1989; 169: 27–39
  • Sun D., Gold D. P., Smith L., et al. Characterization of rat encephalitogenic T cells bearing non-V beta 8 T cell receptors. Eur J Immunol 1992; 22: 591–4
  • Baron J. L., Madri J. A., Ruddle N. H., et al. Surface expression of α4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med 1993; 177: 57–68
  • Goverman J., Woods A., Larson L., et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 1993; 72: 551–60
  • Kuchroo V. K., Martin C. A., Greer J. M., et al. Cytokines and adhesion molecules contribute to the ability of myelin proteolipid protein-specific T cell clones to mediate experimental allergic encephalomyelitis. J Immunol 1993; 151: 4371–82
  • Springer T. A. Adhesion receptors of the immune system. Nature 1990; 346: 425–34
  • Dustin M. L., Springer T. A. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu Rev Immunol 1991; 9: 27–66
  • Bevilacqua M. P. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 1993; 11: 767–804
  • Yednock T. A., Cannon C., Fritz L. C., et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against integrin. Nature 1992; 356: 63–66
  • Archelos J. J., Jung S., Mäurer M., et al. Inhibition of experimental autoimmune encephalomyelitis by an antibody to the intercellular adhesion molecule ICAM-1. Ann Neurol 1993; 34: 145–54
  • Cannella B., Cross A. H., Raine C. S. Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J Exp Med 1990; 172: 1521–4
  • McCarron R. M., Wang L., Racke M. K., et al. Cytokine-regulated adhesion between encephalitogenic T lymphocytes and cerebrovascular endothelial cells. J Neuroimmunol 1993; 43: 23–30
  • Sedgwick J. D., Hughes C. C., Male D. K., et al. Antigen-specific damage to brain vascular endothelial cells mediated by encephalitogenic and nonencephalitogenic CD4+ T cell lines. in vitro. J Immunol 1990; 145: 2474–81
  • McCarron R. M., Spatz M., Kempski O., et al. Interaction between myelin basic protein-sensitized T lymphocytes and murine cerebral vascular endothelial cells. J Immunol 1986; 137: 3428–35
  • Sobel R. A., Mitchell ME, Fondren G. Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Path 1990; 136: 1309–16
  • Sun D., Le J., Yang S., et al. Major role of antigen-presenting cells in the response of rat encephalitogenic T cells to myelin basic proteins. J Immunol 1993; 151: 111–8
  • Sun D, Wekele H. Ia-restricted encephalitogenic T lymphocytes mediating EAE lyse autoantigen-presenting astrocytes. Nature 1986; 320: 70–2
  • Dhib-Jalbut S., Kufta C. V., Flerlage M., et al. Adult human glial cells can present target antigens to HLA-restricted cytotoxic T-cells. J Neuroimmunol 1990; 29: 203–11
  • Sedgwick J. D., MoBner R., Schwender S., et al. Major histocompatibility complex-expressing nonhematopoietic astroglial cells prime only CD8+ T lymphocytes: astroglial cells as perpetuators but not initiators of CD4+ T cell responses in the central nervous system. J Exp Med 1991; 173: 1235–46
  • Sedgwick J. D., Schwender S., Imrich H., et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci USA 1991; 88: 7438
  • Mor F., Cohen I. R. T cells in the lesion of experimental autoimmune encephalomyelitis. Enrichment for reactivities to myelin basic protein and to heat shock proteins. J Clin Invest 1992; 90: 2447–55
  • Fitch F. W., McKisic M. D., Lancki D. W., et al. Differential regulation of murine T lymphocyte subsets. Anna Rev Immunol 1993; 11: 29–48
  • Ando D. G., Clayton J., Kono D., et al. Encephalitogenic T cells in the B10.PL model of experimental allergic encephalomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 1989; 124: 132–43
  • Beraud E., Balzano C., Zamora A. J., et al. Pathogenic and non-pathogenic T lymphocytes specific for the encephalitogenic epitope of myelin basic protein: functional characteristics and vaccination properties. J Neuroimmunol 1993; 47: 41–54
  • Ruddle N. H., Bergman C. M., McGrath K. M., et al. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 1990; 172: 1193–1200
  • Broome Powell M., Mitchell D., Lederman J., et al. Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int Immunol 1990; 2: 539–44
  • Selmaj K., Raine CS, Cross A. H. Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol 1991; 30: 694–700
  • Welsh J., Sapatino B., Rosenbaum B., et al. Correlation between susceptibility to demyelination and interferon-γ induction of major histocompatibility complex class II antigens on murine cerebrovascular endothelial cells. J Neuroimmunol 1993; 48: 91–8
  • McCarron R. M., Tanaka M, Spatz M. Class JJ major histocompatibility complex antigen expression in central nervous system: microglia, astrocytes and endothelial cells. Pathophysiology of the blood-brain barrier, B. B. Johansson, C. O. Owman, H. Widmer. Amsterdam Elsevier Science Publishers, New York 1990; 467–484
  • Wong GHW, Clark-Lewis J., Harris A. W., et al. Effect of cloned interferon-gamma on expression of H-2 and la antigen on cell lines of hemopoietic, lymphoid, epithelial, fibroblastic and neuronal origin. Eur J Immunol 1984; 14: 52–6
  • Farrar M. A., Schreiber R. D. The molecular cell biology of interferon-y and its receptor. Annu Rev Immunol 1993; 11: 571–612
  • Panitch H. S., Hirsch R. L., Schindler J., et al. Treatment of multiple sclerosis with gamma interferon, exacerbations associated with activation of the immune system. Neurology 1987; 37: 1097–1102
  • Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol 1992; 10: 411–52
  • Selmaj K., Raine C. S. Tumor necrosis factor mediates myelin and oligodendrocyte damage. in vitro. Ann Neurol 1988; 23: 339–46
  • Zajicek J. P., Wing M., Scolding N. J., et al. Interactions between oligodendrocytes and microglia. A major role for complement and tumor necrosis factor in oligodendrocyte adherence and killing. Brain 1992; 115: 1611–31
  • Kawai K., Heber KE, Zweiman B. Cytotoxic effects of myelin basic protein-reactive T cell hybridoma cells on oligodendrocytes. J Neuroimmunol 1991; 32: 75–81
