89
Views
49
CrossRef citations to date
0
Altmetric
Original Article

Bacterial Chemotaxis: Biochemistry of Behavior in a Single Cell

Pages 95-130 | Published online: 02 Jul 2009

References

  • Hedblom H., Adler J. Chemotactic response of Escherichia coli to chemically synthesized amino acids. J. Bacteriol. 1983; 144: 1463
  • Mesibov R., Adler J. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 1972; 112: 315
  • Ordal G. W., Gibson K. J. Chemotaxis toward amino acids by Bacillus subtilis. J. Bacteriol. 1976; 129: 151
  • Ordal G. W., Villani D. P., Gibson K. J. Amino acid chemoreceptors of Bacillus subtilis. J. Bacteriol. 1977; 129: 156
  • van der Drift C., de Jong M. H. Chemotaxis toward amino acids in Bacillus subtilis. J. Bacteriol. 1974; 96: 83
  • de Jong M. H., van der Drift C., Vogels G. D. Receptors for chemotaxis in Bacillus subtilis. J. Bacteriol. 1975; 123: 824
  • Tso W.-W., Adler J. Negative chemotaxis in Escherichia coli. J. Bacteriol. 1974; 118: 560
  • Ordal G. W., Villani D. P., Rosendahl M. S. Chemotaxis toward sugars by Bacillus subtilis. J. Gen. Microbiol. 1979; 115: 167
  • Adler J., Hazelbauer G. L., Dahl M. M. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 1973; 115: 824
  • Adler J., Epstein W. Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 2895
  • Lengeler J., Auburger A.-M., Mayer R., Pecher A. The phosphoenolpyruvate-dependent car bohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K- 12. Mol. Gen. Genet. 1981; 183: 163
  • Niwano M., Taylor B. L. Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 11
  • Hazelbauer G. L., Adler J. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nature (London) New Biol. 1971; 230: 101
  • Anraku Y. Transport of sugars and amino acids in bacteria I: purification and specificity of the galactose-and leucine-binding proteins. J. Biol. Chem. 1968; 243: 3116
  • Hazelbauer G. L. Maltose chemoreceptor of Escherichia coli. J. Bacteriol. 1975; 122: 206
  • Kellerman O., Szmelcman S. Active transport of maltose in Escherichia coli. Eur. J. Biochem. 1974; 47: 139
  • Willis R. C., Furlong C. W. Purification and properties of a ribose-binding protein from Escherichia coli. J. Biol. Chem. 1974; 249: 6926
  • Kondoh H., Ball C. B., Adler J. Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 260
  • Hazelbauer G. L., Engstrom P., Harayama S. Methyl-accepting chemotaxis protein III and transducer gene trg. J. Bacteriol. 1981; 145: 43
  • Goy M. F., Springer M. S., Adler J. Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction. Cell 1978; 15: 1231
  • Gagnon C., Viveros O. H., Dilberto E. J., Jr., Axelrod J. Enzymatic methylation of carboxyl groups of chromaffin granule membrane proteins. J. Biol. Chem. 1978; 253: 3778
  • Berg H. C. Chemotaxis in bacteria. Annu. Rev. Biophys. Bioeng. 1975; 4: 119
  • Parkinson J. S., Hazelbauer G. L. Bacterial chemotaxis: molecular genetics of sensory transduction and chemotactic gene expression. Gene Function in Prokaryotes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1983; 293
  • Parkinson J. S. Genetics of bacterial chemotaxis. Society for General Microbiology Symposium Genetics as a Tool in Microbiology, S. W. Glover, D. A. Hopwood. Cambridge University Press, London 1981; Vol. 31: 265
  • Parkinson J. S. Behavioral genetics. Annu. Rev. Genet. 1977; 11: 397
  • Macnab R. M., Aizawa S.-I. Bacterial motility and the bacterial flagellar motor. Annu. Rev. Biophys. Bioeng. 1984; 13: 51
  • Macnab R. M. Bacterial motility and chemotaxis: the molecular biology of a behavioral system. CRC Crit. Rev. Biochem. 1978; 5: 219
  • Ordal G. W., Nettleton D. O. Chemotaxis in Bacillus subtilis. The Molecular Biology of the Bacilli, D. Dubnau. Academic Press, New York, Vol. 2, in press
