1,219
Views
301
CrossRef citations to date
0
Altmetric
Research Article

Ethanol Tolerance in Yeasts

&
Pages 219-280 | Published online: 25 Sep 2008

References

  • Gray W. D. Studies on the alcohol tolerance of yeasts. J. Bacteriol. 1941; 42: 561
  • Day A., Anderson E., Martin P. A. Ethanol tolerance of brewing yeasts. Proc. 15th Conv. Eur. Brew. Cong. IRL Press, Oxford 1975; 377
  • Harrison J. S., Graham J. C. J. Yeasts in distillery practice. The Yeasts, A. H. Rose, J. Harrison. Academic Press, New York 1970; Vol. 3: 283
  • Rose A. H. Recent research on industrially important strains of Saccharomyces cerevisiae. Soc. Appl. Bacteriol. 1980; 9: 103
  • Ranganathan B., Baht J. V. Ethanol tolerance of some yeasts. J. Indian Inst. Sci. 1958; 40: 105
  • Inoue T., Takaoka Y., Hata S. Studies on sake yeasts. V. Conditions which affect the tolerance of yeast to alcohol. J. Ferment. Technol. 1962; 40: 511
  • White F. H. Ethanol tolerance of brewery yeasts. Proc. 15th Conv. Inst. Brew. (Aust. and N.Z. Sect.), L. S. Walter. Institute of Brewing, Sydney 1978; 133
  • Becze G. I. Reproduction of distillers' yeast. Biotechnol. Bioeng. 1964; 6: 191
  • Ismail A. A., Ali A. M. M. Selection of high ethanol yielding Saccharomyces. I. Ethanol tolerance and effects of training in Saccharomyces cerevisiae Hansen. Folia Microbiol. 1971; 16: 346
  • Nojiro K., Ouchii K. The fermenting ability of the sake yeast and its alcohol tolerance. I. The relationship between the fermenting ability and alcohol tolerance. J. Soc. Brew. (Japan) 1962; 57: 824
  • Hayashida S., Feng D., Hongo M. Physiological properties of yeast cells grown in the proteolipid supplemented media. Agric. Biol. Chem. 1975; 39: 1025
  • Suto T., Tagaki T., Umenura T. Physiology of sake yeast. Fermenting capacity of yeast in heavily concentrated mashes. J. Ferment. Technol. 1951; 29: 447
  • Yamashiro K., Shimoide M., Tani Y., Fukai S. Physiological and biochemical studies on Saccharomyces sake VIII. Studies on factors affecting high concentration alcohol formation in Saccharomyces sake. J. Ferment. Technol. 1966; 44: 602
  • Curtain C. C., Atwell J. L., Lorney F. D., Zajac-Cade A. Membrane mechanism of ethanol tolerance in Saccharomyces cerevisiae: an electron spin resonance study. Proc. 18th Conv. Inst. Brew. (Aust. and N.Z. Sect.), B. J. Clarke, J. V. Harvey, S. Itacouitz, G. W. Wheatland. Institute of Brewing, Sydney 1984; 236
  • Kalmokoff M., Ingledew W. M. Evaluation of ethanol tolerance in related Saccharomyces strains. J. Am. Soc. Brew. Chem. 1985; 43(4)189
  • Brown S. W., Oliver S. G., Harrison D. E. F., Righelato R. C. Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. Eur. J. Appl. Microbiol. Biotechnol. 1981; 11: 151
  • Thomas D. S., Hossack J. A., Rose A. H. Plasma membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch. Microbiol. 1978; 117: 239
  • Watson K., Cavicchioli R. Acquisition of ethanol tolerance in yeast cells by heat shock. Biotechnol. Lett. 1983; 5: 683
  • Ingledew W. M., Casey G. P. Rapid production of high concentrations of ethanol using unmodified industrial yeasts. 1st Bioenergy Specialists Meet. Biotechnol., S. Hasnain, J. Lamptey, M. Moo-Young. University of Waterloo Press, Waterloo, Ontario 1984; 322
  • Jones R. P., Greenfield P. F. Kinetics of apparent cell death in yeasts induced by ethanol. Biotechnol. Lett. 1984; 6: 471