  • Grenier Y., Ruijs TCG, Robitaille Y., et al. Immunohistochemical studies of adult human glial cells. J Neuroimmunol 1989; 21: 103–15
  • Suzumura A., Silberberg DH, Lisak R. P. The expression of MHC antigens on oligodendrocytes: induction of polymorphic H-2 expression by lymphokines. J Neuroimmunol 1986; 11: 179–90
  • Lisak R. P., Hirayama M., Kuchmy D., et al. Cultured human and rat oligodendrocytes and rat Schwann cells do not have immune response gene associated (la) on their surface. Brain Res 1983; 289: 285–92
  • Steinman L., Rosenbaum J., Sriram S., et al. In vivo effects of antibodies to immune response gene products. Prevention of experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 1981; 78: 7111–14
  • Aharoni R., Teitelbaum D., Arnon R., et al. Immunomodulation of experimental allergic encephalomyelitis by antibodies to the antigen-la complex. Nature 1991; 351: 147–50
  • Urban J. L., Horvath SJ, Hood L. Autoimmune T cells: immune recognition of normal and variant peptide epitopes and peptide-based therapy. Cell 1989; 59: 257–71
  • Gaur A., Haspel R., Mayer J. P., et al. Requirement for CD8+ cells in T cell receptor peptide-induced clonal unresponsiveness. Science 1993; 259: 91–94
  • Lamont A. G., Sette A., Fujinami R., et al. Inhibition of experimental autoimmune encephalomyelitis induction in SJL/J mice by using a peptide with high affinity for IAS molecules. J Immunol 1990; 145: 1687–93
  • Teitelbaum D., Aharoni R., Amon R., et al. Specific inhibition of the T-cell response to myelin basic protein by the synthetic copolymer Cop-1. Proc Natl Acad Sci USA 1988; 85: 9724–8
  • Racke M. K., Martin R., McFarland H. F., et al. Copolymer-1-induced inhibition of antigen-specific T cell activation: interference with antigen presentation. J Neuroimmunol 1992; 37: 75–84
  • Jenkins M. K., Taylor P. S., Norton S. D., et al. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 1991; 147: 2461–6
  • Linsley P. S., Brady W., Umes M., et al. CTLA^ is a second receptor for the B cell activation antigen B7. J Exp Med 1991; 174: 561–9
  • Linsley P. S., Ledbetter J A. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 1993; 11: 191–212
  • Larsen C. P., Ritchie S. C., Pearson T. C., et al. Functional expression of the costimulatory molecule, B7/BB1 on murine dendritic cell populations. J Exp Med 1992; 176: 1215–20
  • Brostoff S. W., Mason D. W. Experimental allergic encephalomyelitis: successful treatment. in vivo with a monoclonal antibody that recognizes T helper cells. J Immunol. 1984; 133: 1938–42
  • Waldor M. K., Sriram S., Hardy R., et al. Reversal of experimental allergic encephalomyelitis with a monoclonal antibody to a T cell subset marker (L3T4). Science 1985; 227: 415–7
  • Cannella B., Cross AH, Raine C. S. Anti-adhesion molecule therapy in experimental autoimmune encephalomyelitis. J Neuroimmunol 1993; 46: 43–55
  • Welsh C. T., Rose J. W., Hill K. E., et al. Augmentation of adoptively transferred experimental allergic encephalomyelitis by administration of a monoclonal antibody specific for LFA-1α. J Neuroimmunol 1993; 43: 161–7
  • Tan L. J., Kennedy M. K., Miller S. D. Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T cell inhibition. J Immunol 1992; 148: 2748–55
  • Sharma S. D., Nag B., Su X. M., et al. Antigen-specific therapy of experimental allergic encephalomyelitis by soluble class U major histocompatibility complex-peptide complexes. Proc Natl Acad Sci USA 1991; 88: 11465–9
  • Ben Nun A., Wekerle H, Cohen I. R. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature 1981; 293: 60–1
  • Zaller D. M., Osman G., Kanagawa O., et al. Prevention and treatment of murine experimental allergic encephalomyelitis with T cell receptor V beta-specific antibodies. J Exp Med 1990; 171, 1943 -55.
  • Vandenbark A. A., Hashim G, Offher H. Immunization with a synthetic T-cell receptor V-region peptide against experimental autoimmune encephalomyelitis. Nature 1989; 341: 541–4
  • Howell M. D., Winters S. T., Olee T., et al. Vaccination against experimental allergic autoimmune encephalomyelitis with T cell receptor peptides. Science 1989; 246: 668–70
  • Heber-Katz E., Acha-Orbea H. The V-region disease hypothesis: evidence from autoimmune encephalomyelitis. Immunol Today 1989; 10: 164–9
  • Offher H., Hashim GA, Vandenbark A. A. T cell receptor peptide therapy triggers autoregulation of experimental encephalomyelitis. Science 1991; 251: 430–2
  • Sun D., Qin Y., Chluba J., et al. Suppression of experimentally induced autoimmune encephalomyelitis by cytotoxic T-T cell interactions. Nature 1988; 332: 843–5
  • Jung S., Schluesener H. I., Toyka K. V., et al. Modulation of EAE by vaccination with T cell receptor peptides: Vβ8 T cell receptor peptide-specific CD4+ lymphocytes lack direct immunoregulatory activity. J Neuroimmunol 1993; 45: 15–22
  • Kawano Y-I, Sasamoto Y., Kotake S., et al. Trials of vaccination against experimental autoimmune uveoretinitis with a T-cell receptor peptide. Curr Eye Res 1991; 10: 789–95
  • Lohse A. W., Mor F., Karin N., et al. Control of experimental autoimmune encephalomyelitis by T cells responding to activated T cells. Science 1989; 244: 820–2
  • Kuruvilla A. P., Shah R., Hochwald G. M., et al. Protective effect of transforming growth factor on experimental autoimmune diseases in mice. Proc Natl Acad Sci USA 1991; 88: 2918–21
  • Racke M. K., Dhib-Jalbut S., Cannella B., et al. Prevention and treatment of chronic relapsing experimental aUergic encephalomyelitis by transforming growth factor-β-1. J Immunol 1991; 146: 3012–7
  • Johns L. D., Flanders K. C., Ranges G. E., et al. Successful treatment of experimental allergic encephalomyelitis with transforming growth factor-β1. J Immunol 1991; 147: 1792–6
