232
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Lipid Metabolism in Fungi

Pages 209-271 | Published online: 25 Sep 2008

References

  • Cronan J. E., Jr, Gelman E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol. Rev. 1975; 39: 232
  • Frisch Loyter A., Levy A. R., Goldberg I. Inhibition of conjugation in Tetrahymena pyhformis by cerulenin. Possible requirement for de novo lipid synthesis. Biochim. Biophys. Acta 1978; 506: 18
  • Daum Gamerith G. G., Paltauf F. The effect of cerulenin and exogenous fatty acids on triacylglycerol accumulation in an inositol deficient yeast, Saccharomyces carlsbergensis. Biochim. Biophys. Acta 1979; 573: 413
  • Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol. Rev. 1976; 40: 681
  • Omura S. Cerulenin. Methods Enzymol. 1981; 72: 520
  • Henry S. A., Horowitz B. A new method for mutant selection in Saccharomyces cerevisiae. Genetics 1975; 79: 175
  • Henry Greenberg S. A., Letts M. L., Snicker L. A., Klig B. L., Atkinson K. D. Genetic regulation of phospholipid synthesis in yeast. Current Developments in Yeast Research, G. G. Stewart, I. Russell. Pergamon Press, Toronto 1981; 311
  • Henry S. A., Fogel S. Saturated fatty acid mutants in yeast. Mol. Gen. Genet. 1971; 113: 1
  • Cronan J. E., Jr. A new method for selection of Escherichia coil mutants defective in membrane synthesis. Nature New Biol. 1972; 240: 21, (London)
  • Cronan J. E., Jr, Ray T. K., Vagelos P. R. Selection and characterisation of an E. coli mutant defective in membrane lipid synthesis. Proc. Natl. Acad. Sci. U.S.A. 1970; 65: 737
  • McElhaney R. N. Mechanisms of microbial adaptation. Extreme Environments, M. R. Heinrich. Academic Press, New York 1976; 255
  • James A. T., Nichols B. W. Lipids of photosynthetic systems. Nature (London) 1966; 210: 372
  • Lennarz W. J. Bacterial lipids. Lipid Metabolism, S. J. Wakil. Academic Press, New York 1970; Vol.: 155
  • Tulloch A. P., Ledingham G. A. The component fatty acids of oils found in spores of plant rusts and other fungi. Can. J. Microbiol. 1960; 6: 425
  • Tulloch A. P., Ledingham G. A. The component fatty acids of oils found in spores of plant rusts and other fungi. II. Can. J. Microbiol. 1962; 8: 379
  • Tulloch A. P., Ledingham G. A. The component fatty acids of oils found in spores of plant rusts and other fungi. III. Can. J. Microbiol. 1964; 10: 351
  • Tulloch A. P. The component fatty acids of oils found in spores of plant rusts and other fungi. IV. Can. J. Microbiol. 1964; 10: 359
  • Alberts A. W., Vagelos P. R. Acetyl-CoA carboxylase. I. Requirement for two protein fractions. Proc. Natl. Acad. Sci. U.S.A. 1968; 59: 561
  • Alberts A. W., Vagelos P. R. Acetyl-CoA carboxylase. Enzymes 1972; 6: 37
  • Kusunose Kusunose M., Kowa E. Y., Yamamura YL. Carbondioxide fixation into malonate in Mycobacterium avium. J. Biochem. Tokyo 1959; 46: 525
  • Kleinschmidt Moss A. K.J., Lane M. S. Acetyl coenzyme A carboxylase: filamentous nature of the animal enzymes. Science 1969; 166: 1276
  • Miller A. L., Levy H. R. Rat mammary acetyl coenzyme A carboxylase. I. Isolation and characterisation. J. Biol. Chem. 1969; 244: 2344
  • Nakanishi S., Numa S. Purification of rat liver acetyl-coenzyme A carboxylase and immunochemical studies on its synthesis and degradation. Eur: J. Biochem. 1970; 16: 161
  • Waite M., Wakil S. J. Studies on the mechanism of fatty acid synthesis. XII. Acetyl coenzyme A carboxylase. J. Biol. Chem. 1962; 237: 2750
  • Matsuhashi Matsuhashi M. S., Lynen F. Zur Biosynthese der Fettsauren. IV. Acetyl-CoA Carboxylase aus Hefe. Biochem. Z. 1964; 340: 243
  • Mishina Kamiryo M., Tanaka T., Fukni A. S., Numa S. Acetyl-coenzyme A carboxylase of Candida lipolytica. I. Purification and properties of the enzyme. Eur. J. Biochem. 1976; 71: 295
  • Mishina Kamiryo M., Tanaka T., Fukni A. S., Numa S. Acetyl-coenzyme A carboxylase of Candida lipolytics. II. Regulation of cellular content and synthesis of the enzyme. Eur. J. Biochem. 1976; 71: 301
  • Hatch M. D., Stumpf P. K. Fat metabolism in higher plants. XVI. Acetyl coenzyme A carboxylase and acetyl coenzyme A malonyl coenzyme A transcarboxylase from wheat germ. J. Biol. Chem. 1961; 236: 2879
  • Heinstein P. F., Stumpf P. K. Fat metabolism in higher plants. XXXVIII. Properties of wheat germ acetyl coenzyme A carboxylase. J. Biol. Chem. 1969; 244: 5374
  • Brooks J. L., Stumpf P. K. Fat metabolism in higher plants. XXXIX. Properties of a soluble fatty acid synthesizing system from lettuce chloroplasts. Arch. Biochem. Biophys. 1966; 116: 108
  • Kanangara C. G., Stumpf P. K. Fat metabolism in higher plants. LIV. A prokaryotic type acetyl-CoA carboxylase in spinach chloroplasts. Arch. Biochem. Biophys. 1972; 152: 83
  • Volpe J. J., Vagelos P. R. Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol. Rev 1976; 56: 339
  • Bloch K. Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv. Enzymol. 1977; 45: 1
  • Volpe J. J., Vagelos P. R. Saturated fatty acid biosynthesis and its regulation. Ann. Rev. Biochem. 1973; 42: 21
  • Bloch K., Vance D. Control mechanisms in the synthesis of saturated fatty acids. Ann. Rev. Biochem. 1977; 46: 263
  • Wood H. G., Barden R. E. Biotin enzymes. Ann. Rev. Biochem. 1977; 46: 385
  • Margolis S., Baum H. The association of acetyl coenzyme A carboxylase with the microsomal fraction of the pigeon liver. Arch. Biochem. Biophys. 1966; 114: 445
  • Easter D. J., Dils R. Fatty acid biosynthesis. IV. Properties of acetyl-CoA carboxylase in lactating rabbit mammary gland. Biochim. Biophys. Acta 1968; 152: 653
  • Sumper M., Riepertinger C. Structural relationship of biotin containing enzymes. Acetyl-CoA carboxylase and pyruvate carboxylase from yeast. Eur. J. Biochem. 1972; 29: 237
  • Erfle J. D. Acetyl-CoA and propionyl-CoA carboxylation by Mycobacterium phlei. Partial purification and some properties of the enzyme. Biochim. Biophys. Acta 1973; 316: 143
  • Wolpert J. S., Ernst-Fonberg M. L. A multienzyme complex for CO2 fixation. Biochemistry 1975; 14: 1095
  • Wolpert J. S., Ernst-Fonberg M. L. Dissociation and characterisation of enzymes from a multienzyme complex involved in CO2 fixation. Biochemistry 1975; 14: 1103
  • Mishina Roggenkamp M. R., Schweizer E. Yeast mutants defective in acetyl-coenzyme A carboxylase and biotin apocarboxylase ligase. Eur. J. Biochem. 1980; III: 79
  • Buckner J. S., Kolattukudy P. E. Lipid biosynthesis in sebaceous glands: regulation of the synthesis of n- and branched fatty acids by malonyl-coenzyme A decarboxylase. Biochemistry 1975; 14: 1768
  • Buckner J. S., Kolattukudy P. E. Lipid biosynthesis in the sebaceous glands: synthesis of multibranched fatty acids from methylmalonyl-coenzyme A in cell-free preparations from the uropygial gland of goose. Biochemistry 1975; 14: 1774
  • Kamiryo Parthasarthy T. S., Numa S. Evidence that acyl coenzyme A synthetase activity is required for repression of yeast acetyl coenzyme A carboxylase by exogenous fatty acids. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 386
  • Gill C. O., Ratledge C. Regulation of de novo fatty acid biosynthesis in the n-alkane utilizing yeast, Candida 107. J. Gen. Microbiol. 1973; 78: 337
  • Sumper M. Control of fatty acid biosynthesis by long chain acyl-CoAs and by lipid membranes. Eur. J. Biochem. 1974; 49: 469
  • Oesterhelt Bauer D. H., Lynen F. Crystallization of a multienzyme complex fatty acid synthetase from yeast. Proc. Natl. Acad. Sci. U.S.A. 1969; 63: 1377
  • Schweizer Knop E., Castroph B. H., Holzner U. Pantetheine-free mutants of the yeast fatty acid synthetase complex. Eur. J. Biochem. 1973; 39: 353
  • Law S. W. T., Burton D. N. Fatty acid synthetase from Pythium debaryanum. Can. J. Biochem. 1973; 51: 241
  • Elovson J. Purification and properties of the fatty acid synthetase complex from Neurospora crassa, and the nature of fasmutation. J. Bacterid. 1975; 124: 524
  • Burton Haavik D. N. A. G., Porter J. W. Comparative studies of the rat and pigeon liver fatty acid synthetases. Arch. Biochem. Biophys. 1968; 126: 141
  • Carey E. M., Dils R. Fatty acid biosynthesis. V. Purification and characterization of fatty acid synthetase from lactating-rabbit mammary gland. Biochim. Biophys. Acta 1970; 210: 371
  • Hsu Wasson R. Y.G., Porter J. W. The purification and properties of the fatty acid synthetase of pigeon liver. J. Biol. Chem. 1965; 240: 3736
  • Hsu R. Y., Yun S. L. Stabilization and physiochemical properties of the fatty acid synthetase of chicken liver. Biochemistry 1970; 9: 239
  • Knudsen J. Fatty acid synthetase from cow mammary gland tissue cells. Biochim. Biophys. Acta 1972; 280: 408
  • Maitra S. K., Kumar S. Physiochemical properties of bovine mammary fatty acid synthetase. J. Biol. Chem. 1974; 249: 118
  • Roncari D. A. K. Mammalian fatty acid synthetase. I. Purification and properties of human liver complex. Can. J. Biochem. 1974; 52: 221
  • Smith S., Abraham S. Fatty acid synthetase from lactating rat mammary gland. I. Isolation and properties. J. Biol. Chem. 1970; 245: 3209
  • Strong C. R., Dils R. The fatty acid synthetase complex of lactating guinea-pig mammary gland. Int. J. Biochem. 1972; 3: 369
  • Delo Ernst-Fonberg J. M. L., Bloch K. Fatty acid synthetases from. Euglena gracilis. Arch. Biochem. Biophys. 1971; 143: 384
  • Goldberg I., Bloch K. Fatty acid synthetases in. Euglena gracilis, J. Biol. Chem. 1972; 247: 7349
  • Sirevag R., Levine R. P. Fatty acid synthetase from Chlamydomonas reinhardi. Sites of transcription and translation. J. Biol. Chem. 1972; 247: 2586
  • Ernst-Fonberg M. L., Bloch K. A chloroplast-associated fatty acid synthetase system in Euglena. Arch. Biochem. Biophys. 1971; 143: 392
  • Overath P., Stumpf P. K. Fat metabolism in higher plants. XXIII. Properties of a soluble fatty acid synthetase from avocado mesocarpi. J. Biol. Chem. 1964; 239: 4103
  • Simoni Criddle R. D. R. S., Stumpf P. K. Fat metabolism in higher plants. XXXI. Purification and properties of plant and bacterial acyl carrier protein. J. Biol. Chem. 1967; 242: 573
  • Vance Mitsuhashi D. E., O., Bloch K. Purification and properties of the fatty acid synthetase from. Mycobacterium phlei, J. Biol. Chem. 1973; 248: 2303
  • Knoche H. W., Koths K. E. Characterization of a fatty acid synthetase from. Corynebacterium diptheriae, J. Biol. Chem. 1973; 248: 3517