  • Silverman M. Building bacterial flagella. Q. Rev. of Biol. 1980; 55: 395
  • Boyd A., Simon M. Bacterial chemotaxis. Annu. Rev. Physiol. 1982; 44: 501
  • Koshland D. E., Jr. Bacterial Chemotaxis as a Model Behavioral System. Raven Press, New York 1980
  • Koshland D. E., Jr. Biochemistry of sensing and adaptation in a simple bacterial system. Annu. Rev. Biochem. 1981; 50: 765
  • Ordal G. W. Bacterial chemotaxis: a primitive sensory system. BioScience 1980; 30: 408
  • Taylor B. L., Lazlo D. J. The role of proteins in chemical perception in bacteria. The Perception of Behavioral Chemicals, D. M. Norris. Elsevier/North Holland, Amsterdam 1981; 2
  • Springer M. S., Goy M. F., Adler J. Protein methylation in behavioral control mechanisms and in signal transduction. Nature (London) 1979; 280: 279
  • Hazelbauer G. L. Bacterial chemotaxis: molecular biology of a sensory system. Endeavor 1980; 4: 67
  • Hazelbauer G. L., Harayama S. Sensory transduction in bacterial chemotaxis. Int. Rev. Cytol. 1983; 81: 33
  • Adler J. Bacterial chemotaxis and molecular neurobiology. Cold Spring Harbor Symp. Quant. Biol. 1983; 48: 803
  • Macnab R. M. Sensory reception in bacteria. Prokaryotic and Eucaryotic Flagella, W. B. Amos, J. G. Duckett. Cambridge University Press, London 1982; 77
  • Adler J. Chemotaxis in bacteria. Science 1966; 153: 708
  • Adler J. Chemoreceptors in bacteria. Science 1969; 166: 1588
  • Larsen S. H., Reader R. W., Kort E. N., Tso W.-W., Adler J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature (London) 1974; 249: 74
  • Kort E. N., Goy M. F., Larsen S. H., Adler J. Methylation of a membrane protein involved in bacteria’ chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3939
  • Macnab R. M., Koshland D. E., Jr. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1972; 69: 2509
  • Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Nature (London) 1972; 239: 500
  • Berg H. C., Anderson R. A. Bacteria swim by rotating their flagellar filaments. Nature (London) 1973; 245: 380
  • Goy M. F., Springer M. S., Adler J. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory transduction. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4964
  • Goldman D. J., Worobec S. W., Siegel R. B., Hecker R. V., Ordal G. W. Chemotaxis in Bacillus subtilis: effects of attractants on the level of MCP methylation and the role of demethylation in the adaptation process. Biochemistry 1982; 21: 915
  • Koshland D. E., Jr. A response regulator model in a simple sensory system. Science 1977; 196: 1055
  • Goldbeter A., Koshland D. E., Jr. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 6840
  • Goldbeter A., Koshland D. E., Jr. Sensitivity amplification in biochemical systems. Quart. Rev. Biophys. 1982; 15: 555
  • Ordal G. W., Fields R. B. A biochemical mechanism for bacterial chemotaxis. J. Theoret. Biol. 1977; 68: 491
  • Ordal G. W. Calcium ion regulates chemotactic behavior in bacteria. Nature (London) 1977; 270: 66
  • Shaw P., Gomes S. L., Sweeney K., Ely B., Shapiro L. Methylation involved in chemotaxis is regulated during Caulobacter differentiation. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 5261
  • Kathariou S., Greenberg E. P. Chemoattractants elicit methylation of specific polypeptides in Spirochaeta aurantia. J. Bacteriol. 1983; 156: 95
  • Krikos A., Mutoh N., Boyd A., Simon M. I. Sensory transducers of E. coli are composed of discrete structural and functional domains. Cell 1983; 33: 615
  • Ullah A. H. J., Ordal G. W. In vivo and in vitro chemotactic methylation in Bacillus subtilis. J. Bacteriol. 1981; 145: 958