  • Racke M. K., Sriram S., Carlino J., et al. Long-term treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-β2. J Neuroimmunol 1993; 46: 175–83
  • Wucherpfennig K. W., Newcombe J., Li H., et al. T cell receptor Va-Vb repertoire and cytokine gene expression in active multiple sclerosis lesions. J Exp Med 1992; 175: 993–1002
  • Jacobs C. A., Baker P. E., Roux E. R., et al. Experimental autoimmune encephalomyelitis is exacerbated by IL-1α and suppressed by soluble IL-1 receptors. Immunol 1991; 146: 2983–9
  • Whitacre C. C., Gienapp I. E., Orosz C. G., et al. Oral tolerance in experimental autoimmune encephalomyelitis. III. Evidence for clonal anergy. J Immunol 1991; 147: 2155–63
  • Higgins P. J., Weiner H. L. Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments. J Immunol 1988; 140: 440–5
  • Metzler B., Wraith D. C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int Immunol 1993; 5: 1159–65
  • Gregerson D. S., Obritsch WF, Donoso L. A. Oral tolerance in experimental autoimmune uveoretinitis. Distinct mechanisms of resistance are induced by low dose vs. high dose feeding protocols. J Immunol 1993; 151: 5751–61
  • Karpus W. J., Swanborg R. H. CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-β1. J Immunol 1991; 146: 1163–8
  • Karpus W. J., Gould KE, Swanborg R. H. CD4+ suppressor cells of autoimmune encephalomyelitis respond to T cell receptor-associated determinants on effector cells by interleukin-4 secretion. Eur J Immunol 1992; 22: 1757–63
  • Critchfield J. M., Racke M. K., Zunga-Pfiicker J. C., et al. T cell deletion in high antigen dose therapy of autoimmune encephalomyelitis. Science 1994; 263: 1139
  • Schmied M., Breitschopf H., Gold R., et al. Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis: evidence for programmed cell death as a mechanism to control inflammation in the brain. Am J Pathol 1993; 143: 446–52
  • Sibley W. A., Bamford CR, Clark K. Clinical viral infections and multiple sclerosis. Lancet 1985; I: 1313–15
  • Sibley W. A., Bamford C. R., Clark K., et al. A prospective study of physical trauma and multiple sclerosis. J Neurol Neurosurg Psychiatry 1991; 54: 584–9
  • Kurtzke J. F. Epidemiology of multiple sclerosis. Handbook of clinical neurology. Demyelinating diseases, P. J. Vinken, G. W. Bruyn, H. L. Klawans, et al. Elsevier Science Publishers Amsterdam, New York 1985; Vol. 3: 259–87
  • Waksman B. H., Reynolds W. E. Minireview: multiple sclerosis as a disease of immune regulation. Proc Soc Exp Biol Med 1984; 175: 282–94
  • Johnson R. T. Viral aspects of multiple sclerosis. Handbook of clinical neurology. Demyelinating disorders, P. J. Vinken, G. W. Bruyn, H. L. Klawans, et al. Elsevier Science Publishers Amsterdam, New York 1985; Vol. 3: 319–36
  • Levy R. M., Bredeson DE, Rosenblum M. L. Opportunistic central nervous system pathology in patients with AIDS. Ann Neurol 1988; 23: 7–12
  • Reddy E. P., Sandberg-Wollheim M., Meltus R. V., et al. Amplification and molecular cloning of HTLV-I sequences from DNA of multiple sclerosis patients. Science 1989; 243: 529–33
  • Jacobson S., Shida H., McFarlin D. E., et al. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature 1990; 348: 245–8
  • Jacobson S., Gupta A., Mattson D. H., et al. Immunological studies in tropical spastic paraparesis. Ann Neurol 1990; 27: 149–56
  • Osame M., Matsumoto M., Usuku K. Chronic-progressive myelopathy associated with elevated antibodies to human T-lymphotropic virus type I and adult T-cell leukemia-like cells. Ann Neurol 1987; 21: 117–22
  • McFarlin D. E. Neurological disorders related to HTLV-I and HTLV-II. J Acquir Immune Defic Syndr 1993; 6: 640–4
  • Jacobson S., Lehky T., Nishimura M., et al. Isolation of HTLV-II from a patient with chronic, progressive neurological disease clinically indistinguishable from HTLV-I-associated myelopathy/tropical spastic paraparesis. Ann Neurol 1993; 33: 392–6
  • Johnson R. T., Griffin D. E., Hirsch J. S., et al. Measles encephalomyelitis: clinical and immunological studies. N Engl J Med 1984; 310: 137–41
  • Martin R., Marquardt P., O'Shea S., et al. Virus-specific and autoreactive T-cell lines isolated from cerebrospinal fluid of a patient with chronic rubella panencephalitis. J Neuroimmunol
  • Martin R., Ortlauf J., Sticht-Groh V., et al. Borrelia burgdorferi-specific and autoreactive T-cell lines from cerebrospinal fluid in Lyme radiculomyelitis. Ann Neurol. 1988; 24: 509–16
  • Kappler J., Kotzin B., Herron L., et al. VP-specific stimulation of human T cells by. Staphylococcal toxins. Science 1989; 244: 811–3
  • Brocke S., Gaur A., Piercy C., et al. Induction of relapsing paralysis in experimental allergic encephalomyelitis by bacterial superantigen. Nature 1993; 365: 642–4
  • Schiffenbauer J., Johnson H. M., Butfiloski E. J., et al. Staphylococcal enterotoxins can reactivate experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 1993; 90: 8543–6
  • Rott O., Wekerle H, Fleischer B. Protection from experimental allergic encephalomyelitis by application of a bacterial superantigen. Int Immunol 1992; 4: 347–53
  • Oldstone MBA, Notkins A. L. Molecular mimicry. Concepts in viral pathogenesis II, A. L. Notkins, MBA Oldstone. Springer, New York 1986; 195–202
  • Jahnke U., Fischer E. H., Alvord E. C. Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 1985; 229: 282–4
  • Shaw S-Y, Laursen RA, Lees M. B. Analogous amino acid sequences in myelin proteolipid and viral proteins. FEBS Lett 1986; 207: 266–70
  • Fujinami R. S., Oldstone MBA. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230: 1043–5
  • Pette M., Liebert U. G., Gobel U., et al. Measles virus-directed responses of CD4+ T lymphocytes in MS patients and healthy individuals. Neurology 1993; 43: 2019–25
  • Lampert P. W., Rodriguez M. Virus-induced demyelination. Concepts in viral pathogenesis, A. L. Notkins, MBA Oldstone. Springer, New York 1984; 260–268.