  • Pugh Sauer E. L., Waite F., Toomey M. R. E., Wakil S. J. Studies on the mechanism of fatty acid synthesis. XIII. The role of β-hydroxy acids in the synthesis of palmitate and cis-vaccenate by the Escherichia coli enzyme system. J. Biol. Chem. 1966; 241: 2635
  • Butterworth P. H. W., Block K. Comparative aspects of fatty acid synthesis in Bacillus subtilis Escherichia coli. Eur. J. Biochem. 1970; 12: 496
  • Matsumura Brindley S. D. N., Bloch K. Acyl carrier protein from. Mycobacterium phlei, Biochem. Biophys. Res. Commun. 1970; 38: 366
  • Lynen F. On the structure of fatty acid synthetase of yeast. Eur. J. Biochem. 1980; 112: 431
  • Brindley Matsumura D. N.S., Bloch K. Mycobacterium phlei fatty acid synthetase — a bacterial multienzyme complex. Nature (London) 1969; 224: 666
  • Matsumura S. Conformation of acyl carrier protein from Mycobacterium phlei. Biochem. Biophys. Res. Commun. 1970; 38: 238
  • Ernst-Fonberg M. L. Fatty acid synthetase activity in Euglena gracilis variety bacillaris. Characterization of an acyl carrier protein-dependent system. Biochemistry 1973; 12: 2449
  • Ernst-Fonberg Dubinskas M. L.F., Jonak Z. L. Comparison of two fatty acid synthetases from Euglena gracilis variety Bacillaris. Arch. Biochem. Biophys. 1974; 165: 646
  • Majerus Alberts P. W. A. W., Vagelos P. R. The acyl carrier protein of fatty acid synthesis: purification, physical properties and substrate binding site. Proc. Natl. Acad. Sci. U.S.A. 1964; 51: 1231
  • Majerus P. W., Vagelos P. R. Fatty acid biosynthesis and the role of the acyl carrier protein. Adv. Lipid Res. 1967; 5: 1
  • Vagelos Majerus P. R., Alberts P. W., Larrabee A. W. A. R., Ailhand G. Structure and function of the acyl carrier protein. Fed. Proc 1966; 25: 1485
  • Wakil Pugh S. J. E. L., Sauer F. The mechanism of fatty acid synthesis. Proc. Natl. Acad. Sci. U.S.A. 1964; 52: 106
  • Brady R. O. Biosynthesis of fatty acids. II. Studies with enzymes obtained from brain. J. Biol. Chem. 1960; 235: 3099
  • Brady Bradley R. O. R. M., Trams E. G. Biosynthesis of fatty acids. I. Studies with enzymes obtained from liver. J. Biol. Chan. 1960; 235: 3093
  • Wakil S. J. Mechanism of fatty acid synthesis. J. Lipid Res. 1961; 2: 1
  • Wakil S. J., Ganguly J. On the mechanism of fatty acid synthesis. J. Am. Chem. Soc 1959; 41: 2597
  • Lynen F. Biosynthesis of saturated fatty acids. Fed. Proc. 1961; 20: 941
  • Vanden Bosch Williamson H. J. R., Vagelos P. R. Localization of acyl carrier protein in. Escherichia coli. Nature 1970; 228: 338, (London)
  • Kaneda T. Fatty acids of the genus Bacillus: an example of branched chain preference. Bacteriol. Rev. 1977; 41: 391
  • Buckner J. S., Kolattukudy P. E. One step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Biochemistry 1976; 15: 1948
  • Prescott D. J., Vagelos P. R. Acyl carrier protein. Adv. Enzymol. 1972; 36: 269
  • Engeser Weiland E. F., Lynen F. Localization of three non-thiol binding sites on polypeptide chain B of yeast fatty acid synthetase. FEBS Lett. 1977; 82: 139
  • Schweizer Kuhn E. L., Castroph H. A new gene cluster in yeast: the fatty acid synthetase system. Hoppe-Seyler's Z. Physiol. Chem. 1971; 352: 377
  • Wieland Siess F., Renner E., Verfurth L. C., Lynen F. Distribution of yeast fatty acid synthetase subunits: three dimensional model of enzyme. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 5792
  • Kresze Oesterhelt G. B., Lynen D., Castroph F. H., Schweizer E. Localization of the central and peripheral SH-groups on the same polypeptide chain on yeast fatty acid synthetase. Biochem. Biophys. Res. Commun. 1976; 69: 893
  • Schweizer Piccinini E., Duba F., Gunther C., Ritter S. E., Lynen F. Die Malonyl-Bindungsstelllen des Fettsauresynthetase Komplexes aus Hefe. Eur. J. Biochem. 1970; 15: 483
  • Pilz I, Herbst Kratky M., Oesterhelt O. D., Lynen F. Rontgenkleinwinkel-Untersuchngen an der Fettsauresynthetase aus Hefe. Eur. J. Biochem. 1970; 13: 55
  • Kuhn Castroph L. H., Schweizer E. Gene linkage and gene-enzyme relations in the fattyacid-synthetase system of Saccharomyces cerevisiae. Eur. J. Biochem. 1972; 24: 492
  • Schweizer Kniep E., Castroph B. H., Holzner U. Pantetheine-free mutants of the yeast fatty acid synthetase complex. Eur. J. Biochem. 1973; 39: 353
  • Wieland Renner E., Verfurth L. C., Lynen F. Studies on the multi-enzyme complex of yeast fatty acid synthetase. Reversible dissociation and isolation of two polypeptide chains. Eur. J. Biochem. 1979; 94: 189
  • Schweizer Werkmeister E. K., Jain M. K. Fatty acid biosynthesis in yeast. Mol. Cell. Biol. 1978; 21: 95
  • Meyer K. H., Schweizer E. Control of fatty acid synthetase levels by exogenous long chain fatty acids in the yeasts Candida lipolyticaSaccharomyces cerevisiae. Eur. J. Biochem. 1976; 65: 317
  • Schweizer E., Bolling H. A Saccharomyces cerevisiae mutant defective in saturated fatty acid biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 1970; 67: 660
  • Lynen Hopper-Kessel F. I., Eggerer H. Zur Biosynthese der Fettsauren. III. Die Fettsaurensynthetase der Hefe und die Bildung Bildung Enzymegebundener Acetessigsaure. Biochem. Z. 1964; 340: 95
  • Dorsey J. A., Porter J. W. The effect of palmityl coenzyme A on pigeon liver fatty acid synthetase. J. Biol. Chem. 1968; 243: 3512
  • Lust G., Lynen F. The inhibition of the fatty acid synthetase multienzyme complex of yeast by long chain acyl-CoA compounds. Eur. J. Biochem. 1968; 7: 68
  • Plate Joshi C. A., Sedgwick V. C.B., Wakil S. J. Studies on the mechanism of fatty acid synthesis. XXI. The role of fructose 1,6-diphosphate in the stimulation of the fatty acid synthetase from pigeon liver. J. Biol. Chem. 1968; 243: 5439
  • Wakil Goldman S. J., Williamson J. K. I. P., Toomey R. E. Stimulation of fatty acid biosynthesis by phosphorylated sugars. Proc. Natl. Acad. Sci. U.S.A. 1966; 55: 880
  • Ilton Jevans M., White A. W., Vance H. B. D., III, Bloch K. Fatty acid synthetase activity in Mycobacterium phlei, regulation by polysaccharides. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 87
  • Knoche Esders H., Koths T. W.K., Bloch K. Palmityl coenzyme A inhibition of fatty acid synthesis. J. Biol. Chem. 1973; 248: 2317
  • Vance Goldberg D., Mitsuhashi I. O., Bloch K. Inhibition of fatty biosynthesis by the antibiotic cerulenin. Biochem. Biophys. Res. Commun. 1972; 48: 649
  • D'Agnolo Rosenfeld G., Awaya I. S., Omura J. S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of β-ketoacyl-acyl carrier protein synthetase. Biochim. Biophys. Acta 1973; 326: 155
  • Kawaguchi Tomoda A., Nozoe H., Omura S. S., Okuda S. Mechanism of action of cerulenin on fatty acid synthetase. Effect of cerulenin on iodoacetamide induced malonyl-CoA decarboxylase activity. J. Biochem. 1982; 92: 7
  • Kaneaguchi Tomoda A., Okuda H., Awaya S. J., Omura S. Cerulenin resistance in a cerulenin-producing fungus. Isolation of cerulenin insensitive fatty acid synthetase. Arch. Biochem. Biophys. 1979; 197: 30
  • Rouslin W. Effects of cerulenin upon the synthesis of lipid, protein and upon the formation of respiratory enzymes in adapting lipid limiting Saccharomyces cerevisiae. J. Bacteriol. 1979; 139: 502
  • Martin J. F., McDaniel L. E. Specific inhibition of candicidin biosynthesis by the lipogenic inhibitor cerulenin. Biochim. Biophys. Acta 1975; 411: 186
  • Gstraunthaler G. J. A. The effect of cerulenin on fatty acid and anthraquinone biosynthesis in vegetative mycelia of Cortinarius orichalceus Fr. Biochim. Biophys. Acta 1983; 750: 424
  • Oesterhelt Bauer D., Kresze H., Steber G. B.L., Lynen F. Reaction of yeast fatty acid synthetase with iodoacetamide. I. Kinetics of inactivation and extent of carboxamidomethylation. Eur. J. Biochem. 1977; 79: 1973
  • Kresze Steber G. B., Oesterhelt L. D., Lynen F. Reaction of yeast fatty acid synthetase with iodoacetamide. II. Identification of the amino acid residues reacting with iodoacetamide and primary structure of a peptide containing the peripheral sulphydryl group. Eur. J. Biochem. 1977; 79: 181
  • Kreszer Steber G. B., Oesterhelt L. D., Lyned Fr. Reaction of yeast fatty acid synthetase with iodacetamide. III. Malonyl coenzyme A decarboxylase as product of the reaction of fatty acid synthetase with iodoacetamide. Eur. J. Biochem. 1977; 79: 191
  • Stoops J. K., Wakil S. J. The yeast fatty acid synthetase, structure-function relationship and the role of the active cysteine-SH and pantetheine-SH. J. Biol. Chem. 1981; 256: 8364
  • Fulco A. J. Chain elongation, 2-hydroxylatioh and decarboxylation of long chain fatty acids by yeast. J. Biol. Chem. 1967; 242: 3608
  • Orme McIntyre T. W., Lynen J., Kuhun F. L., Schweizer E. Fatty acid elongation in a mutant of Saccharomyces cerevisiae deficient in fatty acid synthetase. Eur. J. Biochem. 1972; 24: 407
  • Hinsch W., Seubert W. On the mechanism of malonyl-CoA independent fatty acid synthesis. Characterisation of the mitochondrial chain elongating system of rat liver and pig kidney cortex. Eur. J. Biochem. 1975; 53: 437
  • Hinsch Klages W. C., Seubert W. On the mechanism of malonyl-CoA independent fatty acid synthesis. Different properties of the mitochondrial chain elongation and enoyl-CoA reductase in various tissues. Eur. J. Biochem. 1976; 64: 45
  • Wakil S. J. Fatty acid metabolism. Lipid Metabolism. Academic Press, New York 1970; 1
  • Bolton P., Harwood J. L. Some characteristics of soluble fatty acid synthesis in germinating pea seeds. Biochim. Biophys. Acta 1977; 489: 15
  • Vance W. A., Stumpf P. K. Fat metabolism in higher plants. The elongation of saturated and unsaturated acyl-CoAs by a stromal system isolated from spinach chloroplasts. Arch. Biochem. Biophys. 1978; 190: 210
  • Shimakata Fujita T. Y., Kusaka T. Acetyl-CoA dependent elongation of fatty acids in Mycobacterium smegmatis. J. Biochem. 1977; 82: 725
  • Kikuchi S., Kusaka T. New malonyl-CoA dependent fatty acid elongation system in Mycobacterium smegmatis. J. Biochem. 1982; 92: 839
  • Seubert Lamberts W., Kramer I. R., Ohly B. On the mechanism of malonyl-CoA independent fatty acid synthesis. I. The mechanism of elongation of long chain fatty acids by acetyl-CoA. Biochim. Biophys. Acta 1968; 164: 498
  • Givan C. V, Harwood J. L. Biosynthesis of small molecules in chloroplasts of higher plants;. Biol. 1976; Rev. 51: 365
  • Gurr M. I. The biosynthesis of polyunsaturated fatty acids in plants. Lipids 1971; 6: 266
  • Harwood J. L. The synthesis of acyl lipids in plant tissue. Prog. Lipid Res. 1979; 18: 55