  • Boyd A., Simon M. I. Stimulus-elicited methylation generates multiple electronphoretic forms of methyl-accepting chemotaxis proteins in Escherichia coli. J. Bacteriol. 1980; 143: 809
  • Chelsky D., Dahlquist F. W. Structural studies of methyl-accepting chemotaxis proteins of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 2434
  • Chelsky D., Dahlquist F. W. Methyl-accepting chemotaxis proteins of Escherichia coli: methylated at three sites in a single tryptic fragment. Biochemistry 1981; 20: 977
  • DeFranco A. L., Koshland D. E., Jr. Multiple methylation in the processing of sensory signals during bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 2429
  • Engstrom P., Hazelbauer G. L. Multiple methylation of methyl-accepting chemotaxis proteins during adaptation of E. coli to chemical stimuli. Cell 1980; 20: 165
  • Kehry M. R., Engstrom P., Dahlquist F. W., Hazelbauer G. L. Multiple covalent modifications of trg a sensory transducer of Escherichia coli. J. Biol. Chem. 1983; 258: 5050
  • Van der Werf P., Koshland D. E., Jr. Identification of a γ-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis. J. Biol. Chem. 1977; 252: 2793
  • Kleene S. J., Toews M. L., Adler J. Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis. J. Biol. Chem. 1977; 252: 3214
  • Armstrong J. B. An S-adenosylmethionine requirement for chemotaxis in Escherichia coli. Can. J. Microbiol. 1972; 18: 1695
  • Aswad D. W., Koshland D. E., Jr. Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium. J. Mol. Biol. 1975; 97: 207
  • Adler J. Chemotaxis in bacteria. Annu. Rev. Biochem. 1975; 44: 341
  • Hedblom M. L., Adler J. Genetic and biochemical properties of Escherichia coli mutants with defects in serine chemotaxis. J. Bacteriol. 1980; 144: 1048
  • Wang E. A., Koshland D. E., Jr. Receptor structure in the bacterial sensing system. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 7175
  • Ordal G. W., Villani D. P., Nicholas R. A., Hamel F. G. Independence or proline chemotaxis and transport in Bacillus subtilis. J. Biol. Chem. 1978; 253: 4916
  • Clarke S., Koshland D. E., Jr. Membrane receptors for aspartate and serine in bacterial chemotaxis. J. Biol. Chem. 1979; 254: 9695
  • Strange P. G., Koshland D. E., Jr. Receptor interactions in a signalling system: competition between ribose receptor and galactose receptor in the chemotaxis response. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 762
  • Koman A., Harayama S., Hazelbauer G. L. Relation of chemotaxis response to the amount of receptor: evidence for different efficiencies of signal transduction. J. Bacteriol. 1979; 138: 739
  • Ordal G. W., Adler J. Properties of mutants in galactose taxis and transport. J. Bacteriol. 1974; 117: 517
  • Koiwai O., Hayashi H. Studies on bacterial chemotaxis IV. Interaction of maltose receptor with a membrane-bound chemosensing component. J. Biochem. (Tokyo) 1979; 86: 27
  • Parkinson J. S., Revello P. T. Sensory adaptation mutants of E. coli. Cell 1978; 15: 1221
  • Imae Y., Mizuno T., Meada K. Chemosensory and thermosensory excitation in adaption-deficient mutants of Escherichia coli. J. Bacteriol. 1984; 159: 368
  • Springer M. S., Goy M. F., Adler J. Sensory transduction in Escherichia coli: Two complementary pathways of information processing that involve methylated proteins. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3312
  • Silverman M., Simon M. Chemotaxis in Escherichia coli: methylation of che gene products. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3317
  • Stock J. B., Koshland D. E., Jr. Changing reactivity of receptor carboxyl groups during bacterial sensing. J. Biol. Chem. 1981; 256: 10826
  • Springer M. S., Zanolari B., Pierzchala P. A. Ordered methylation of the methyl-accepting chemotaxis proteins of Escherichia coli. J. Biol. Chem. 1982; 257: 6861