  • Clatch R. J., Lipton HL, Miller S. D. Characterization of Theiler's murine encephalomyelitis virus (TMEV)-specific delayed-type hypersensitivity responses in TMEV-induced demyelinating diseases: Correlation with clinical signs. J Immunol 1986; 136: 920–7
  • Chamorro M., Aubert C, Brahic M. Demyelinating lesions due to Theiler's virus are associated with central nervous system infection. J Virol 1986; 57: 992–7
  • Lipton H. L., Dal Canto M. C. Theiler's virus induced demyelination-prevention by immunosuppression. Science 1976; 192: 62–4
  • Yamada M., Zurbriggen A, Fujinami R. S. Monoclonal antibody to Theiler's murine encephalomyelitis virus defines a determinant on myelin and oligodendrocytes, and augments demyelination in experimental allergic encephalomyelitis. J Exp Med 1990; 171: 1893–1907
  • Peterson J. D., Karpus W. J., Clatch R. J., et al. Split tolerance of Thl and Th2 cells in tolerance to Theiler's murine encephalomyelitis virus. Eur J Immunol 1993; 23: 46–55
  • Watanabe R., Wege H, ter Meulen V. Adoptive transfer of EAE-like lesions from rats with coronavirus-induced demyelinating encephalomyelitis. Nature 1983; 305: 150–2
  • Liebert U. G., Linington C, Meulen V. Induction of autoimmune reactions to myelin basic protein in measles virus encephalitis in Lewis rats. J Neuroimmunol 1987; 17: 103–18
  • Liebert U. G., Hashim GA, ter Meulen V. Characterization of measles virus-induced cellular autoimmune reactions against myelin basic protein in Lewis. Tats. J Neuroimmunol 1990; 29: 139–47
  • Haase A. T. Pathogenesis of lentivirus infections. Nature 1986; 322: 130–6
  • Narayan O., Sheffler D, Clements J. E. Restricted replication of lentiviruses. J. Exp Med 1985; 162: 1954–69
  • Raine C. S., Scheinberg L. C. On the immunopathology of plaque development and repair in multiple sclerosis. J Neuroimmunol 1988; 20: 189–201
  • Prineas J. W. The neuropathology of multiple sclerosis. Handbook of clinical neurology. Demyelinating diseases, P. J. Vinken, G. W. Bruyn, H. L. Klawans, J. C. Koetsier. Elsevier Science Publishers Amsterdam, New York 1985; Vol 3: 213–57
  • Brück W., Schmied M., Suchanek G., et al. Oligodendrocytes in the early course of multiple sclerosis. Ann Neurol 1994; 35: 65–73
  • Traugott U., Scheinberg LC, Raine C. S. On the presence of la-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J Neuroimmunol 1985; 8: 1–14
  • Hofman F. M., von Hanwehr RJ, Dinarello C. A. Immunoregulatory molecules and IL-2 receptors identified in multiple sclerosis brain. J Immunol 1986; 136: 3239–45
  • Washington R., Burton J., Todd R. F., et al. Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patients with multiple sclerosis. Ann Neurol 1994; 35: 89–97
  • Hauser S. L., Bhan AK, Gilles F. Immunohistochemical analysis of the ceDular infiltrate in multiple sclerosis lesion. Ann Neurol 1986; 19: 578–87
  • Booss J., Esiri MM, Tourtellotte W. W. Immunohistochemical analysis of T-lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. JNeurol Sci 1983; 62: 19–32
  • Hartung H-P, Hughes RAC, Taylor W. A., et al. T Cell activation in Guillain-Barré syndrome and in MS: elevated serum levels of soluble IL-2 receptors. Neurology 1990; 40: 215–8
  • Sharief M. K., Hentges R. Association between tumor necrosis factor-α and disease progression in chronic progressive multiple sclerosis. N EnglJ Med 1991; 325: 467–72
  • Sharief M. K., Thompson E. J. Correlation of interleukin-2 and soluble interleukin-2 receptor with clinical activity of multiple sclerosis. J Neurol Neurosurgery Psychiatry 1993; 56: 169–74
  • Wong GHW, Bartlett P. F., Clark-Lewis I., et al. Inducible expression of H-2 and la antigens on brain cells. Nature 1984; 310: 688–91
  • Gehrmann J., Banati RB, Kreutzberg G. W. Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol 1993; 48: 189–98
  • Head J. R., Griffin WST. Functional capacity of solid tissue transplants in brain: evidence for immonological privilege. Proc R Soc London Ser B 1985; 224: 375–87
  • Graus F., Ribalta T., Campo E., et al. Immunohistochemical analysis of the immune reaction in the nervous system in paraneoplastic encephalomyelitis. Neurology 1990; 40: 219–22
  • Hartung H-P. Immune-mediated demyelination. Ann Neurol 1993; 33: 563–7
  • Dawson T. M., Dawson VL, Snyder S. H. A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 1992; 32: 297–311
  • Woodroofe M. N., Hayes G. M., Cuzner M. L. Fc receptor density, MHC antigen expression and superoxide production are increased in interferon-gamrna-treated microglia isolated from adult rat brain. Immunology 1989; 68: 421–6
  • Sanders M. E., Koski CL, Robbins D. Activated terminal complement in cerebrospinal fluid in Guillain-Barre syndrome and multiple sclerosis. J Immunol 1986; 136: 4456–9
  • Selmaj K., Brosnan CF, Raine C. S. Expression of heat shock protein-65 by oligodendrocytes. in vivo and in vitro: implications for multiple sclerosis. Neurology 1992; 42: 795–800
  • Wucherpfennig K. W., Newcombe J., Li H., et al. Gamma delta T cell receptor repertoire in acute multiple sclerosis lesions. Proc Natl Acad Sci USA 1992; 89: 4588–92
  • Selmaj K., Brosnan CF, Raine C. S. Colocalization of lymphocytes bearing gamma delta T-cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci USA 1991; 88: 6452–6
  • Hvas J., Oksenberg J. R., Fernando R., et al. Gamma delta T cell receptor repertoire in brain lesions of patients with multiple sclerosis. J Neuroimmunol 1993; 46: 225–34
  • Perella O., Carrieri P. B., De Mercato R., et al. Markers of activated T lymphocytes and T cell receptor gamma/delta+ in patients with multiple sclerosis. Eur Neurol 1993; 33: 152–5