  • Fulco A. J. Metabolic alterations of fatty acids. Ann. Rev. Biochem. 1974; 43: 215
  • Pugh E. L., Kates M. Membrane bound phospholipids desaturases. Lipids 1979; 14: 159
  • Schultz J., Lynen F. Untersuchungen zur Biosynthese Ungesatigter Fettsauren in Hefe. Eur. J. Biochem. 1971; 21: 48
  • Moore T. S., Jr. Phospholipid biosynthesis. Ann. Rev. Plant Physiol. 1982; 33: 235
  • Bloomfield D. K., Bloch K. The formation of Δ unsaturated fatty acids. J. Biol. Chem. 1960; 235: 337
  • Bennett A. S., Quackenbush F. W. Synthesis of unsaturated fatty acids by Penicillium chrysogenum. Arch. Biochem. Biophys. 1969; 130: 567
  • Yoshida Y., Kumaoka H. Purification of cytochrome bs like heme-protein from anaerobically grown yeast. Biochim. Biophys. Acta 1969; 189: 461
  • Yoshida Kumaoka Y. H., Sato R. Studies on the microsomal electron system of anaerobically grown yeast. I. Intracellular localisation and characterisation. J. Biochem. 1974; 75: 1201
  • Yoshida Kumaoka Y. H., Sato R. Studies on the microsomal system of anaerobically grown yeast. II. Purification and characterization of cytochrome bs. J. Biochem. 1974; 75: 1211
  • Tamura Yoshida Y., Sato Y. R., Kumaoka H. Fatty acid desaturase system of yeast microsomes. Involvement of cytochrome bs, containing electron transport chain. Arch. Biochem. Biophys. 1976; 175: 284
  • Oshino Imai N. Y., Sato R. Electron transfer mechanism associated with fatty acid desaturation catalysed by liver microsomes. Biochim. Biophys. Acta 1966; 128: 13
  • Oshino Imai N. Y., Sato R. A function of cytochrome bs, in fatty acid desaturation by rat liver, microsomes. J. Biochem. 1977; 69: 155
  • Oshino N., Sato R. The dietary control of the microsomal stearyl-CoA desaturation enzyme system in rat liver. Arch. Biochem. Biophys. 1972; 149: 369
  • Oshino N., Omura T. Immunochemical evidence for the participation of cytochrome bs, in microsomal stearyl-CoA desaturation reaction. Arch. Biochem. Biophys. 1973; 157: 395
  • Strittmatter Spatz P., Corcoran L., Rogers D., Setlow M. J.B., Redline R. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 4565
  • Wilson A. C., Miller R. W. Growth temperature dependent stearoyl-coenzyme A desaturase activity of Fusarium oxysporum microsomes. Can. J. Biochem. 1978; 56: 1109
  • Baker N., Lynen F. Factors involved in fatty acyl-CoA desaturation by fungal microsomes. The relative roles of acyl-CoA and phospholipids as substrates. Eur. J. Biochem. 1971; 19: 200
  • Howling Morris D., Gurr L. M. I., James A. T. The specificity of fatty acid desaturases and hydroxylases. The dehydrogenation and hydroxylation of monoenoic acids. Biochim. Biophys. Acta 1972; 260: 10
  • Brett Howling D., Morris D. L. J., James A. T. Specificity of the fatty acid desaturases. The conversion of saturated to monoenoic acids. Arch. Biochem. Biophys. 1971; 143: 535
  • Schroepfer G. J., Bloch K. The stereospecific conversion of stearic acid to oleic acid. J. Biol. Chem. 1965; 240: 54
  • Morris L. J. Mechanisms and stereochemistry in fatty acid metabolism. Biochem. J. 1970; 118: 681
  • Richards R. L., Quackenbush F. W. Alternate pathways of linolenic acid biosynthesis in growing cultures of. Penicillium chrysogenum, Arch. Biochem. Biophys. 1974; 165: 780
  • Jaworski J. G., Stumpf P. K. Fat metabolism in higher plants. Properties of a soluble stearylacyl carrier protein desaturase from maturing Cathamus finctorius. Arch. Biochem. Biophys. 1974; 162: 158
  • Slack Roughan C. R. P. G., Browse J. Evidence for an oleoyl phosphatidylcholine desaturase in microsomal preparations from cotyledons of safflower (Carthamus tinctorius) seed. Biochem. J. 1979; 179: 649
  • Slack Roughan C. R. P. G., Terpstra J. Some properties of a microsomal oleate desaturase from leaves. Biochem. J. 1976; 155: 71
  • Slack Roughan C. R. P. G., Balasingham N. Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem. J. 1977; 162: 289
  • Pugh E. L., Kates M. Desaturation of phosphatidylcholine and phosphatidylethanolamine by a microsomal enzyme system from. Candida lipolytica, Biochim. Biophys. Acta 1973; 316: 305
  • Talamo Chang B. N., Bloch K. Desaturation of oleyl phospholipid to linoleyl phospholipid in Torulopsis utilis. J. Biol. Chem. 1973; 248: 2738
  • Chavant Mazliak L. P., Montant M. Formation of unsaturated fatty acids in a filamentous fungus: Aspergillus ochraceus vuilleum. Physiol. Veg. 1979; 16: 607
  • Kates M., Paradis M. Phospholipid desaturation in Candida lipolyticaas a function of temperature and growth. Can. J. Biochem. 1973; 51: 184
  • Pugh E. L., Kates M. Characterization of a membrane bound phospholipid desaturase system of Candida lipolytica. Biochim. Biophys. Acta 1975; 380: 442
  • Gurr Robinson M. I.P., James A. T. The mechanism of formation of polyunsaturated fatty acids by photosynthetic tissue. The tight coupling of oleate desaturation with phospholipid synthesis in Chlorella vulgaris. Eur. J. Biochem. 1969; 9: 70
  • Jacobson Kannangara B. S. C. G., Stumpf P. K. Biosynthesis of α-linolenic acid by disrupted spinach chloroplasts. Biochem. Biophys. Res. Commun. 1973; 51: 487
  • Jacobson Kannangara B. S. C. G., Stumpf P. K. The elongation of medium chain trienoic acids to α-linolenic acid by spinach chloroplast stroma system. Biochem. Biophys. Res. Commun. 1973; 52: 1190
  • Yuan C., Bloch K. Conversion of oleic to linoleic acid. J. Biol. Chem. 1961; 236: 1277
  • Shaw R. The occurrence of γ-linolenic acid in fungi. Biochim. Biophys. Acta 1965; 98: 230
  • Sumner J. L. The fatty acid composition of Blastocladiella emersonii. Can. J. Microbiol. 1970; 16: 1161
  • Gellerman J. L., Schlenk H. Methyl-directed desaturation of arachidonic to eicosapentaenoic acid in the fungus, Saprolegnia parasitica, Biochim. Biophys. Acta 1979; 573: 23
  • Martin Hiramitsu C. E., Kitajima K., Nozawa Y., Skriver Y. L., Thompson G. A., Jr. Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells. Biochemistry 1976; 15: 5218
  • Kasai Kitajima R., Martin Y., Nozawa C. E., Skriver Y. L., Thompson G. A., Jr. Molecular control of membrane properties during temperature acclimation. Membrane fluidity regulation of fatty acid desaturase action?. Biochemistry 1976; 15: 5229
  • Martin C. E., Thompson G. A., Jr. Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation. Correlation with lipid compositional and ultrastructural changes. Biochemistry 1978; 17: 3581
  • Nozawa Y., Kasai R. Mechanism of thermal adaptation of membrane lipids in Tetrahymena pyriformis NT-1. Possible evidence for temperature mediated induction of palmitoyl-CoA desaturase. Biochim. Biophys. Acta 1978; 529: 54
  • Rattray Schibeci J. B. M.A., Kidby D. K. Lipids of yeasts. Bacteriol. Rev. 1975; 39: 197
  • Martin Seigel C. E.O., Aaronson L. A. Effect of temperature acclimation on Neurospora phospholipids. Fatty acid desaturation appears to be a key element in modifying phospholipid fluid properties. Biochim. Biophys. Acta 1981; 665: 399
  • Bansal V. S., Khuller G. K. Temperature-induced alterations in phospholipid and fatty acid composition of Microsporum species. Ind. J. Biochem. Biophys. 1981; 18: 74
  • Chavant Wolf L., Fonvieille C. J. L., Dergent R. Deviation from the usual relationships between the temperature, the growth rate, the fatty acid composition and the lipid microviscosity of four different fungi Mucor mucedo, Aspergillus ochraceus, Scopulariopsis brevicaulis, Achlya bisexualis). Biochem. Biophys. Res. Commun. 1981; 101: 912
  • Lein J., Lein P. S. Studies on Neurospora mutant requiring unsaturated fatty acids for growth. J. Bacteriol 1949; 58: 595
  • Resnick M. A., Mortimer R. K. Unsaturated fatty acid mutants of Saccharomyces cerevisiae. J. Bacteriol. 1966; 92: 597
  • Keith Resnick A. D. M. R., Haley A. B. Fatty acid desaturase mutants of Saccharomyces cerevisiae. J. Bacteriol. 1969; 98: 415
  • Ohba Sato M., Yoshida R., Bieglmayer Y. C., Ruis H. Mutant and immunochemical studies on the involvement of cytochrome bs, in fatty acid desaturation by yeast microsomes. Biochim. Biophys. Acta 1979; 572: 352
  • Morris Hall L. J. S. W., James A. T. The biosynthesis of recinoleic acid by Claviceps purpurea. Biochem. J. 1966; 100: 296
  • Yamada M., Stumpf P. K. Enzymic synthesis of recinoleic acid by extracts of developing Ricinus communis L. seeds. Biochem. Biophys. Res. Commun. 1964; 14: 165
  • Heinz Tulloch E. A. P., Spencer J. F. T. Stereospecific hydroxylation of long chain compounds by a species of Turolopsis. J. Biol. Chem. 1969; 244: 882
  • Heinz Tulloch E. A. P., Spencer J. F. T. Hydroxylation of oleic acid by cell free extracts of a species of Turolopsis. Biochim. Biophys. Acta 1970; 202: 49
  • Hartmann G. R., Frear D. S. Enzymic hydration of cis-9,10-epoxyoctadecanoic acid by cell free extracts of germinating flax rust uredospores. Biochem. Biophys. Res. Commun. 1963; 10: 366
  • Jackson L. L., Frear D. S. Lipids of rust fungi. I. Lipid metabolism of germinating flax rust uredospores. Can. J. Biochem. 1967; 45: 1309
  • Knoche H. W. Incorporation of oxygen-18 into theoxirane ring of cis-9,10-epoxyoctadecanoic acid. Lipids 1971; 6: 581
  • Nakajima S., Tanebaum S. W. The fatty acids of Penicillium pulvillorum. Arch. Biochem. Biophys. 1968; 127: 150
  • Koman Betina V. V., Barath Z. Fatty acid, lipid and cyanein production by Penicillium cyaneum. Arch. Microbiol. 1969; 65: 172
  • Bu'lock J. D. Biosynthesis of polyacetylenes in fungi. Biosynthesis of Antibiotics, J. F. Snell. Academic Press, New York 1967; 141
  • Anchel M. Biogenesis and biological activity of polyacetylenes. Antibiotics, I.I. Biosynthesis, D. Gottlieb, P. D. Shaw. Springer-Verlag, New York 1967; 189
  • Turner W. B. Fungal Metabolites. Academic Press, New York 1971; 66
  • Stumpf P. K. Metabolism of fatty acids. Ann. Rev. Biochem. 1969; 38: 159
  • Martin R. O., Stumpf P. K. Fat metabolism in higher plants XII. α-Oxidation of long chain fatty acids. J. Biol. Chem. 1959; 234: 2548
  • Hitchcock C., James A. T. The mechanism of α-oxidation in leaves. Biochim. Biophys. Acta 1966; 116: 413
  • Lippel K., Mead J. F. Alpha-oxidation of 2-hydroxystearic acid in vitro. Biochim. Biophys. Acta 1968; 152: 669
  • Kawamoto Nozaki S., Tanaka C. A., Fukui S. Fatty acid β-oxidation system in microbodies of n-alkane grown Candida tropicalis. Eur. J. Biochem. 1978; 83: 609
  • Weete J. D. Lipid Biochemistry of Fungi and Other Organisms. Academic Press, New York 1980