  • Goldman D. J., Ordal G. W. In vitro methylation and demethylation of methyl-accepting chemotaxis proteins in Bacillus subtilis. Biochemistry 1984; 23: 2600
  • Goldman D. J., Ordal G. W. Sensory adaptation and deadaptation in Bacillus subtilis. J. Bacteriol. 1981; 147: 267
  • Lepescant-Kejzlarova J., Lepesant J.-A., Walle J., Billault A., Dedonder R. Revision of the linkage map of Bacillus subtilis 168: indications for circularity of the chromosome. J. Bacteriol. 1975; 121: 823
  • Black R. A., Hobson A. C., Adler J. Adenylate cyclase is required for chemotaxis to phosphotransferase system sugars by Escherichia coli. J. Bacteriol. 1983; 153: 1187
  • Stock J. B., Koshland D. E., Jr. A protein methylesterase involved in bacterial sensing. Proc. Natl. Acad. Sci. U.S.A. 1978; 75: 3659
  • Springer W. R., Koshland D. E., Jr. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 533
  • Ridgway H. F., Silverman M., Simon M. I. Localization of proteins controlling motility and chemotaxis in Escherichia coli. J. Bacteriol. 1977; 132: 657
  • Burgess-Cassler A., Ullah A. H. J., Ordal G. W. Purification and characterization of Bacillus subtilis methyl-accepting chemotaxis protein methyltransferase II. J. Biol. Chem. 1982; 257: 8412
  • Goldman D. J., Nettleton D. O., Ordal G. W. Purification and characterization of chemotactic methylesterase from Bacillus subtilis. Biochemistry 1984; 23: 675
  • Burgess-Cassler A., Ordal G. W. Functional homology of Bacillus subtilis methyltransferase II and Escherichia coli cheR protein. J. Biol. Chem. 1982; 257: 12835
  • Russo A. F., Koshland D. E., Jr. Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science 1983; 220: 1016
  • Boyd A., Kirkos A., Simon M. Sensory transducers of E. coli are encoded by homologous genes. Cell 1981; 26: 333
  • Engstrom P., Novelin D., Bollinger J., Magnuson N., Hazelbauer G. L. Limited homology between trg and the other transducer proteins of Escherichia coli. J. Bacteriol. 1983; 156: 2368
  • Bollinger J., Park C., Harayama S., Hazelbauer G. L. Structure of the trg protein: homologies with and differences from other sensory transducers of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A.
  • Kehry M., Dahlquist F. W. Bacterial chemotaxis: the chemical properties of the cheB-dependent modification. Motility and Recognition in Cell Biology, H. Sund, C. Veeger. Walter de Gruyter, New York 1983; 533
  • Kehry M. R., Dahlquist F. W. The methyl-accepting chemotaxis proteins of E. coli: Identification of the multiple methylation sites on MCP I. J. Biol. Chem. 1982; 257: 10378
  • Kehry M. R., Dahlquist F. W. Adaptation in bacterial chemotaxis: cheB-dependent modification permits additional methylations of sensory transducer proteins. Cell 1982; 29: 761
  • Terwilliger T. C., Bogonez E., Wang E. A., Koshland D. E., Jr. Sites of methyl esterification on the aspartate receptor involved in bacterial chemotaxis. J. Biol. Chem. 1983; 258: 9608
  • Boyd A., Kendall K., Simon M. I. Structure of the serine chemoreceptor in Escherichia coli. Nature (London) 1983; 301: 623
  • Kehry M. R., Bond M. W., Hunkapiller M. W., Dahlquist F. W. Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 3599
  • Toews M. L., Adler J. Methanol formation in vivo from methylated chemotaxis proteins in Escherichia coli. J. Biol. Chem. 1979; 254: 1761
  • Kehry M. R., Dahlquist F. W. Sensory adaptation in bacterial chemotaxis: global regulation of demethylation. Cell, submitted for publication
  • Springer M. S., Zanolari B. Sensory transduction in Escherichia coli: Regulation of the demethylation rate by the cheA protein. Proc. Natl. Acad. Sci. U.S.A.