  • Shimonkevitz R., Colburn C., Burnham J. A., et al. Clonal expansions of activated gamma/delta T cells in recent onset multiple sclerosis. Proc Natl Acad Sci USA 1993; 90: 923–7
  • Haas W., Pereira P, Tonegawa S. Gamma/delta T cells. Annu Rev Immunol 1993; 11: 637–85
  • Young R. A. Stress proteins and immunology. Annu Rev Immunol 1990; 8: 401–20
  • Koga T., Wand-Wiirttenberger A., DeBruyn J., et al. T cells against a bacterial heat shock protein recognize stressed macrophages. Science 1989; 245: 1112–5
  • Ebers G. C. Generic factors in multiple sclerosis. Neurol Clin 1983; 1: 645–54
  • Compston A., Sadovnick A. D. Epidemiology and genetics of multiple sclerosis. Curr Opin Neurol Neurosurgery 1992; 5: 175–81
  • Sadovnick A. D., Baird PA, Ward R. A. Multiple sclerosis: updated risks for relatives. Am J Med Genet 1988; 29: 533–41
  • Sadovnick A. D., Bulman D, Ebers G. C. Parent-child concordance in multiple sclerosis. Ann Neurol 1991; 29: 252–5
  • Sadovnick A. D., Armstrong H., Rice G. P., et al. A population-based study of multiple sclerosis in twins: update. Ann Neurol 1993; 33: 281–5
  • Lynch S. G., Rose J. W., Smoker W., et al. MRI in familial multiple sclerosis. Neurology 1991; 40: 900–3
  • Ebers G. C., Bukman D. E., Sadovnick A. D., et al. Population-based study of multiple sclerosis in twins. N Engl J Med 1986; 315: 1638–42
  • McFarland H. F., Greenstein J. L., McFarlin D. E., et al. Family and twin studies in multiple sclerosis. Ann N Y Acad Sci 1985; 436: 118–24
  • McFarland H. F. Twin studies and multiple sclerosis. Ann Neurol 1992; 32: 722–3
  • Bertram J., Kuwert E. HLA antigen frequencies in multiple sclerosis. Eur J Neurol 1982; 7: 74–9
  • Tiwari J. L., Terasaki P. I. HLA anddisease associations. Springer Verlag, New York 1985; 152–167
  • Beall S. S., Concannon P., Charmley P., et al. The germline repertoire of T cell receptor β-chain genes in patients with chronic progressive multiple sclerosis. J Neuroimmunol 1989; 21: 59–66
  • Beall S. S., Biddison W. E., McFarlin D. E., et al. Susceptibibty for multiple sclerosis is determined, in part, by inheritance of a 175 kb region of the TCR Vp chain locus and HLA class II genes. J Neuroimmunol 1993; 45: 53–60
  • Oksenberg J. R., Sherritt M., Begovich A. B., et al. T-Celi receptor Va and Cb alleles associated with multiple sclerosis and myasthenia gTavis. Proc Natl Acad Sci USA 1989; 86: 988–92
  • Seboun E., Robinson M. A., Doolittle T. H., et al. A susceptibility locus for multiple sclerosis is linked to T cell receptor β chain complex. Cell 1989; 57: 1095–100
  • Sherritt M. A., Oksenberg J., de Rosbo N. K., et al. Influence of HLA-DR2, HLA-DPw4, and T cell receptor alpha-chain genes on the susceptibility to multiple sclerosis. Int Immunol 1992; 4: 177–81
  • Hillert J., Leng C., Olerup O. No association with germline T cell receptor beta-chain gene alleles or haplotypes in Swedish patients with multiple sclerosis. J Neuroimmunol 1991; 32: 141–47
  • Lynch S. G., Rose J. W., Petajan J. H., et al. Discordance of T-cell receptor β-chain genes in familial multiple sclerosis. Ann Neurol 1991; 30: 402–10
  • Pandey J. P., Goust J. M., Salier J. P., et al. Immunoglobulin G heavy chain (Gm) allotypes in multiple sclerosis. J Clin Invest 1981; 67: 1797–800
  • McCombe P. A., Clark P., Frith J., et al. Alpha-1 antitrypsin phenotypes in demyelinating diseases: an association between demyelinating disease and the allele. PiMS.Ann Neurol 1985; 18: 291–7
  • Boylan K. B., Takahashi N., Paty D. W., et al. DNA length polymorphism 5' to the myelin basic protein gene is associated with multiple sclerosis. Ann Neurol 1990; 27: 291–7
  • Rose J., Gerken S., Lynch S., et al. Genetic susceptibility in familial multiple sclerosis not linked to the myelin basic protein gene. Lancet 1993; 341: 1179–81
  • Nepom G. G., Erlich H. MHC class-D molecules and autoimmunity. Annu Rev Immunol 1991; 9: 493–526
  • Bodmer J. G., Marsh SGE, Parham P., et al. Nomenclature for factors of the HLA system. Hum Immunol 1990; 28: 326–42
  • Marrosu H. G., Muntoni F., Murru M. R., et al. Sardinian multiple sclerosis is associated with HLA-DR4: a serological and molecular analysis. Neurology 1988; 38: 1749–53
  • Kurdi A., Ayesh I., Addallat A., et al. Different B-lymphocyte alloantigens associated with multiple sclerosis in Arabs and Northern Europeans. Lancet 1977; i: 1123–5
  • Gorodezky C., Najera R.B.E.R, et al. Immunogenetic profile of multiple sclerosis in Mexicans. Hum Immunol 1986; 16: 364–74
  • Naito S., Kuroiwa Y., Itoyama T., et al. HLA and Japanese M. S. Tissue Antigens 1978; 12: 19–24
  • Vartdal F., Sollid L. M., Vandvik B., et al. Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic amino acid sequences. Hum Immunol 1989; 25: 103–10
  • Spurkland A., Ronningen K. S., Vandvik B., et al. HLA-DQA1 and HLA-DQB1 genes may jointly determine susceptibility to develop multiple sclerosis. Hum Immunol 1991; 30: 69–75
  • Cohen D., Cohen O., Mercadet A., et al. Class II HLA-DQβ chain DNA restriction fragments differentiate among HLA-DR2 individuals in insulin-dependent diabetes and multiple sclerosis. Proc Natl Acad Sci USA 1984; 81: 1774–8
  • Heard RNS, Cullen C., Middleton D., et al. An allelic cluster of DQα restriction fragments is associated with multiple sclerosis: evidence that a second haplotype may influence disease susceptibility. Human Immunol 1989; 25: 111–23
  • Olerup O., Hillert J., Frederikson S., et al. Primarily chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities. Proc Natl Acad Sci USA 1989; 86: 7113–7