  • Bloch K. Sterol structure and membrane function. CRC Crit. Rev. Biochem. 1983; 14: 47
  • Farag Youssef R. S., Khalil A. M. F. A., Taha R. A. The lipids of various fungi grown on an artificial medium. J. Am. Oil Chem. Soc. 1981; 58: 765
  • Nes W. R. Role of sterols in membranes. Lipids 1974; 9: 596
  • Demel R. A., de Kruyff B. The functions of sterols in membranes. Biochim. Biophys. Acta 1976; 457: 109
  • Chapman D., Plenkett S. A. NMR spectroscopic studies of the interaction of phospholipids with cholesterol. Nature, 211: 1304, J966. (London)
  • Shinitzky M., Inbar M. Microviscosity parameters and protein mobility in biological membranes. Biochim. Biophys. Acta 1976; 433: 133
  • Heftmann E. Recent progress in the biochemistry of plant steroides other than sterols (saponins, glycoalkaloids, pregnane derivatives, cardiac glycosides and sex hormones). Lipids 1974; 9: 626
  • Arsenault Biemann G. P., Berksdale K. A. W., McMorris. T. C. The structure of antheridiol, a sex hormone in Achyla bisexualis. J. Am. Chem. Soc 1968; 90: 5635
  • Wassef M. K. Fungal lipids. Adv. Lipid Res. 1977; 15: 159
  • Chopra A., Khuller G. K. Lipids of pathogenic fungi. Prog. Lipid Res. 1983; 22: 189
  • Barton Kempe D. H. R. U. M., Widdowson D. A. Investigations on the biosynthesis of steroids and terpenoides. VI. The sterols of yeast. J. Chem. Soc. Perkin Trans. L 1972; 513
  • Greenspan M. D., Germershansen J. I. Effect of halofenate and clofibrate on growth and lipid synthesis in Saccharomyces cerevisiae. J. Bacteriol. 1973; 113: 847
  • Penman C. S., Duffus J. H. Ergosterol is the only sterol in Kluyveromyces fragilis, Antonie VanLeeuwenhoek. J. Microbiol. Serol. 1974; 40: 529
  • Lomb Fryberg M., Ochlschlager M. A. C., Unrau A. M. Sterol and fatty acid composition of polyene macrolide antibiotic resistant. Torulopsis glabrata, Can. J. Biochem. 1975; 53: 1309
  • Capek Simek A., Bruna A., Svab L. A., Budesinsky Z. Antimicrobial agents. XX. Ergosterol content of Candida albicans cells during adaptation to antimycotics. Folia Microbiol. 1974; 19: 79, (Prague)
  • Fryberg Ochlschlager M. A. C., Unrau A. M. Sterol biosynthesis in antibiotic resistant yeast: nystatin. Arch. Biochem. Biophys. 1974; 160: 83
  • Vincent J. Dermatophyte lipids. Prog. Chem. Fats Other Lipids 1978; 16: 171
  • Fryberg Ochlschlager M. A. C., Unrau A. M. Sterol biosynthesis in antibiotic sensitive and resistant Candida. Arch. Biochem. Biophys. 1975; 173: 171
  • Barton Corrie D. H. R., Widdowson J. E. T., Bard D. A.M., Woods R. A. Biosynthesis of terpenes and steroids. IX. The sterols of some mutant yeasts and their relationship to the biosynthesis of ergosterol. J. Chem. Soc. Perkin 1974; 1: 1326
  • Barton Gunatilaka D. H. R., Jarman A. A. L., Widdowson T. R., Bard D. A.M., Woods R. A. Biosynthesis of terpenes and steroids. X. The sterols of some yeast mutants doubly defective in ergosterol biosynthesis. J. Chem. Soc. Perkin I 1975; 88
  • Pierce Pierce A. M. H. D., Jr, Unrau A. M., Ochlschlager A. C. Lipid composition and polyene antibiotic resistance of Candida albicans mutants. Can. J. Biochem. 1978; 56: 135
  • Barton Corrie D. H. R., Marshall J. E. T. P. J., Widdowson D. A. Biosynthesis of terpenes and steroids. VII. Unified scheme for the biosynthesis of ergosterol in Saccharomyces cerevisiae. Bioorg. Chem. 1973; 2: 363
  • Fryberg Ochlschlager M. A. A. C., Unrau A. M. Biosynthesis of ergosterol in yeast. Evidence for multiple pathways. J. Am. Chem. Soc. 1973; 95: 5747
  • Weete J. D. Sterols of the fungi: distribution and biosynthesis. Phytochemistry 1973; 12: 1843
  • Trocha Jasne P. J. S. J., Sprinson D. B. Novel sterols in ergosterol deficient yeast mutants. Biochem. Biophys. Res. Commun. 1974; 59: 666
  • Thompson Bailey E. D. R. B., Parks L. W. Subcellular location of S-adenosylmethionine: Δ24 sterol methyl-transferase in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1974; 334: 116
  • Hatanaka Ariga H., Nagi N. J., Katsuki H. Accumulation of a sterol intermediate during reaction in the presence of homocysteine with cell free extract of yeast. Biochem. Biophys. Res. Commun. 1974; 60: 787
  • Moore J. T., Jr, Gaylor J. L. Investigation of an S-adenosylmethionine: Δ24-sterol methyl transferase in ergosterol biosynthesis in yeast. J. Biol. Chem. 1970; 245: 4684
  • Parks Anding L. W.C., Ourisson G. Sterol transmethylation during aerobic adaptation of yeast. Eur. J. Biochem. 1974; 43: 451
  • Starr P. R., Parks L. W. Transmethylation of sterols in aerobically adapting Saccharomyces cerevisiae. J. Bacteriol. 1972; 109: 236
  • Barton Corrie D. H. R., Widdowson J. E. T., Bard D. A.M., Woods R. A. Biosynthetic implications of the sterol content of ergosterol-deficient mutants of yeast. J. Chan. Soc. Chan. Commun. 1974; 30
  • Kawaguchi Hatanaka A. H., Katsuki H. Control of ergosterol biosynthesis in yeast. Biochim. Biophys. Res. Commun. 1968; 33: 463
  • Kawaguchi A. Control of ergosterol biosynthesis in yeast (existence of lipid inhibitors). J. Biochem. (Tokyo) 1970; 67: 219
  • Thompson E. D., Parks L. W. Effect of altered sterol composition on growth characteristics of Saccharomyces cerevisiae. J. Bacteriol. 1974; 120: 779
  • Woods Bad R. A., Gardner M. I. E., Molzahn S. W. Studies on the accumulation of ergosterol and 24(28) dehydroergosterol in 3 strains of Saccharomyces cerevisiae. Microbios. 1974; 104: 73
  • Hunter K., Rose A. H. Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochim. Biophys. Acta 1972; 260: 639
  • David M. H., Kirsop B. H. A correlation between oxygen requirements and the products of sterol synthesis in strains of Saccharomyces cerevisiae. J. Gen. Microbiol. 1973; 77: 529
  • Safe S. The effect of growth environment on the chloroform-methanol and alkali extractable cell wall and cytoplasm lipid levels of Mucor rouxii. Can. J. Microbiol. 1975; 21: 79
  • Castelli Barbaresi A. G., Bertoli E. I. Studies on the lipids of S. cerevisiae during the growth phase. Ital. J. Biochem. 1969; 18: 91
  • El-Refai A. H., El-Kady A. I. Sterol production of yeast strains. Z. Allg. Mikrobiol. 1968; 8: 355
  • Gordon Stewart P. A. P. R., Clarkwalker G. O. Fatty acid and sterol composition of Mucor genevensis in relation to dimorphism and anaerobic growth. J. Bacteriol. 1971; 107: 114
  • Jollow Kellerman D. G. M., Linnane A. W. The biogenesis of mitochondria. III. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. J. Cell Biol. 1968; 37: 221
  • Miller W. L., Gaylor J. L. Investigation of the component reactions of oxidative sterol demethylation. Oxidation of a 4 α-methyl sterol to a 4 α-carboxylic acid during cholesterol biosynthesis. J. Biol. Chem. 1970; 245: 5369
  • Mulheirn L. J., Rawn P. J. The biosynthesis of sterols. Chem. Soc. Rev. 1972; 11: 259
  • Thompson Starr E. D. P. R., Parks L. W. Sterol accumulation in a mutant of Saccharomyces cerevisiae defective in ergosterol production. Biochem. Biophys. Res. Commun. 1971; 43: 1304
  • Topham R. W., Gaylor J. L. Further characterization of the 5 α-hydroxy sterol hydrase of yeast. Biochem. Biophys. Res. Commun. 1972; 47: 180
  • Singh Jayakumar M. A., Prasad R. The effect of altered lipid composition on the transport of various amino acids in Candida albicans. Arch. Biochem. Biophys. 1978; 191: 680
  • Hamilton-Miller J. M. T. Fungal sterols and mode of action of the polyene antibiotics. Adv. Appl. Microbiol. 1974; 17: 109
  • Elliott Hendrie C. G., Knights M. E. B. A., Parker W. A steroid growth factor requirement in a fungus. Nature 1964; 203: 427, (London)
  • Richards J. B., Hemmings F. W. Dolichols, ubiquinones, geranylgeraniol and farnerol as the major metabolites of mevalonate in Phytophthora cactorum. Biochem. J. 1972; 128: 1345
  • Haskins Tulloch R. H. A. P., Micetich R. G. Steroids and the stimulation of sexual reproduction of a species of pythium. Can. J. Microbiol. 1946; 10: 187
  • Hendrix J. W. Sterol induction of reproduction and stimulation of growth of Pythium. Phytophthora, Science 1964; 144: 1028
  • Hendrix J. W. Influence of sterols on growth and reproduction of Pythium. Phytophthora, Phytopathology 1965; 55: 790
  • Elliott C. G., Sansome E. The influence of sterols on meiosis in Phytophthora cactorum. J. Gen. Microbiol. 1977; 98: 141
  • Ko W. H. Heterothallic Phytophthora: evidence for hormonal regulation of sexual reproduction. J. Gen. Microbiol. 1978; 107: 15
  • Ko W. H. Hormonal regulation of sexual reproduction in Phytophthora. J. Gen. Microbiol. 1980; 116: 459
  • Elliott C. G., Glen B. Sterol requirement of heterothallic Phytophthoras. J. Gen. Microbiol. 1982; 128: 859
  • Elliott C. G., Knights B. A. Uptake and metabolism of cholesterol and cholestryloleate by Phytophthora cactorum. Biochim. Biophys. Acta 1974; 360: 78
  • Gonzales R. A., Parks L. W. Lack of specificity in accumulation of sterols by. Phytophthora cactorum, Lipids 1981; 16: 384
  • Trocha P. J., Sprinson D. B. Location and regulation of early enzymes of sterol biosynthesis in yeast. Arch. Biochem. Biophys. 1976; 174: 45
  • Taylor F. R., Parks L. W. Adaptation of Saccharomyces cerevisiae to growth on cholesterol: selection of mutants defective in the formation of lanosterol. Biochem. Biophys. Res. Commun. 1980; 95: 1437
  • Taylor F. R., Parks L. W. An assessment of the specificity of sterol uptake and esterification in Saccharomyces cerevisiae. J. Biol. Chem. 1981; 256: 13048
  • Parks McLean-Bowen L. W., Bottema C., Taylor C. K., Gonzales F. R., Jensen R. B. W., Ramp J. R. Aspects of sterol metabolism in the yeast Saccharomyces cerevisiae Phytophthora. Lipids 1982; 17: 184
  • Kobayashi G. S., Medoff G. Antifungal agents: recent developments. Ann. Rev. Microbiol. 1977; 31: 291
  • Martin J. F. Biosynthesis of polyene macrolide antibiotics. Ann. Rev. Microbiol. 1977; 31: 13
  • Hamilton-Miller J. M. T. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol. Rev. 1973; 37: 166
  • Gottlieb Carter D., Wu H. E. L. C., Sloneker J. H. Inhibition of fungi by flipin and its antagonism by sterols. Phytopathology 1960; 50: 594
  • Gottlieb Carter D., Sloneker H. E., Wu J. H. L. C., Gandy E. Mechanism of inhibition of fungi by flipin. Phytopathology 1961; 51: 321
  • Schlosser E., Gottlier D. Sterols and sensitivity of Pythium species to flipin. J. Bacteriol. 1966; 91: 1080
  • Schroeder Holland F. J. F., Bieber L. Fluorometric investigations of the interaction of polyene antibiotics with sterols. Biochemistry 1972; 11: 3105