  • Parkinson J. S. CheA. cheB, cheC genes of Escherichia coli and their role in chemotaxis. J. Bacteriol. 1976; 126: 758
  • Parkinson J. S. Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J. Bacteriol. 1978; 135: 45
  • Kihara M., Macnab R. M. Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria. J. Bacteriol. 1981; 145: 1209
  • Silverman M., Simon M. Identification of polypeptides necessary for chemotaxis in Escherichia coli. J. Bacteriol. 1977; 130: 1317
  • Silverman M., Matusmura P., Hilmen M., Simon M. Characterization of lambda-Escherichia coli hybrids carrying chemotaxis genes. J. Bacteriol. 1977; 130: 877
  • Matsumura P., Silverman M., Simon M. Synthesis of mot and che gene products of Escherichia coli programmed by hybrid Col El plasmids in minicells. J. Bacteriol. 1977; 132: 996
  • Smith R. A., Parkinson J. S. Overlapping genes at the cheA locus of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 533
  • Silverman M., Simon M. Operon controlling motility and chemotaxis in E. coli. Nature (London). 1982; 264: 577
  • Block S. M., Segall J. E., Berg H. C. Impulse responses in bacterial chemotaxis. Cell 1982; 31: 215
  • Segall J. E., Manson M. D., Berg H. C. Signal processing times in bacterial chemotaxis. Nature (London) 1982; 296: 855
  • Parkinson J. S., Parker S. R. Interaction of the cheC and cheZ gene products is required for chemotactic behavior in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 2390
  • DeFranco A. L., Parkinson J. S., Koshland D. E., Jr. Functional homology of chemotaxis genes in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1979; 139: 384
  • Dean G. E., Aizawa S.-I., Macnab R. M. FlaAII (motC, cheV) of Salmonella Typhimurium is a structural gene involved in energization and switching of the flagellar motor. J. Bacteriol. 1983; 154: 84
  • Eisenbach M., Adler J. Bacterial cell envelopes with functional flagella. J. Biol. Chem. 1981; 256: 8807
  • Ravid S., Eisenbach M. Direction of flagellar rotation in bacterial cell envelopes. J. Bacteriol. 1984; 158: 222
  • Tsang N., Macnab R., Koshland D. E., Jr. Common mechanism for repellents and attractants in bacterial chemotaxis. Science 1973; 181: 60
  • Muskavitch M. A., Kort E. N., Springer M. S., Goy M. F., Adler J. Attraction by repellents: an error in sensory information processing by bacterial mutants. Science 1978; 201: 63
  • Oosawa K., Imae Y. Demethylation of methyl-accepting chemotaxis proteins in Escherichia coli induced by the repellents glycerol and ethylene glycol. J. Bacteriol. 1984; 157: 576
  • Repaske D., Adler J. Change in intercellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents. J. Bacteriol. 1981; 145: 1196
  • Slonczewski J. L., Macnab R. M., Alger J. R., Castle A. M. Effects of pH and repellent tactic stimuli on protein methylation levels in Escherichia coli. J. Bacteriol. 1982; 152: 384
  • Glagolev A. N., Skulachev V. P. Reception of the energy level in bacterial taxis. J. Theoret. Biol. 1980; 82: 171
  • Taylor B. L. Role of protonmotive force in sensory transduction in bacteria. Annu. Rev. Microbiol. 1983; 37: 551
  • Taylor B. L. How do bacteria find the optimal concentration of oxygen?. Trends Biochem. Sci. 1983; 8: 438
  • Khan S., Macnab R. M. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force. J. Mol. Biol. 1980; 138: 563
  • Conley M. P., Berg H. C. Chemical modification of flagellar motors. J. Bacteriol. 1984; 158: 832