  • Moen T., Stein R., Bratlic A., et al. Distribution of HLA-SB antigens in multiple sclerosis. Tissue Antigens 1984; 4: 126–7
  • Odum N., Hyldig-Nielsen J. J., Morling N., et al. HLA-DP antigens are involved in the susceptibility to multiple sclerosis. Tissue Antigens 1988; 31: 235–7
  • Begovich A. B., Helmuth R. C., Oksenberg J. R., et al. HLA-DP beta and susceptibility to multiple sclerosis: an analysis of caucasoid and Japanese patient populations. Hum Immunol 1990; 28: 365–72
  • Hammond S. R., English D., Dewtit C., et al. The clinical profile of MS in Australia. A comparison between medium-frequency and high-frequency prevalence zones. Neurology 1988; 38: 980–6
  • Haegert D. G., Michaud M., Schwab C., et al. Multiple sclerosis and HLA class U susceptibility and resistance genes. J Neurosci Res 1990; 26: 66–73
  • Cowan E. P., Pierce M. L., McFarland H. F., et al. HLA-DR and -DQ allelic sequences in multiple sclerosis patients are identical to those found in the general population. Hum Immunol 1991; 32: 203–10
  • Hirayama K., Matsushita S., Kikuchi I., et al. HLA-DQ is epistatic to HLA-DR in controlling the immune response to schistosomal antigen in humans. Nature 1987; 327: 426–30
  • Liblau R., van Endert P. M., Sandberg-Wollheim M., et al. Antigen processing gene polymorphism in HLA-DR2 multiple sclerosis. Neurology 1993; 43: 1192–97
  • Hillert J., Leng C, Olerup O. T cell receptor alpha chain germline gene polymorphisms in multiple sclerosis. Neurology 1992; 42: 80–4
  • Hashimoto L. L., Mak TW, Ebers C. C. T cell receptor alpha-chain polymorphisms in multiple sclerosis. J Neuroimmunol 1992; 40: 41–8
  • Utz U., Biddison W. E., McFarland H. F., et al. Skewed T cell receptor repertoire in genetically identical twins with multiple sclerosis correlates with disease. Nature 1993; 364: 243–7
  • Sakaguchi S., Ermak T. H., Toda M., et al. Induction of autoimmune disease in mice by germline alteration of the T cell receptor gene expression. J Immunol 1994; 152: 1471–84
  • Kabat E. A., Freedman D. A., Murray J. P., et al. A study of the cristalline albumin, gamma globulin and total protein in the cerebrospinal fluid of one hundred cases of multiple sclerosis and in other diseases. Am J Med Sci 1950; 219: 55–64
  • Lowenthal A., Van Sande M, Karcher D. The differential diagnosis of neurological diseases by fractionating electrophoretically the CSF G-globulins. J Neurochem 1960; 6: 51–6
  • Tourtellotte W. W. The cerebrospinal fluid in multiple sclerosis. Handbook of clinical neurology. Demyelinating diseases, P. J. Vinken, G. W. Bruyn, H. L. Klawans, et al. Elsevier Science Publishers Amsterdam, New York 1985; Vol. 3: 79–130
  • Martin R., Martens U., Sticht-Groh V., et al. Persistent intrathecal secretion of oligoclonal. Borrelia burgdorferi-specific IgG in chronic meningo-radiculo-myelitis. J Neurol. 1988; 235: 229–33
  • Meulen V., Stephenson JR, Kreth H. W. Subacute sclerosing panencephalitis. Comprehensive virology, H Fraenkel-Conrat, R. R. Wagner. Plenum Press, New York 1983; Vol. 18
  • Antel J. P., Arnason BGW. Suppressor cell function in multiple sclerosis - correlation with clinical disease activity. Ann Neurol 1979; 5: 338–42
  • Reder A. T., Amason BGW. Immunology of multiple sclerosis. Handbook of clinical neurology. Demyelinating diseases, P. J. Vinken, G. W. Bruyn, H. L. Klawans, et al. Elsevier Science Publishers Amsterdam, New York 1985; Vol. 3: 337–395
  • Morimoto C. M., Hafler D. A., Weiner H. L., et al. Selective loss of the suppressor-inducer T-cell subset in progressive multiple sclerosis. Analysis with the anti-2H4 monoclonal antibody. N Engl J Med 1987; 316: 67–72
  • Jacobson S. J., Flerlage ML, McFarland H. F. Impaired measles virus-specific cytotoxic T-cell response in multiple sclerosis. J Exp Med 1985; 162: 839–50
  • Bums J., Rosenzweig A., Zweiman B., et al. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol 1983; 81: 435–40
  • Burns J. B., Littlefield K. Human T lymphocytes reactive with whole myelin recognize predominantly myelin basic protein. J Neuroimmunol 1989; 22: 67–7
  • Baxevanis C. N., Reclos G. J., Servis C., et al. Peptides of myelin basic protein stimulate T lymphocytes from patients with multiple sclerosis. J Neuroimmunol 1989; 22: 23–30
  • Chou Y. K., Vainiene M., Whitham R., et al. Response of human T lymphocyte lines to myelin basic protein: association of dominant epitopes with HLA-class U restriction molecules. J Neurol Sci 1989; 23: 207–16
  • Zhang J., Medaer R., Hashim G. A., et al. Myelin basic protein-specific T lymphocytes in multiple sclerosis and controls: precursor frequency, fine specificity, and cytotoxicity. Ann Neurol 1992; 32: 330–8
  • Martin R., Jaraquemada D., Flerlage M., et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol 1990; 145: 540–8
  • Meinl E., Weber F., Drexler K., et al. Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest 1993; 92: 2633–43
  • Olsson T., Wei Zhi W., Hojeberg B., et al. Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-v. J Clin Invest 1990; 86: 981–5
  • Ota K., Matsui M., Milford E. L., et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990; 346: 183–7
  • Pette M., Fujita K., Kitze B., et al. Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 1990; 40: 1770–6
  • Richert J., Robinson E. D., Deibler G. E., et al. Evidence for multiple human T cell recognition sites on myelin basic protein. J Neuroimmunol 1989; 23: 55–66
  • Sun J-B. Autoreactive T and B cells in nervous system disease. Acta Neurol Scand 1993; 87((Suppl.))1–56.