  • Norman Demel A. W. R. A., de Kruyff B., VanDeenen L. L. M. Studies on the biological properties of polyene antibiotics. J. Biol. Chem. 1972; 247: 1918
  • Strom Crifo R. C., Santoro A. S. The interaction of the polyene antibiotic lucensomycin with cholesterol in erythrocyte membranes and in model systems. II. Cooperative effects in erythrocyte membranes. Biophys. J. 1973; 13: 581
  • Archer D. B. The use of a fluorescent sterol to investigate the mode of action of amphoterecin methyl ester, a polyene antibiotic. Biochem. Biophys. Res. Commun. 1975; 66: 195
  • Caltrider P. G., Gottlieb D. Studies on the mode of action of flipin on. Saccharomyces cerevisiae, Trans. Illinois State Acad. Sci. 1961; 54: 189
  • Kinsky S. Antibiotic interaction with model membranes. Ann. Rev. Pharmacol. 1970; 10: 119
  • Lampen J. O. Polyene antibiotics and membrane function. Symp. Soc. Gen. Microbiol. 1966; 16: 111
  • Hammond Lambert S. M. P. A., Kliger B. N. The mode of action of polyene antibiotics; induced potassium leakage in C. albicans. J. Gen. Microbiol. 1974; 81: 325
  • Gale Johnson E. F., Kerridge A. M.D., Koh J. Y. Factors affecting the changes in amphotricin sensitivity of Candida albicans during growth. J. Gen. Microbiol. 1975; 87: 20
  • Hammond S. M., Kliger B. N. Mode of action of the polyene antibiotic candicidin: binding factors in the wall of. Candida albicans, Antimicrob. Agents Chemother. 1976; 9: 561
  • Singh Jayakumar M. A., Prasad R. Lipid composition and polyene antibiotic sensitivity in isolates of. Candida albicans, Microbios 1979; 24: 7
  • Hickey R. The antagonism between the antifungal antibiotic ascosin and some long chain fatty acids. Arch. Biochem. Biophys. 1953; 46: 331
  • Ghosh A., Ghosh J. Factors effecting the absorption of nystatin by C. albicans. Ann. Biochem. Exp. Med. 1963; 23: 101
  • Sarachek A., Higgins P. Effect of ergosterol, palmitic acid and related simple lipids on the recovery of C. albicans from UV radiation. Arch. Microbiol. 1972; 82: 38
  • Iannitelli R. C., Ikawa M. Effect of fatty acids on action of polyene antibiotics. Antimicrob. Agents Chemother. 1981; 17: 861
  • Nagai Yokoe J., Tanaka S., Hibasami M. H., Ikeda T. Increased proportion of medium chain fatty acids in nystatin resistant yeast mutants. Lipids 1981; 16: 411
  • Vanden Bossche Willemsens H., Cools G., Lauwers W. W. F. T., LeJeune L. Biochemical effects of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem. Biol. Interact. 1978; 21: 59
  • Marriott M. S. Inhibition of sterol biosynthesis in Candida albicans by imidazole containing antifungals. J. Gen. Microbiol. 1980; 117: 253
  • Pye G. W., Marriott M. S. Inhibition of sterol C14 demethylation by imidazole containing antifungals. Sabouraudia 1982; 20: 325
  • Brennan Griffin P. J., Losel P. F. S. D. M., Tyrell D. The lipids of fungi. Prog. Chem. Fats Other Lipids 1974; 14: 49
  • Brennan P. J., Losel D. M. Physiology of fungal lipids: selected topics. Adv. Microb. Physiol. 1978; 17: 47
  • Sastry P. S. Glycosyl glycerides. Adv. Lipid Res. 1974; 12: 251
  • Goren M. B., Brennan P. J. Mycobacterial lipids: chemistry and biological activities, in. Tuberculosis, G. P. Youmans, W.B. Saunders, Philadelphia 1979; 136
  • Brennan Flynn P. J. M. P., Griffin P. F. S. Acylglucose in Escherichia coli, Saccharomyces cerevisiae Agaricus bisporus. FEBS Lett. 1970; 8: 322
  • Shaw N. Bacterial glycolipids. Bacteriol. Rev. 1970; 34: 365
  • Esders T. W., Light R. J. Characterization and in vivo production of three glycolipids from Candida bogoriensis: 13-glucopyranosyl oxydocosanoic acid and its mono- and diacetylated derivatives. J. Lipid Res. 1972; 13: 663
  • Esders T. W., Light R. J. Glycosyl and acetyl transferases involved in the biosynthesis of glycolipids from Candida bogoriensis. J. Biol. Chem. 1972; 247: 1375
  • Esders T. W., Light R. J. Occurrence of a uridine diphosphate glucose: sterol glucosyltransferase in Candida bogoriensis. J. Biol. Chem. 1972; 247: 7494
  • Eichenberger W. Steryl glycosides and acylated steryl glycolipids. Lipids and Lipid Polymers in Higher Plants, M. Tevini, H. K. Lichtenthaler. Springer-Verlag, New York 1977; 169
  • Mudd J. B., Garcia R. E. Biosynthesis of glycolipids. Recent Advances in the Chemistry and Biochemistry of Plant Lipids, T. Gilltard, E. I. Mercer. Academic Press, New York 1975; 161
  • Heinz E. Enzymatic reactions in galactolipid biosynthesis. Lipids and Lipid Polymers in Higher Plants, M. Tevini, H. K. Lichtenthaler. Springer-Verlag, New York 1977; 102
  • Hokomori S. I. Glycosphingolipids having blood group ABH and Lewis specificities. Chem. Phys. Lipids 1970; 5: 96
  • Rapport M. M., Grof L. Immunochemical reactions of lipids. Prog. Allergy 1969; 13: 273
  • LaBach J. P., White D. C. Identification of ceramide phosphorylethanolamine and ceramide phosphorylglycerol in the lipids of an anaerobic bacterium. J. Lipid Res. 1969; 10: 528
  • Stoffel W. Sphingolipids. Ann. Rev. Biochem. 1971; 40: 57
  • Stoffel W. Chemistry and biochemistry of sphingosine bases. Chem. Phys. Lipids 1973; 11: 318
  • Martensson E. Glycosphingolipids of animal tissue. Prog. Chem. Fats Other Lipids 1969; 10: 365
  • Morell P., Braun P. Biosynthesis and metabolic degradation of sphingolipids not containing sialic acid. J. Lipid Res. 1972; 13: 293
  • Weete J. D. Fungal Lipid Biochemistry. Plenum Press, New York 1974; 267
  • Greene Kaneshiro M. L.T., Law J. H. Studies on the production of sphingolipid bases by the yeast. Hansenula ciferri, Biochim. Biophys. Acta 1965; 98: 582
  • Braun P. E., Snell E. E. The biosynthesis of dihydrosphingosine in cell free preparations of Hansenula ciferri. Proc. Natl. Acad. Sci. U.S.A. 1968; 58: 298
  • Haskell B. E., Snell E. E. Effect of vitamin Bs deficiency on the composition of yeast lipids. Arch. Biochem. Biophys. 1965; 112: 494
  • Braun P. E., Snell E. E. Biosynthesis of sphingolipid bases. II. Keto intermediates in synthesis of sphingosine and dihydrosphingosine by cell-free extracts of Hansenula ciferri. J. Biol. Chem. 1968; 243: 3775
  • Brady DiMari R. N. S. J., Snell E. E. Biosynthesis of sphingolipid bases. III. Isolation and characterization of ketonic intermediates in the synthesis of sphingosine and dihydrosphingosine by cell-free extracts of Hansenula ciferri. J. Biol. Chem. 1969; 244: 491
  • DiMari Brady S. J. R. N., Snell E. E. Biosynthesis of sphingolipid bases. IV. The biosynthetic origin of sphingosine in Hansenula ciferri. Arch. Biochem. Biophys. 1971; 143: 553
  • Polito A. J., Sweeley C. C. Stereochemistry of the hydroxylation in 4-hydroxysphingosine. Formation and the steric course of hydrogen elimination in sphing-4-enine biosynthesis. J. Biol. Chem. 1971; 246: 4178
  • Barenholz Y., Gatt S. Acetylation of sphingosine bases and long chain amines by cell-free preparations of Hansenula ciferri. Biochem. Biophys. Res. Commun. 1969; 35: 676
  • Barenholz Edelman Y. I., Gatt S. The metabolic basis for the accumulation of acetylated sphingosine bases in the yeast. Hansenula ciferri, Biochim. Biophys. Acta 1971; 248: 458
  • Barenholz Y., Gatt S. Long chain base-acetyl coenzyme A acetyl transferase from the microsomes of Hansenula ciferri. I. Isolation and properties. J. Biol. Chem. 1972; 247: 6827
  • Barenholz Y., Gatt S. Long chain base-acetyl coenzyme A acetyl transferase from the microsomes of Hansenula ciferri. II. Kinetic properties. J. Biol. Chem. 1972; 247: 6834
  • Barenholz Gadot Y., Valk N. E., Gatt S. Identification of the enzymatic lesions responsible for the accumulation of acetylated sphingosine bases in the yeast. Hansenula ciferri, Biochim. Biophys. Acta 1973; 306: 341
  • Weiss B., Stiller R. L. Biosynthesis of phytosphingosine. Hydroxylation of dihydrosphingosine. J. Biol. Chem. 1967; 242: 2903
  • Stoffel Sticht W. G., Lekim D. Metabolism of sphingosine bases. VI. Synthesis and degradation of sphingosine bases in Hansenula ciferri, Hoppe-Seylers. Z. Physiol. Chem. 1968; 349: 1149
  • Thorpe S. R., Sweeley C. C. Chemistry and metabolism of sphingolipids on the biosynthesis of phytosphingosine by yeast. Biochemistry 1967; 6: 1887
  • Basu Kaufman S. B., Roseman S. Enzymatic synthesis of ceramide-glucose and ceramidelactose by glycosyl-transferase from embryonic chicken brain. J. Biol. Chem. 1968; 243: 5802
  • Angus W. W., Lester R. L. Turnover of inositol and phosphorus containing lipids in Saccharomyces cerevisiae; extracellular accumulation of glycerophosphorylinositol derived from phosphatidylinositol. Arch. Biochem. Biophys. 1972; 151: 483
  • Hackett J. A., Brennan P. J. The isolation and biosynthesis of the ceramide-phosphoinositol of Aspergillus niger. FEBS Lett. 1977; 74: 259
  • Karlsson Sammuelsson K. A. B. E., Steen G. O. Studies on sphingosines. XV. Degradation of phytosphingosine to hydroxy fatty acid and ethanolamine by the yeast Hansenula ciferri. Acta Chem. Scand. 1967; 21: 2566
  • Gatt S., Barenholz Y. Degradation of sphingosine bases by cell free preparations α-hydroxy palmitic acid, an intermediate of phytosphingosine degradation. Biochem. Biophys. Res. Commun. 1968; 32: 588
  • Bergmeyer Holz H. U., Kauder G., Mollering E. M.H., Weiland O. Kristallisierte Glycerokinase aur Candida mycoderma. Biochem. Z. 1961; 333: 471
  • Bulblitz C., Weiland O. Glycerokinase. Methods Enzymol. 1962; 5: 354
  • Hayashi S. I., Lin E. C. C. Purification and properties of glycerol kinase from Escherichia coli. J. Biol. Chem. 1967; 242: 1030
  • Rao D. R., Kou A. Y. Partial purification and characterisation of glycerokinase from chicken liver. Int. J. Biochem. 1977; 8: 295
  • Janson C. A., Cleland W. W. The kinetic mechanism of glycerokinase. J. Biol. Chem. 1974; 249: 2562
  • Kasinathan C., Khuller G. K. Partial purification and characterisation of glycerol kinase from. Microsporum gypseum 1983, Personal Communication
  • Govindarajan Kasinathan U. C., Khuller G. K. Glycerol kinase of. Epidermothphyton floccosum 1983, Personal Communication
  • North M. J. Cold induced increase of glycerol kinase in Neurospora crassa. FEBS Lett. 1973; 35: 67
  • North M. J. Cold induced increase of glycerol kinase activity in Neurospora crassa: rapid inactivation of the enzyme in vivo. J. Bacterid. 1974; 120: 741
  • Khuller Kasinathan G. K., Bansal C. V. S., Chopra A. Effect of glycerol substitution and choline/ethanolamine supplementation on phospholipid and fatty acid composition of Microsporum gypseum. Ind. J. Exp. Biol. 1981; 19: 1054