  • Szonczewski J. L., Rosen B. P., Alger J. R., Macnab R. M. pH homeostasis is Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 6271
  • Larsen S. H., Adler J., Gargus J. J., Hogg R. W. Chemomechanical coupling without ATP. The source of energy for motility and chemotaxis in bacteria. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1239
  • Manson M. D., Tedesco P., Herg H. C., Harold F. M., van der Drift C. A protonmotive force drives bacterial flagella. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 3060
  • Shioi J.-I., Imae Y., Oosawa F. Protonmotive force and motility of Bacillus subtilis. J. Bacteriol. 1978; 133: 1083
  • Skulachev V. P. Transmembrane electrochemical H+-potential as a convertible energy source for the living cell. FEBS Lett. 1977; 74: 1
  • Miller J. B., Koshland D. E., Jr. Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 1977; 74: 4752
  • Glagolev A. N., Skulachev V. P. The proton pump is a molecular engine of motile bacteria. Nature (London) 1978; 272: 280
  • Matsuura S., Shioi J., Imae Y. Motility in Bacillus subtilis driven by an artificial protonmotive force. FEBS Lett. 1977; 82: 187
  • Khan S., Macnab R. M. Proton chemical potential, proton electrical potential and bacterial motility. J. Mol. Biol. 1980; 138: 599
  • Manson M. D., Tedesco P. M., Berg H. C. Energetics of flagellar rotation in bacteria. J. Mol. Biol. 1980; 138: 541
  • Ordal G. W., Goldman D. J. Chemotaxis away from uncouplers of oxidative phosphorylation. Science 1975; 189: 802
  • Ordal G. W., Goldman D. J. Chemotactic repellents of Bacillus subtilis. J. Mol. Biol. 1976; 100: 103
  • Ordal G. W. Recognition sites for repellents of Bacillus subtilis. J. Bacteriol. 1976; 126: 72
  • Ordal G. W., Villani D. P. Action of uncouplers of oxidative phosphorylation as repellents of Bacillus subtilis. J. Gen. Microbiol. 1980; 118: 471
  • Brummet T. B., Ordal G. W. Inhibition of amino acid transport in Bacillus subtilis by uncouplers of oxidative phosphorylation. Arch. Biochem. Biophys. 1977; 178: 368
  • Nicholas R. A., Ordal G. W. Inhibition of bacterial transport by uncouplers of oxidative phosphorylation: effect of pentachlorophenol and analogs in Bacillus subtilis. Biochem. J. 1978; 176: 639
  • Metzner P. Die Bewegung und Reizbeantwortung der bipolar begeisselten Spirillen. Jahrb. Wiss. Bot. 1920; 59: 325
  • Goulbourne E. A., Jr., Greenberg E. P. Chemotaxis of Spirochaeta aurantia: Involvement of membrane potential in chemosensory signal transduction. J. Bacteriol. 1981; 148: 837
  • Goulbourne E. A., Jr., Greenberg E. P. A voltage clamp inhibits chemotaxis of Spirochaeta aurantia. J. Bacteriol. 1983; 153: 916
  • Szmelcman S., Adler J. Change in membrane potential during bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 4387
  • Ordal G. W., Adler J. Isolation and complementation of mutants in glactose taxis and transport. J. Bacteriol. 1974; 117: 509
  • Eisenbach M., Raz T., Ciobotariu A. A process related to membrane potential involved in bacterial chemotaxis to galactose. Biochemistry 1983; 22: 3293
  • Eisenbach M. Changes in membrane potential of Escherichia coli stimulated by galactose. Biological Structures and Coupled Flows, A. Oplatka, M. Balaban. Academic Press, New York 1983; 349
  • Eisenbach M., Zimmerman J. E., Ciobotariu A., Fischler H., Korenstein R. Electric Held effects on bacterial motility and chemotaxis. Bioelectrochem. Bioenerget. 1983; 10: 499
  • Margolin Y., Eisenbach M. Voltage-clamp effects on bacterial chemotaxis. J. Bacteriol.