  • Valli A., Sette A., Kappos L., et al. Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J Clin Invest 1993; 91: 616–28
  • Weber WEJ, Vandermeeren MMPP, Raus JCM, et al. Human myelin basic protein-specific cytolytic T lymphocyte clones are functionally restricted by HLA class II gene products. Cell Immunol 1989; 120: 145–53
  • Chou Y. K., Bourdette D. N., Offner H., et al. Frequency of T cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 1992; 38: 105–13
  • Olsson T., Sun J., Hillert J., et al. Increased numbers of T cells recognizing multiple myelin basic protein epitopes in multiple sclerosis. Eur J Immunol 1992; 22: 1083–7
  • Martin R., Voskuhl R., Flerlage M., et al. Myelin basic protein-specific T-cell responses in identical twins discordant or concordant for multiple sclerosis. Ann Neurol 1993; 34: 524–35
  • Joshi N., Usuku K, Hauser S. L. The T-cell response to myelin basic protein in familial multiple sclerosis: diversity of fine specificity, restricting elements, and T-cell receptor usage. Ann Neurol 1993; 34: 385–93
  • Voskuhl R. R., Martin R, McFarland H. F. A functional basis for the association of HLA class n genes and susceptibility to multiple sclerosis: cellular immune responses to myelin basic protein in a multiplex family. J Neuroimmunol 1993; 42: 199–208
  • AllegTetta M., Nicklas J. A., Sriram S., et al. T Cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990; 247: 718–21
  • Martin R., Howell M. D., Jaraquemada D., et al. A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 1991; 173: 19–24
  • Pette M., Fujita K., Wilkinson D., et al. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc Natl Acad Sci USA 1990; 87: 7968–72
  • Richert J. R., Reuben-Bumside C. A., Deibler G. E., et al. Peptide specificities of myelin basic protein-reactive human T-cell clones. Neurology 1988; 38: 739–42
  • Richert J. R., Robinson E. D., Deibler G. E., et al. Human cytotoxic T-cell recognition of a synthetic peptide of myelin basic protein. Ann Neurol 1989; 26: 342–6
  • Martin R., Utz U., Coligan J. E., et al. Diversity in fine specificity and T cell receptor usage of the human CD4+ cytotoxic T cell response specific for the immunodominant myelin basic protein peptide 87–106. J Immunol 1992; 148: 1359–66
  • Karkhanis Y. D., Carlo D. J., Brostoff S. W., et al. Allergic encephalomyelitis: isolation of an encephalitogenic peptide active in the monkey. J Biol Chem 1975; 250: 1718–22
  • Salvetti M., Ristori G., Amato M., et al. Predominant and stable T cell responses to regions of myelin basic protein can be detected in individual patients with multiple sclerosis. Eur J Immunol 1993; 23: 1232–9
  • Wucherpfennig K. W., Sette A., Southwood S., et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med 1994; 179: 279–90
  • Sinigaglia F., Guttinger M., Kilgus J., et al. A malaria T-cell epitope recognized in association with most mouse and human MHC-class II molecules. Nature 1988; 336: 778–70
  • Jaraquemada D., Martin R., Rosen-Bronson S., et al. HLA-DR2a is the dominant restriction molecule for the cytotoxic T cell response to myelin basic protein in DR2Dw2 individuals. J Immunol 1990; 145: 2880–5
  • Jacobson S., Nepom G. T., Richert J. R., et al. Identification of a specific HLA-DR2a la molecule as a restriction element for measles virus-specific HLA class II-restricted cytotoxic T cell clones. J Exp Med 1985; 161: 263–8
  • Rothbard J. B., Gefter M. L. Interactions between immunogenetic peptides and MHC proteins. Annu Rev Immunol 1991; 9: 527–65
  • Chicz R. M., Urban R. G., Lane W. S., et al. Predominantly naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 1992; 358: 764–8
  • Chicz R. M., Urban R. G., Gorga J. C., et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 1993; 178: 27–47
  • Ben Nun A., Liblau R. S., Cohen L., et al. Restricted T-cell receptor Vβ gene usage by myelin basic protein-specific T-cell clones in multiple sclerosis: predominant genes vary in individuals. Proc Natl Acad Sci USA 1991; 88: 2466–70
  • Giegerich G., Pette M., Meinl E., et al. Diversity of T cell receptor alpha and beta chain genes expressed by human T cells specific for similar myelin basic protein peptide/major histocompatibility complexes. Eur J Immunol. 1992; 22(3)753–8
  • Kotzin B. L., Karuturi S., Chou Y. K., et al. Preferential T-cell receptor VP-chain variable gene use in myelin basic protein-reactive T-cell clones from patients with multiple sclerosis. Proc Natl Acad Sci USA 1991; 88: 9161–5
  • Oksenberg J. R., Stuart S., Begovich A. B., et al. Limited heterogeneity of rearranged T-cell receptor V alpha transcripts in brains of multiple sclerosis patients. Nature 1990; 345: 344–46
  • Oksenberg J. R., Panzara M. A., Begovich A. B., et al. Selection for T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 1993; 362: 68–70
  • Richert J. R., Robinson E. D., Johnson A. H., et al. Heterogeneity of the T-cell receptor beta gene rearrangements generated in myelin basic protein-specific T-cell clones isolated from a patient with multiple sclerosis. Ann Neurol 1991; 29: 299–306
  • Wucherpfennig K. W., Ota K., Endo N., et al. Shared human T cell receptor V beta usage to immunodominant regions of myelin basic protein. Science 1990; 248: 1016–9
  • Richert J., Robinson E., Martin R., et al. Human T cell receptor (TCR) a and P gene expression in the response to myelin basic protein. FASEB J 1991; 5: A1680
  • Hafler D. A., Keddy C, Wucherpfennig K. Analysis of T cell receptor Vet and Vp structure for an immunodominant MBP peptide. FASEB J 1991; 5: A1680
  • Allegretta M., Albertini R. J., Howell M. D., et al. Homologies between T cell receptor junctional sequences unique to multiple sclerosis and T cells mediating experimental allergic encephalomyelitis. J Clin Invest 1994, in press
  • Cross A. H., O'Mara T, Raine C. S. Chronologic localization of myelin-reactive cells in the lesions of relapsing EAE: implications for the study of multiple sclerosis. Neurology 1993; 43: 1028–33