  • Kuhn N. J., Lynen F. Phosphatide acid synthesis in yeast. Biochem. J. 1965; 94: 240
  • White G. L., Hawthorne J. N. Phosphatide acid and phosphatidylinositol metabolism in Schizosaccharomyces pombe. Biochem. J. 1970; 117: 203
  • Yamashita Hosaka S. K., Numa S. Resolution and reconstitution of the phosphatidate-synthesizing system of rat liver microsomes. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 3490
  • Yamashita S., Numa S. Acyl-donor specificities of partially purified 1-acylglycerophosphate acyltransferase, 2-acylglycerophosphate acyltransferase and 1-acylglycerophosphorylcholine transferase from rat liver microsomes. Eur. J. Biochem. 1973; 38: 25
  • Yamashita Nakaya S., Miki N. Y., Numa S. Separation of 1-acylglycerophosphate acyltransferase and 1-acylglycerophosphorylcholine acyltransferase of rat liver microsomes. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 600
  • Ray Cronan T. K. J. E., Jr, Mavis R. D., Vagelos P. R. The specific acylation of glycerol 3-phosphate to monoacylglycerol 3-phosphate in Escherichia coli. J. Biol. Chem. 1970; 245: 6442
  • Morikawa M., Yamashita S. Inhibition of yeast phosphatidic acid synthesis by free fatty acids. Eur. J. Biochem. 1978; 84: 61
  • Vallari P. S., Rock C. O. Role of spermidine in the activity of sn-glycerol-3-phosphate acyltransferase of Escherichia coli. Arch. Biochem. Biophys. 1982; 218: 402
  • LaBelle E. F., Jr, Hajara A. K. Biosynthesis of acyl dihydroxy-acetone phosphate in subcellular fractions of rat liver. J. Biol. Chem. 1972; 247: 5835
  • LaBelle E. F., Jr, Hajara A. K. Purification and kinetic properties of acyl and alkyl dihydroxyacetone phosphate oxidoreductase. J. Biol. Chem. 1974; 249: 6936
  • Snyder F. The enzymatic pathways of ether linked lipids and their precursors. Ether Lipids, Chemistry and Biology. Academic Press, New York 1972; 121
  • Schlossman D. M., Bell R. M. Glycerolipid biosynthesis in Saccharomyccs cerevisiae: sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities. J. Bacteriol. 1978; 133: 1368
  • Schlossman D. M., Bell R. M. Triacylglycerol synthesis in isolated fat cells. Evidence that the sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities are dual catalytic functions of a single microsomal enzyme. J. Biol. Chem. 1976; 251: 5738
  • Schlossman D. M., Bell R. M. Microsomal sn-glycerol-3-phosphate and dihydroxyacetone phosphate acyltransferase activities from liver and other tissues. Evidence for an enzyme catalyzing both reactions. Arch. Biochem. Biophys. 1977; 182: 732
  • Schneider E. G., Kennedy E. P. Partial purification and properties of diglyceride kinase from Escherichia coli. Biochim. Biophys. Acta 1976; 441: 201
  • Mazliak P. Synthesis and turnover of plant membrane phospholipids. Prog. Phytochem. 1980; 6: 49
  • Allan Thomas D. P., Gatt S. 1,2-Diacylglycerol kinase of human erythrocyte membranes. Assay with endogenously generated substrate. Biochem. J. 1980; 191: 669
  • Kanoh H., Ohno K. Partial purification and properties of diacylglycerol kinase from rat liver cytosol. Arch. Biochem. Biophys. 1981; 209: 266
  • Hofmann K. H., Babel W. Dihydroxyacetone kinase of methanol assimilating yeasts. II. Partial purification and some properties of dihydroxyacetone kinase from Candida methylica. Z. Allg. Mikrobiol. 1981; 21: 219
  • Illingworth Rose R. F. A. H., Beckett A. J. Changes in the lipid composition and fine structure of Saccharomyccs cerevisiae during ascus formation. J. Bacteriol. 1973; 113: 373
  • Henry S. A., Halvorson H. O. Lipid synthesis during sporulation of Saccharomyces cerevisiae. J. Bacteriol. 1973; 114: 1158
  • Johnson Brown B. C. M., Minnikin D. E. Effect of phosphorus limitation upon the lipids of Saccharomyces cerevisiae, Candida utilis grown in continuous culture. J. Cen. Microbiol. 1973; 75: X
  • Shafai T., Lewin L. M. Effects of myoinositol deficiency upon the lipid composition of the yeast. Saccharomyces carlsbergensis, Biochim. Biophys. Acta 1968; 152: 787
  • Graff G., Lands W. E. M. A shift from phospholipid to triglyceride synthesis when cell division is inhibited by trans-fatty acids. Chem. Phys. Lipids 1976; 17: 301
  • Christiansen K. Triacylglycerol synthesis in lipid particles from baker's yeast (Saccharomyces cerevisiae). Biochim. Biophys. Acta 1978; 530: 78
  • Christiansen K. Membrane-bound lipid particles from beef heart acylglycerol synthesis. Biochim. Biophys. Acta 1975; 380: 390
  • Matsuoka Saito N., Okuda Y. H., Fujii S. Studies on triglyceride synthesis in lipid micelles from adipose tissue. J. Biochem. 1974; 76: 359
  • Harwood Sodja J. L., Stumpf A. P. K., Spurr A. R. On the origin of oil droplets in maturing castor bean seeds. Ricinus communis. Lipids 1971; 6: 851
  • Gurr Blades M. I., Appelby J., Smith R. S., Robinson C. G. M. P., Nichols B. W. Studies on seed-oil triglycerides. Triglyceride biosynthesis and storage in whole seeds and oil bodies of Crambe abyssinica. Eur. J. Biochem. 1974; 43: 281
  • Johnston J. M., Paltauf F. Lipid metabolism in inositol-deficient yeast, Saccharomyces carlsbergensis. II. Incorporation of labelled precursors into lipids by whole cells and activities of some enzymes involved in lipid formation. Biochim. Biophys. Acta 1970; 218: 431
  • Borowitz M. J., Blum J. J. Triacylglycerol turnover in Tetrahymena pyriformis. Relation to phospholipid synthesis. Biochim. Biophys. Acta 1976; 424: 114
  • Rothblat G. H. Lipid metabolism in tissue culture. Adv. Lipid Res. 1969; 7: 135
  • Taylor F. R., Parks L. W. Triacylglycerol metabolism in Saccharomyces cerevisiae. Relation to phospholipid synthesis. Biochim. Biophys. Acta 1979; 575: 204
  • McCarthy C. Utilization of palmitic acid by Mycobacterium avium. Infec. Immunol. 1971; 4: 199
  • Verma J. N., Khuller G. K. Lipids of actinomycetales. Adv. Lipid Res. 1983; 20: 257
  • Mendoza O., Cronan J. E., Jr. Thermal regulation of membrane lipid fluidity in bacteria. Trends. Biochem. Sci. 1983; 8: 49
  • Finean J. B. Phospholipids in biological membranes and the study of phospholipid-protein interactions. Form and Functions of Phospholipids, G. B. R. M. C. Ansell Dawson, J. N. Hawthorne. Elsevier, Amsterdam 1973; 177
  • Yaari A. M. Effect of fluoride on phosphatidyl serine mediated calcium transport. Biochim. Biophys. Acta 1982; 686: 1
  • Blanstein M. P. Phospholipids as ion exchangers: implications for a possible role in biological membrane excitability and anaesthesia. Biochim. Biophys. Acta 1967; 135: 653
  • Quinn P. J., Chapman D. The dynamics of membrane structure. CRC Crit. Rev. Biochem. 1980; 8: 1
  • Nishizuka Y. Phospholipid degradation and signal translation for protein phosphorylation. Trends Biochem. Sci. 1983; 8: 13
  • Shaw N., Dinglinger F. The structure of an acylated inositol mannoside in the lipids of propionic acid bacteria. Biochem. J. 1969; 112: 769
  • Yamaguchi Ohki T., Maruyama K. H., Nozawa Y. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. Role of cardiolipin in fluidity of mitochondrial membranes. Biochim. Biophys. Acta 1981; 649: 385
  • Finnerty W. R. Physiology and biochemistry of bacterial phospholipid metabolism. Adv. Microbiol. Physiol. 1978; 18: 177
  • Mudd J. B. Phospholipid biosynthesis. The Biochemistry of plants. Lipids: Structure and function, P. K. Stumpf. Academic Press, New York 1980; Vol. 4: 249
  • Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Ann. Rev. Biochem. 1980; 49: 459
  • Scarborough O. A., Nye J. F. Properties of a phosphatidylethanolamine-methyltransferase from Seurospora crassa. Biochim. Biophys. Acta 1967; 146: 111
  • Scarborough G. A., Nye J. F. Methylation of ethanolamine phosphatides by microsomes from normal and mutant strains of Neurospora crassa. J. Biol. Chem. 1967; 242: 238
  • Crocken B. J., Nye J. F. Phospholipid variations in mutant strains of Neurospora crassa. J. Biol. Chem. 1964; 239: 1727
  • Waechter Steiner C. J. M. R., Lester R. L. Regulation of phosphatidylcholine biosynthesis by the methylation pathway in Saccharomyces cerevisiae. J. Biol. Chem. 1969; 244: 3419
  • Waechter C. J., Lester R. L. Regulation of phosphatidylcholine biosynthesis in Saccharomyces cerevisiae. J. Bacterid. 1971; 105: 837
  • Vanden Bosch Bonte H. H. A., VanDeenen L. L. M. On the anabolism of lysolecithin. Biochim. Biophys. Acta 1965; 98: 648
  • Kennedy E. P., Weiss S. B. The function of cytidine coenzymes in the biosynthesis of phospholipids. J. Biol. Chem. 1956; 222: 193
  • Wittenberg J., Romberg A. Choline phosphokinase. J. Biol. Chem. 1953; 202: 431
  • Brostrom M. A., Browning E. T. Choline kinase from brewer's yeast. Partial purification, properties and kinetic mechanisms. J. Biol. Chem. 1973; 248: 2364
  • Govindarajan U. Studies on Enzymes of Lipid Metabolism in. Epidermophyton floccosum. M.Sc. thesis. Postgraduate Institute of Medical Education and Research, ChandigarhIndia 1983
  • Kasinathan C. Some Aspects of Phospholipid Biosynthesis in. Microsporum gypseum. Ph.D. thesis, Postgraduate Institute of Medical Education and Research, ChandigarhIndia 1983
  • Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. J. Biol. Chem. 1975; 250: 3359
  • Infante J. P. Rate limiting step in the cytidine pathway for the synthesis of phosphatidylcholine and phosphatidylethanolamine. Biochem. J. 1977; 167: 847
  • Christiansen K. Utilization of endogenous diacylglycerol for the synthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine by lipid particles from baker's yeast (Saccharomyces cerevisiae). Biochim. Biophys. Acta 1979; 574: 448
  • Schneider W. J., Vance D. E. Conversion of phosphatidylethanolamine to phosphatidyl choline in rat liver. J. Biol. Chem. 1979; 254: 3886
  • Marshall M. O., Kates M. Biosynthesis of nitrogenous, phospholipids in spinach leaves. Can. J. Biochem. 1974; 52: 469
  • Steiner M. R., Lester R. L. In vitro study of the methylation pathway of phosphatidylcholine synthesis and the regulation of this pathway in Saccharomyces cerevisiae. Biochemistry 1970; 9: 63
  • Yamashita S., Oshima A. Regulation of phosphatidylethanolamine methyltransferase level by myoinositol in Saccharomyces cerevisiae. Eur. J. Biochem. 1980; 104: 611
  • Vance D. E., Choy P. C. How is phosphatidylcholine biosynthesis regulated?. Trends Biochem. Sci. 1979; 4: 145