  • Engelmann T. W. Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thier-ischer Organismen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 1881; 25: 285
  • Engelmann T. W. Die Erscheinungsweise der Sauerstoffausscheidung chromophyllhaltiger Zellen im Licht bei Anwendung der Bacterienmethode. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 1894; 57: 375
  • Engelmann T. W. Zur Biologie der Schizomycetne. Pflugers Arch. Gesamte Physiol. Menschen Tiere 1881; 26: 537
  • Laszlo D. J., Taylor B. L. Aerotaxis in Salmonella typhimurium: the role of electron transport. J. Bacteriol. 1981; 145: 990
  • Taylor B. L., Miller J. B., Warrick H. M., Koshland D. E., Jr. Electron acceptor taxis and blue light effect on bacterial chemotaxis. J. Bacteriol. 1979; 140: 567
  • Black R. A., Hobson A. C., Adler J. Involvement of cyclic GMP-in intracellular signaling in the chemotactic response of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 3879
  • Maeda K., Imea Y., Shioi J.-L, Oosawa F. Effect of temperature on motility and chemotaxis of Escherichia coli. J. Bacteriol. 1976; 127: 1039
  • Meada K., Imae Y. Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by l-serine. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 91
  • Mizuno T., Imae Y. Conditional inversion on the thermoresponse in Escherichia coli. J. Bacteriol., 159, in press
  • Greenberg E. P., Canale-Parola E. Chemotaxis in Spirochaeta aurantia. J. Bacteriol. 1977; 130
  • Canale-Parola E. Motility and chemotaxis of spirochetes. Ann. Rev. Microbiol. 1978; 32: 69
  • Goulbourne E. A., Jr., Greenberg E. P. Relationship between proton motive force and motility in Spirochaeta aurantia. J. Bacteriol. 1980; 142: 1450
  • Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Tyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J., Zablen L. B., Blakemore R., Gupta R., Bonen L., Lewis B. J., Stahl D. A., Luehrsen K. R., Chen K. N., Woese C. R. The phylogeny of prokaryotes. Science 1980; 209: 457
  • Naitoh Y., Eckert R. Tonic mechanisms controlling behavioral responses of Paramecium to me chanical stimulation. Science 1969; 164: 963
  • Naitoh Y., Kaneko H. Reactivated triton-extracted models of Paramecium: modification of ciliary movement by calcium ions. Science 1972; 176: 523
  • Goulbourne E. A., Jr., Greenberg E. P. Inhibition of Spirochaeta aurantia chemotaxis by neurotoxins. J. Bacteriol. 1983; 155: 1443
  • Bryan R., Purucker M., Gomes S. L., Alexander W., Shapiro L. Analysis of the pleitropic regulation of flagellar and chemotaxis gene expression in Caulobacter crescentus using plasmid complementation. Proc. Natl. Acad. Sci. U.S.A.
  • Weissborn A., Steinman H. M., Shapiro L. Characterization of the proteins of the Caulobacter crescentus flagellar filament. J. Biol. Chem. 1982; 257: 2066
  • Johnson R. C., Walsh M. P., Ely B., Shapiro L. Flagellar hook and basal complex of Caulobacter crescentus. J. Bacteriol. 1979; 138: 984
  • Shapiro L., Maizel J. V., Jr. Synthesis and structure of Caulobacter crescentus flagella. J. Bacteriol. 1973; 113: 478
  • Huguenel E. D., Newton A. Evidence that subcellular flagellin pools in Caulobacter crescentus are precursors in flagellum assembly. J. Bacteriol. 1984; 157: 727
  • Huguenel E. D., Newton A. Localization of surface structures during prokaryotic differentiation: role of cell division in Caulobacter crescentus. Differentiation 1982; 21: 71
  • Ohta N., Chen L.-S., Newton A. Isolation and expression of cloned hook protein gene from Caulobacter crescentus. Proc. Natl. Acad. Sci. U.S.A. 1984; 79: 4863
  • Osley M. A., Sheffery M., Newton A. Regulation of flagellin synthesis in the cell cycle of Caulobacter: dependence on DNA replication. Cell 1977; 12: 393
  • Sheffery M., Newton A. Reconstitution and purification of flagellar filaments from Caulobacter crescentus. J. Bacteriol. 1977; 132: 1027
  • Sheffery M., Newton A. Purification and characterization of a polyhook protein from Caulobacter crescentus. J. Bacteriol. 1979; 138: 575