  • Offher H., Buenafe A. C., Vainiene M., et al. Where, when, and how to detect biased expression of disease-relevant Vβ genes in rats with experimental autoimmune encephalomyelitis. J Immunol 1993; 151: 506–17
  • Chofflon M., Juillard C., Juillard P., et al. Tumor necrosis factor alpha production as a possible predictor of relapse in patients with multiple sclerosis. Eur Cytokine Netw 1992; 3: 523–31
  • Voskuhl R. R., Martin R., Bergman C., et al. T helper 1 (TH1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity 1993; 15: 137–43
  • Svenningsson A., Hansson G. K., Andersen O., et al. Adhesion molecule expression on cerebrospinal fluid T lymphocytes: evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls. Ann Neurol 1993; 34: 155–61
  • Ruijs TCG, Freedman M. S., Grenier Y. G., et al. Human oligodendrocytes are susceptible to cytolysis by major histocompatibility complex class I-restricted lymphocytes. J Neuroimmunol 1990; 27: 89–97
  • Freedman M. S., Ruijs TCG, Selin L., et al. Peripheral blood γ-δ T cells lyse fresh human brain-derived oligodendrocytes. Ann Neurol 1991; 30: 794–800
  • Parker K. C., Bednarek MA, Coligan J. E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 1993; 152: 163–75
  • Zhang J., Medaer R., Stinissen P., et al. MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 1993; 261: 1451–4
  • Link J., Söderström M., Kostulas V., et al. Optic neuritis is associated with myelin basic protein and proteolipid protein reactive cells producing interferon-y interleukin-4 and transforming growth factor-β. J Neuroimmunol 1994; 49: 9–18
  • Pelfrey C. M., Trotter J. L., Tranquil] LR, et al. Identification of a novel T cell epitope of human proteolipid protein (residues 40–60) recognized by proliferative and cytolytic CD4+ T cells from multiple sclerosis. J Neuroimmunol 1993; 46: 33–42
  • Trotter J. L., Hickey W. F., van der Veen R. C., et al. Peripheral blood mononuclear cells from multiple sclerosis patients recognize myelin proteolipid protein and selected peptides. J Neuroimmunol 1991; 33: 55–62
  • Sun J. B., Olsson T., Wang W-Z, et al. Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 1991; 21: 1461–8
  • De Rosbo N. Kerlero, Milo R., Lees M. B., et al. Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 1993; 92: 2602–8
  • Sun J., Link H., Olsson T., et al. T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 1991; 146: 1490–5
  • Johnson D., Hafler D. A., Fallis R. J., et al. Cell-mediated immunity to myelin-associated glycoprotein, proteolipid protein, and myelin basic protein in multiple sclerosis. J Neuroimmunol 1986; 13: 99–108
  • Hafler D. A., Benjamin D. S., Burks J., et al. Myelin basic protein and proteolipid protein reactivity of brain- and cerebrospinal fluid-derived T cell clones in multiple sclerosis and postinfectious encephalomyelitis. J Immunol 1987; 139: 68–72
  • Zhang Y. D., Burger D., Saruhan M., et al. The T-lymphocyte response against myelin-associated glycoprotein and myelin basic protein in patients. Neurology 1993; 43: 403–7
  • Link H., Sun J-B, Wang Z., et al. Virus-specific and autoreactive T cells are accumulated in cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 1992; 38: 63–74
  • Mackin G. A., Dawson D. M., Hafler D. A., et al. Treatment of multiple sclerosis with cyclophosphamide. Treatment of multiple sclerosis, R. A. Rudick, D. E. Goodkin. Springer, London 1992; 199–216
  • Myers L. W. Treatment of multiple sclerosis with ACTH and corticosteroids. Treatment of multiple sclerosis, R. A. Rudick, D. E. Goodkin. Springer, London 1992; 135–156
  • Hughes RAC. Treatment of multiple sclerosis, R. A. Rudick, D. E. Goodkin. Springer, London 1992; 157–172
  • The IFNβ Multiple Sclerosis Study Group. Interferon beta-lb is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43: 655–61
  • Paty D. W., Li DKB, Study UBCMS/MRI, et al. Interferon beta-lb is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 1993; 43: 662–7
  • Weiner H. L., Mackin G. A., Matsui M., et al. Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 1993; 259: 1321–4
  • Bourdette D. N., Whitham R. H., Chou YK, et al. Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic Vβ5.2 and Vp6.1 CDR2 peptides. J Immunol 1994; 152: 2510–9
  • Chou Y. K., Morrison W. J., Weinberg A. D., et al. Immunity to TCR peptides in multiple sclerosis. U. T cell recognition of Vβ5.2 and Vβ6.1 CDR2 peptides. J Immunol 1994; 152: 2520–29
  • Massacesi L., Castigli E., Vergelli M., et al. Immunosuppressive activity of 13-cis-retinoic acid and prevention of experimental autoimmune encephalomyelitis in rats. J Clin Invest 1991; 88: 1331–7
  • Bomstein M. B., Miller Al, Slagle S., et al. A placebo-controlled, double-blind, randomized, two-center, pilot trial of Cop 1 in chronic progressive multiple sclerosis. Neurology 1991; 41: 533–9
  • Harris J. O., Frank J. O., Patronas N., et al. Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: Implication for clinical trials and natural history. Ann Neurol 1991; 29: 548–55
  • McFarland H. F., Frank J. A., Albert P. S., et al. Using gadolinium-enhanced magnetic resonance imaging lesions to monitor disease activity in multiple sclerosis. Ann Neurol 1992; 32: 758–66
  • Smith M. E., Stone L. A., Albert P. S., et al. Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 1993; 33: 480–9
  • Whitham RH, Jones RF, Hashim GA, et al. Localization of a new encephalitogenic epitope (residues 43–60) in proteolipid protein that induces relapsing experimental autoimmune encephalomyelitis in PL/J and (SJL × PL)F1 mice. J Immunol 1991; 147: 3803
  • Vandenbark AA, Hashim G. A., Celnik B, et al. Determinants of human myelin basic protein that induce encephalitogenic T cells in Lewis rats. J Immunol 1989; 143: 3512–6
  • Endoh M., Tabira T., Kunishita T., et al. DM-20, a proteolipid apoprotein, is an encephalitogen of acute and relapsing autoimmune encephalomyelitis in mice. J Immunol 1986; 137: 3832–5
  • Endoh M., Kunishita T., Neihei J., et al. Susceptibility to proteolipid apoprotein and its encephalitogenic determinants in mice. Int Arch Allergy Appl Immunol 1990; 92: 433–41

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.