  • Kokke Hooghwinkel R., Booy G. J. M., Vanden Bosch Zelles H.H. L., Mulder L. E., VanDeenen L. L. M. Metabolism of lysolecithin and lecithin in a yeast supernatant. Biochim. Biophys. Acta 1963; 70: 351
  • Casals Acebal C., Cruz-Alvarez C., Estrada M. P., Arche P. Lysolecithin-lysolecithin acyltransferase from rabbit lung: enzymatic properties and kinetic study. Arch. Biochem. Biophys. 1982; 217: 422
  • Homma Nishijima H., Kobayashi M., Okuyama T. H., Nojima S. Incorporation and metabolism of 2-acyl lysophospholipids by Escherichia coli. Biochim. Biophys. Acta 1981; 663: 1
  • Steiner M. R., Lester R. L. In vitro studies of phospholipid biosynthesis in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1972; 260: 222
  • Kasinathan C., Khuller G. K. Biosynthesis of major phospholipids of Microsporum gypseum. Biochim. Biophys. Acta 1983; 752: 187
  • Wharfe J., Harwood J. L. Purification of choline kinase from soyabean. Dev. Plant Biol. 1979; 3: 443
  • Brophy Choy P. J., Toone P. C. J. R., Vance D. E. Choline kinase and ethanolamine kinase are separate soluble enzymes in rat liver. Eur. J. Biochem. 1977; 78: 491
  • Moore T. S. Phospholipid synthesizing enzymes, from castor bean endosperm. Methods Enzymol. 1981; 71: 596
  • Hutchison H. T., Cronan J. E., Jr. The synthesis of cytidine diphosphate diglyceride by cell free extracts of yeast. Biochim. Biophys. Acta 1968; 164: 606
  • Sherr S., Byk C. Choline and serine incorporation into the phospholipids of Neurospora crassa. Biochim. Biophys. Acta 1971; 239: 243
  • Cousminer J. J., Carman G. M. Solubilization of membrane associated phosphatidylserine synthase from Clostridium perfringens. Can. J. Microbiol. 1981; 27: 544
  • Nikawa J., Yamashita S. Characterization of phosphatidylserine synthase from Saccharomyces cerevisiae and a mutant defective in the enzyme. Biochim. Biophys. Acta 1981; 665: 420
  • Atkinson Fogel K. D.S., Henry S. A. Yeast mutant defective in phosphatidylserine synthesis. J. Biol. Chem. 1980; 255: 6653
  • Jelsema C. L., Morre D. J. Distribution of phospholipid biosynthetic enzymes among cell components of rat liver. J. Biol. Chcm. 1978; 253: 7960
  • Kanfer J. N. The base exchange enzymes and phospholipase D of mammalian tissue. Can. J. Biochem. 1980; 58: 1370
  • Chlapowski F. J. Exchange between free and phospholipid alcoholic amines in microsomal membranes of Acanthamoeba palestinensis. J. Gen. Appl. Microbiol. 1981; 27: 125
  • Deshusses J. Structure-function relationships in phosphoinositides. Experientia 1974; 30: 592
  • Machon North A. M. J., Brophy P. J. Biosynthesis of phosphatidylinositol in the cellular slime mold Dictyostelium discoideum by a CTP independent pathway. Biochem. Soc. Trans. 1980; 8: 375
  • Harwood J. L., Hawthorne J. N. The properties and subcellular distribution of phosphatidylinositol kinase in mammalian tissue. Biochim. Biophys. Acta 1969; 171: 75
  • Wheeler Michell C. E. R. H., Rose A. H. Phosphatidylinositol kinase activity in Saccharomyces cerevisiae. Biochem. J. 1972; 127: 64P
  • Talwalkar R. T., Lester R. L. Synthesis of diphosphoinositide by a soluble fraction of. Saccharomyces cerevisiae, Biochim. Biophys. Acta 1974; 360: 306
  • Hanson B. A., Lester R. L. Effect of inositol starvation on the in vitro syntheses of mannan and N-acetylglucosaminylpyrophosphoryldolichol in Saccharomyces cerevisiae. J. Bacteriol. 1982; 151: 334
  • Mathur Murthy A. K., Saharia P. S. G. S., Venkitasubramanian T. A. Studies on cardiolipin biosynthesis in Mycobacterium smegmatis. Can. J. Microbiol. 1976; 22: 354
  • Cobon Crowfoot G. S. P. D., Linnane A. W. Biogenesis of mitochondria. Phospholipid synthesis in vitro by yeast mitochondrial and microsomal fractions. Biochem. J. 1974; 144: 265
  • Wirtz Kamp K. W. A. M. H., VanDeenen L. L. M. Isolation of a protein from beef liver which specifically stimulates the exchange of phosphatidylcholine. Biochim. Biophys. Acta 1972; 274: 606
  • Kamp Wirtz H. M. K. W.A., VanDeenen L. L. M. Some properties of phosphatidylcholine exchange protein purified from beef liver. Biochim. Biophys. Acta 1973; 318: 313
  • Roughan P. G., Slack C. R. Cellular organization of glycerolipid metabolism. Ann. Rev. Plant Physiol. 1982; 33: 97
  • Pasternak C. A., Bergeron J. J. M. Turnover of mammalian phospholipids. Stable and unstable components in neoplastic mast cells. Biochem. J. 1970; 119: 473
  • Pasternak C. A., Bergeron J. J. M. Turnover of mammalian phospholipids. Rates of turnover and metabolic heterogeneity in cultured human lymphocytes and in tissues of healthy, starved and vitamin A deficient rats. Biochem. J. 1970; 119: 481
  • Dawson R. M. C. The metabolism of animal phospholipids and their turnover in cell membranes. Essays in Biochemistry, P. N. Campbell, G. D. Greville. Academic Press, London 1966; Vol. 2: 69
  • Wilson R. F., Rinne R. W. Studies on lipid synthesis and degradation in developing soybean cotyledons. Plant Physiol. 1976; 57: 375
  • Moore T. S., Jr. Phospholipid turnover in soybean tissue cultures. Plant Physiol. 1977; 60: 754
  • Vanden Bosch H. Intracellular phospholipase A. Biochim. Biophys. Acta 1981; 604: 191
  • Bhatia I. S., Arneja J. S. Lipid metabolism in Fusarium oxysporum. J. Sci. Food Agric 1978; 29: 619
  • Gupta B. K., Bhatia I. S. In vitro incorporation of 1-14C-sodium acetate and U-C14-L- into lipids byPythium irregulare. J. Nucl. Agric. Biol. 1978; 8: 76
  • Eliseeva Davidov L. G. E. R., Garchava I. M. Incorporation of 14C into lipid fractions of Candida guilliermondi yeast during culturing in the presence of different carbon sources. Biokhimiya (Moscow) 1977; 42: 1195
  • Daum G., Paltauf F. Triacylglycerols as fatty acid donors for membrane phospholipid synthesis in yeast. Montash. Chem. 1980; 111: 355
  • Ballmann G. E., Chaffin W. L. Lipid synthesis during reinitiation of growth from stationary phase cultures of. Candida albicans, Mycopathologia 1979; 67: 39
  • Das S. K., Banerjee A. B. Phospholipid turnover in. Trichophyton rubrum, Sabouraudia 1977; 15: 99
  • Das S. K., Banerjee A. B. Effect of undecanoic acid on phospholipid metabolism in. Trichophyton rubrum, Sabouraudia 1982; 20: 267
  • Bansal Chopra V. S., Kasinathan A. C., Khuller G. K. Biosynthesis of neutral lipids in. Microsporum gypseum, Sabouraudia 1981; 19: 223
  • Bansal Chopra V. S., Kasinathan A. C., Khuller G. K. In vivo studies on phospholipid biosynthesis in Microsporum gypseum. Ind. J. Med. Res. 1982; 76: 832
  • Chopra A., Khuller G. K. Phosphatide metabolism in Epidermophyton floccosum. FEMS Microbiol. Lett. 1981; 10: 189
  • Chopra A., Khuller G. K. Metabolism of lipids in Epidermophyton floccosum, Indian. J. Med. Res. 1981; 73: 325
  • Goheen Larkin S. C. E. C., Rao G. A. Separate pools of diacylglycerol for phospholipid and triacylglycerol synthesis in rat liver. IRCSMed. Sci. Biochem. 1982; 10: 116
  • Verma Khera J. N., Khuller A. G. K., Subrahmanyam D. Phosphoglyceride metabolism in Streptomyces griseus. Curr. Microbiol. A 1980; 13
  • Kent C., Lennarz W. J. An osmatically fragile mutant of Bacillus subtilis with an active membrane associated phospholipase A. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 2793
  • Sanderman H., Jr. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 1978; 515: 209
  • Bell Ballas R. M. L. M., Coleman R. A. Lipid topogenesis. J. Lipid Res. 1981; 22: 391
  • Rothman J. E., Leonard J. Membrane assymmetry. Science 1977; 195: 743
  • Smith M. E. The metabolism of myelin lipids. Adv. Lipid Res. 1967; 5: 241
  • Klausner Kleinfield R. D., Ifoover A. M. R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 1980; 255: 1286
  • Ansell G. B. Phospholipids and the nervous system. Form and Function of Phospholipids, G. B. R. M. C. An-sell Dawson, J. N. Hawthorne. Elsevier/North Holland, Amsterdam 1973; 377
  • Casola P. G., Possmayer F. Pulmonary phosphatidic acid phosphohydrolase. Further studies on the activities in rat lung responsible for the hydrolysis of membrane bound and aqueously dispersed phosphatidate. Can. J. Biochem. 1981; 59: 500
  • Kasinathan Chopra C. A., Khuller G. K. Phosphatidate phosphatase of dermatophytes. Lipids 1982; 17: 859
  • Lamb R. G., Fallon H. J. Glycerolipid formation from sn-glycerol-3-phosphate by rat liver fractions. The role of phosphatidate phosphohydrolase. Biochim. Biophys. Acta 1974; 348: 166
  • Yeung Casola A., Wong P., Fellows C. C. F., Possmayer F. Pulmonary phosphatidic acid phosphatase. A comparative study of the aqueously dispersed phosphatidate dependent and membrane bound phosphatidate dependent phosphatidic acid phosphatase activity of rat lung. Biochim. Biophys. Acta 1979; 574: 226
  • Avigad G. Microbial phospholipases. Mechanisms in Bacterial Toxinology, A. W. Breinheimer. John Wiley & Sons, New York 1976; 99
  • Mollby R. Bacterial phospholipases. Bacterial Toxins and Cell Membranes, J. Jeljaszewicz, T. Wadstrom. Academic Press, New York 1978; 367
  • Nishijima Akamatsu M. Y., Nojima S. Purification and properties of membrane bound phospholipases A. from Mycobacterium phlei. J. Biol. Chem. 1974; 249: 5658
  • Nishijima Nakaike M., Tamori S. Y., Nojima S. Detergent resistant phospholipase A of Escherichia coli. Purification and properties. Eur. J. Biochem. 1977; 73: 115
  • Tamori Nishijima Y. M., Nojima S. Properties of purified detergent resistant phospholipase A of Escherichia colik-12. J. Biochem. 1979; 86: 1129
  • Vanden Bosch H., Aarsman A. J. A review of methods of phospholipase A determination. Agents Actions 1979; 9: 382
  • Price Wilkinson M. F. I. O., Gentry L. D. Plate method for the detection of phospholipase activity in Candida albicans. Sabouraudia 1982; 20: 7
  • Pugh D., Cawson R. A. The cytochemical localization of phospholipase A and lysophospholipase in. Candida albicans, Sabouraudia 1975; 13: 110
  • Pugh D., Cawson R. A. The cytochemical localization of phospholipase in Candida albicans infecting the chick chorioallentoic membrane. Sabouraudia 1977; 15: 29
  • Ferber Munder E., Fischer P. G.H., Gerisch G. High phospholipase activity in amoebae of Dictyostelium discoideum. Eur. J. Biochem. 1970; 14: 253
  • Ishihara Okuyama H., Ikezawa H. H., Tejima S. Studies on lipase from Mucor javanicus. I. Purification and properties. Biochim. Biophys. Acta 1975; 388: 413
  • Blain Patterson J. A., Shaw J. D. E. C. E., Akhtar W. A. Study of bound phospholipase activities of fungal mycelia using an organic solvent system. Lipids 1976; 11: 553