  • Sheffery M., Newton A. Regulation of periodic protein synthesis in the cell cycle: control of initiation and termination of flagellar gene expression. Cell 1981; 24: 49
  • Clancy M. J., Newton A. Localization of proteins in the inner and outer membranes of Caulobacter crescentus. Biochim. Biophys. Acta 1982; 686: 160
  • Milhausen M., Agabian N. Caulobacter flagellin mRNA segregates asymmetrically at division. Nature (London) 1983; 302: 630
  • Gill P. R., Agabian N. A comparative structural analysis of the flagellin monomers of Caulobacter crescentus indicates that the proteins are encoded by two genes. J. Bacteriol. 1982; 150: 925
  • Gill P. R., Agabian N. The nucleotide sequence of the Mf = 28,500 flagellin gene of Caulobacter crescentus. J. Biol. Chem. 1983; 258: 7395
  • Evinger M., Agabian N. Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol. 1977; 132: 294
  • Lagenaur C., Agabian N. Physical characterization of Caulobacter crescentus flagella. J. Bacteriol. 1976; 128: 435
  • Lagenaur C., Agabian N. Caulobacter flagellar organelle: synthesis, compartmentation, and assembly. J. Bacteriol. 1978; 135: 1062
  • Lagenaur C., DeMartini M., Agabian N. Isolation and characterization of Caulobacter crescentus flagellar hooks. J. Bacteriol. 1978; 136: 795
  • Johnson R. C., Ely B. Analysis of nonmotile mutants of the dimorphic bacterium Caulobacter crescentus. J. Bacteriol. 1979; 137: 627
  • Adler J., Dahl M. M. A method for measuring the motility of bacteria and for comparing random and nonrandom motility. J. Gen. Microbiol. 1967; 46: 175
  • Aswad D., Koshland D. E., Jr. Role of methionione in bacterial chemotaxis. J. Bacteriol. 1974; 118: 640
  • Springer M. S., Kort E. N., Larsen S. H., Ordal G. W., Reader R. W., Adler J. The role of methionine in bacterial chemotaxis: requirement for tumbling and involvement in information processing. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 4640
  • Kondoh H. Tumbling chemotaxis mutants of Escherichia coli: possible gene-dependent effect of methionine starvation. J. Bacteriol. 1980; 142: 527
  • Arai T. Effect of arsenate on chemotactic behavior of Escherichia coli. J. Bacteriol. 1981; 145: 803
  • Galloway R. J., Taylor B. L. Histidine starvation and adenosine-5′-triphosphate depletion in chemotaxis of Salmonella typhimurium. J. Bacteriol. 1980; 144: 1068
  • Shioi J.-I., Galloway R. J., Niwano M., Chinnock R. E., Taylor B. L. Requirement of ATP in bacterial chemotaxis. J. Biol. Chem. 1982; 257: 7969
  • Engstrom P., Hazelbauer G. L. Methyl-accepting chemotaxis proteins are distributed in the membrane independently from basal ends of bacterial flagella. Biochem. Biophys. Acta 1982; 686: 19
  • Lelkes P. I., Klein L., Marikovsky Y., Eisenbach M. Liposome-mediated transfer of macro-molecules into flagellated cell envelopes from bacteria. Biochemistry 1984; 23: 563
  • Brown D. A., Berg H. C. Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1388
  • Berg H. C., Tedesco P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 3235
  • Toews M. L., Goy M. F., Springer M. S., Adler J. Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 5544
  • Spudich J. L., Koshiand D. E., Jr. Quantitation of the sensory response in bacterial chemotaxis. Proc. Natl. Acad. Sci. U.S.A. 1975; 72: 710
  • Block S. M., Segall J. E., Berg H. C. Adaptation kinetics in bacterial chemotaxis. J. Bacteriol. 1983; 154: 312
  • Ishihara A., Segall J. E., Block S. M., Berg H. C. Coordination of flagella on filamentous cells of Escherichia coli. J. Bacteriol. 1983; 155: 228
  • Macnab R. M., Han D. P. Asynchronous switching of flagellar motors on a single cell. Cell 1983; 32: 109
  • Ordal G. W., unpublished results
  • Dahlquist F. W., Kehry M., Ordal G. W., unpublished results
  • Nettleton D. O., Ordal G. W., unpublished results
  • Woese C. R., personal communication
  • Nicholas R. A., Ordal G. W., unpublished results
  • Eisenbach M., personal communication
  • Taylor B. L., personal communication
  • Dahlquist F. W., personal communication
  • Kehry M., Dahlquist F. W., personal communication

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.