  • Blain Patterson J. A. J. D.E., Shaw C. E. L. The nature of mycelial lipolytic enzymes in filamentous fungi. FEMS Microbiol. Lett. 1978; 3: 85
  • Uehara Hasegawa S. K., Iwai K. Purification and properties of phospholipase A. produced by Conicium centrifugum. Agric. Biol. Chem. 1979; 43: 517
  • Isamukhamedov A. Sh., Davranov K. D., Akramov S. T. Phospholipase activity of the fungus Rhizopus microspores. Khim. Prir. Sodein. 1978, (5): 657
  • Chakravarti Chakravarti D. N.B., Chakravarti P. Studies on phospholipase activities in Neurospora crassa mycelia. Lipids 1980; 15: 830
  • Chopra Larroya A. S., Khuller G. K. Studies on phospholipase A of dermatophytes. Curr. Microbiol. 1981; 6: 171
  • Das S. K., Banerjee A. B. Lipolytic enzymes of Trichophyton rubrum. Sabouraudia 1977; 15: 179
  • Chakravarti Chakravarti D. N.B., Chakravarti P. Studies on phospholipase activities in Neurospora crassa conidia. Arch. Biochem. Biophys. 1981; 206: 392
  • Chopra A. Metabolism of Phospholipids in Epidermophyton floccosum. Ph.D. thesis, Panjab University, ChandigarhIndia 1982
  • Dawson R. M. C. The identification of two lipid components in liver which enable Penicillium notatum extracts to hydrolyze lecithin. Biochem. J. 1958; 68: 352
  • Dawson R. M. C. Studies on the hydrolysis of lecithin by a Penicillium notatum phospholipase B preparation. Biochem. J. 1958; 70: 559
  • Bangham A. D., Dawson R. M. C. The relation between the activity of lecithinase and the electrophoretic charge of the substrate. Biochem. J. 1959; 72: 486
  • Kates Madeley M. J. R., Beare J. L. Action of phospholipase B on ultrasonically dispersed lecithin. Biochim. Biophys. Acta 1965; 106: 630
  • Saito K., Sato K. Studies on lecithinase from Penicillium notatum. Biochim. Biophys. Acta 1968; 151: 706
  • Beare J. L., Kates M. Properties of the phospholipase B from Penicillium notatum. Can. J. Biochem. 1967; 45: 101
  • Saito K., Kates M. Substrate specificity of a highly purified phospholipase B from Penicillium notatum. Biochim. Biophys. Acta 1974; 369: 245
  • Kawasaki Sugatani N. J., Saito K. Studies on a phospholipase B from Penicillium notatum. Purification, properties and mode of action. J. Biochem. 1975; 77: 1233
  • Nishijima M., Nojima S. Positional specificity of phospholipase B of Penicillium notatum. J. Biochem. 1977; 81: 533
  • Uehara Hasegawa S. K., Iwai K. Phospholipases produced by Corticium centrifugum: partial purification and properties of phospholipase B and lysophospholipase. Bull. Res. Inst. Food Sci. 1979; 42: 9, (Japan)
  • Okumura Kimura T. S., Saito K. A novel purification procedure for Penicillium notatum phospholipase B and evidence for a modification of phospholipase B activity by the action of an endogenous protease. Biochim. Biophys. Acta 1980; 617: 264
  • Sugatani Okumura J. T., Saito K. Studies on a phospholipase B from Penicillium notatum. Substrate specificity and properties of active site. Biochim. Biophys. Acta 1980; 620: 372
  • Okumura Sugatani T. J., Saito K. Role of the carbohydrate moiety of phospholipase B from Penicillium notatum in enzyme activity. Arch. Biochem. Biophys. 1981; 211: 419
  • Kawasaki N., Saito K. Purification and some properties of lysophospholipase from Penicillium notatum. Biochim. Biophys. Acta 1973; 296: 426
  • Imamura S., Horiuti Y. Purification of phospholipase B from Penicillium notatum by hydrophobic chromatography on palmitoyl cellulose. J. Lipid Res. 1980; 21: 180
  • Dawson R. M. C. Specificity of enzymes involved in the metabolism of phospholipids. Form and Function of Phospholipids, G. B. R. M.C. Ansell Dawson, J. N. Hawthorne. Elsevier/North Holland, Amsterdam 1973; 97
  • Takahashi Sugahara T. T., Ohsaka A. Purification of Clostridium perfringens phospholipase C (α-toxin) by affinity chromatography on agarose linked egg-yolk lipoprotein. Biochim. Biophys. Acta 1974; 351: 155
  • Taguchi Asahi R. Y., Ikezawa H. Purification and properties of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Biochim. Biophys. Acta 1980; 619: 48
  • Barnholz Roitman Y. A., Gatt S. Enzymatic hydrolysis of sphingolipids. J. Biol. Chem. 1966; 241: 3731
  • Kanfer Young J. N., Shapiro O. M.D., Brady R. O. The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver tissue. J. Biol. Chem. 1966; 241: 1081
  • Irvine Letcher R. F. A. J., Dawson R. M. C. Phosphatidylinositol phosphodiesterase in higher plants. Biochem. J. 1980; 192: 279
  • Zaikina N. A., Robakidze T. N. Phospholipase C of fungi and staphylococci. Mikrobiologiya 1976; 45: 466
  • Heller M., Phospholipase D. Adv. Lipid Res. 1978; 16: 267
  • Clarke Irvine N. G. R. F., Dawson R. M. C. Formation of bis (phosphatidyl) inositol and phosphatidic acid by phospholipase D action on phosphatidylinositol. Biochem. J. 1981; 195: 521
  • Stanacer N. Z., Stuhne-Sekalec L., Domazet Z. Enzymatic formation of cardiolipin from phosphatidylglycerol by the transphosphatidylation mechanism catalyzed by phospholipase D. Can. J. Biochem. 1973; 51: 747
  • Akhtar Mirza M. W. A. Q., Chughtai M. I. D. Influence of the nature of triglycerides on lipase production by Rhizopus species. Pak. J. Biochem. 1977; 10: 82
  • Akhtar Mirza M. W. A. Q., Chughtai M. I. D. Lipase induction in Mucor hiemalis. Appl. Environ. Microbiol. 1980; 40: 257
  • Schousboe I. Triacylglycerol lipase activity in baker's yeast (Saccharomyces cerevisiae). Biochim. Biophys. Acta 1976; 424: 366
  • Lobyreva L. B., Marchenkova A. I. Isolation and some properties of lipase from. Penicillium roqueforti, Mikrobiologiya 1980; 49: 924
  • Aisaka K., Terada O. Purification and properties of lipase from Rhizopus japonicus. J. Biol. Chem. 1981; 89: 817
  • Aisaka K., Terado O. Studies on lipoprotein lipase of microorganisms. II. Purification and properties of lipoprotein lipase from Rhizopus japonicus. Agric. Biol. Chem. 1980; 44: 799
  • Demant E. J. F. Fatty acid inhibition of triacylglycerol lipase in mitochondrial fractions from baker's yeast. FEBS Lett. 1978; 85: 109
  • Jensen R. G. Lipolytic enzymes. Prog. Chem. Fats Other Lipids 1971; 11: 347
  • Sugihara Tsujisaka A., Iwai Y., Tominaga M., Okumura Y., Matsuura S., Tanaka Y. N., Kakudo M. Crystallographic data and circular dichroism spectrum of lipase from Geotrichum candidum link. J. Mol. Biol. 1975; 99: 807
  • Hata Matsuura Y., Tanaka Y., Kakudo N., Sugihara M., Iwai A. M., Tsujisaka Y. Low resolution crystal structure of lipase from Geotrichum candidum (ATCC 34614). J. Biochem. 1979; 86: 1821
  • Sugihara Iwai A. M., Tsujisaka Y. Modification of carboxyl groups in Geotrichum candidum lipase. J. Biochem. 1982; 91: 507
  • Nobre G., Viegas P. Lipolytic activity of dermatophytes. Mycopathol. Mycol. Appl. 1972; 46: 319
  • Hellegren L., Vincent J. Lipolytic activity of some dermatophytes. J. Med. Microbiol. 1980; 13: 155
  • Hellegren L., Vincent J. Lipolytic activity of some dermatophytes. II. Isolation and characterization of the lipase of Epidermophyton floccosum. J. Med. Microbiol. 1981; 14: 347
  • Chopra Asotra A. S., Khuller G. K. Intracellular lipase of Epidermophyton floccosum. IRCS Med. Sci.-Biochem. 1982; 10: 803
  • Hildenbrant G. R., Bieber L. L. Characterization of glycerophosphorylcholine-ethanolammeserine-inositol and glycerol hydrolytic activity in housefly larvae. J. Lipid Res. 1972; 13: 348
  • Baldwin J. J., Cornatzer W. E. Glyceryiphosphorylcholine diesterase: effect of dietary choline deficiency. Biochim. Biophys. Acta 1969; 176: 193
  • Verma J. N., Khuller G. K. Pathways of phosphatidylethanolamine catabolism in Streptomyces griseus. Ind. J. Biochem. Biophys. 1982; 19: 191
  • Kovac Gbelska L., Poliachova I., Subik V. J., Kovacova V. Membrane mutants: a yeast mutant with a lesion in PS biosynthesis. Eur. J. Biochem. 1980; 111: 491
  • Trivedi Khare A., Singhal S. G. S., Prasad R. Effect of phosphatidylcholine and phosphotidylethanolamine enrichment on the structure and function of yeast membrane. Biochim. Biophys. Acta 1982; 692: 202
  • Trivedi Singhal A. G. S., Prasad R. Effect of phosphatidylserine enrichment on amino acid transport.in yeast. Biochim. Biophys. Acta 1983; 729: 85
  • Hossack Sharpe J. A. V. J., Rose A. H. Stability of the plasma membrane in S. cerevisiae enriched with phosphatidylcholine or phosphatidylethanolamine. J. Bacteriol. 1977; 129: 1144
  • Henry Atkinson S. A., Kolat K. D. A. I., Culberson M. R. Growth and metabolism of inositol starved Saccharomyces cerevisiae. J. Bacteriol. 1977; 130: 472
  • Bendnarz-Prasad A. J., Mize C. E. Phospholipid, enzymatic and polypeptide analysis of the mitochondrial membranes from Saccharomyces cerevisiae. Biochemistry 1978; 17: 4173
  • Hubbard S. C., Brody S. Glycerophospholipid variation in choline and inositol auxotrophs of Neurospora crassa. Internal compensation among Zwitterionic and anionic species. J. Biol. Chem. 1975; 250: 7173
  • Khuller Chopra G. K., Bansal A. V. S., Masih R. Lipids of dermatophytes. Lipids 1981; 16: 20
  • Larroya S., Khuller G. K. unpublished observations
  • Silbert D. F. Genetic modification of membrane lipids. Ann. Rev. Biochem. 1975; 44: 315
  • Raetz C. R. H. Enzymology, genetics and regulation of membrane phospholipid synthesis in. Escherichia coli, Bacteriol. Rev. 1978; 42: 614
  • Atkinson Jenson K. D., Kolat B., Storm A. J., Henry E. M. S. A., Fogel S. Yeast mutants auxotrophic for choline and ethanolamine. J. Bacteriol. 1980; 141: 558
  • Hosaka K., Yamashita S. Choline transport in Saccharomyces cerevisiae. J. Bacteriol. 1980; 143: 176
  • Keith Wisnieski A. D., Williams B. J. J. C., Henry S. A. Membranes of yeast and Neurospora: lipid mutants and physical studies. Lipids and Biomembranes of Eukaryotic Microorganisms, J. A. Erwin. Academic Press, New York 1973; 259
  • Merlie J. P., Pizer L. I. Regulation of phospholipid synthesis in Escherichia coli by guanosine tetraphosphate. J. Bacteriol. 1973; 116: 355
  • Peck R. L. The lipids of fungi with special reference to pathogenic fungi. Biology of Pathogenic Fungi, W. J. Nickerson. Chronica Botanica Co., Waltham, Mass. 1947; 162
  • Bansal V. S. Studies on the Lipids of Dermatophytes. Ph.p. thesis, Postgraduate Institute of Medical Education and Research, ChandigarhIndia 1981
  • Yamada T., Nozawa Y. An unusual lipid in the human pathogenic fungus Epidermophyton floccosum. Biochim. Biophys. Acta 1979; 574: 433

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.