  • Watson K., Dunlop G., Cavicchioli R. Mitochondrial and cytoplasmic protein synthesis are not required for heat shock acquisition of ethanol and thermotolerance in yeast. FEBS Lett. 1984; 172: 299
  • van Uden N. Effects of ethanol on the temperature relations of viability and growth in yeast. CRC Crit. Rev. Biotechnol. 1984; 1: 263
  • Casey G. P., Magnus C. A., Ingledew W. M. High gravity brewing: nutrient enhanced production of high concentrations of ethanol by brewing yeast. Biotechnol. Lett. 1983; 5: 429
  • Casey G. P., Magnus C. A., Ingledew W. M. High gravity brewing: effects of nutrition on yeast composition, fermentative ability and alcohol production. Appl. Environ. Microbiol. 1984; 48: 639
  • Flor P. Q., Hayashida S. Saccharomyces uvarum inulyticus var. nov., a new high-concentration ethanol tolerant yeast from rice wine. Eur. J. Appl. Microbiol. Biotechnol. 1983; 148
  • Hayashida S., Feng D., Hongo M. Function of the high concentration alcohol-producing factor. Agric. Biol. Chem. 1974; 38: 2001
  • Hayashida S., Ohta K. Formation of high concentrations of alcohol by various yeasts. J. Inst. Brew. 1981; 87: 42
  • Pierce G. E., Litchfield J. H., Lipinsky E. S. Evaluation of the feasibility of sequential fermentation of sugars for production of ethanol. Dev. Ind. Microbiol. 1980; 22: 703
  • Casey G. P. Fermentation of High Gravity Worts by Saccharomyces uvarum Brewers' Yeasts. Ph.D. thesis, University of Saskatchewan, Saskatoon 1984
  • Casey G. P., Ingledew W. M. Reevaluation of alcohol synthesis and tolerance in brewer's yeast. J. Am. Soc. Brew. Chem. 1985; 43(2)75
  • Kodoma K., Yoshizawa K. Sake. Alcoholic Beverages, A. H. Rose. Academic Press, London 1977; 423
  • Aiba S., Shoda M. Reassessment of the product inhibition of alcohol fermentation. J. Ferment. Technol. 1969; 47: 790
  • Aiba S., Shoda M., Nagatani M. Kinetics of product inhibition in alcohol fermentation. Biotechnol. Bioeng. 1968; 10: 845
  • Bajpai P., Margaritis A. Ethanol inhibition of Kluyveromyces marxianus grown on Jerusalem artichoke juice. Appl. Environ. Microbiol. 1982; 44: 1325
  • Bazua C. D., Wilke C. R. Ethanol effects on the kinetics of a continuous fermentation with Saccharomyces cerevisiae. Biotechnol. Bioeng. Symp. 1977; 7: 105
  • Boulton R. Kinetic model for the control of wine fermentations. Biotechnol. Bioeng. Symp. 1979; 9: 167
  • Brown S. W., Oliver S. G. The effect of temperature on the ethanol tolerance of the yeast Saccharomyces uvarum. Biotechnol. Lett. 1982; 269
  • Egamberdiev N. B., Ierussalimsky N. D. Effect of ethanol concentration on the growth rate of Saccharomyces vinii. Mikrobiologiya 1968; 37: 686
  • Ghose T. K., Tyagi R. D. Rapid ethanol fermentation of cellulose hydrolysate. II. Product and substrate inhibition and optimization of fermentor design. Biotechnol. Bioeng. 1979; 21: 1401
  • Holzberg I., Finn R. K., Steinkraus K. H. A kinetic study of the alcoholic fermentation of grape juice. Biotechnol. Bioeng. 1967; 9: 413
  • Hoppe G. K., Hansford G. S. Ethanol inhibition of continuous anaerobic yeast growth. Biotechnol. Lett. 1982; 4: 39
  • Hoppe G. K., Hansford G. S. The effect of micro-aerobic conditions on continuous ethanol production by Saccharomyces cerevisiae. Biotechnol. Lett. 1984; 6: 681
  • Jin C. K., Chiang H. L., Wang S. S. Steady state analysis of the enhancement in ethanol productivity of a continuous fermentation process employing a protein-phospholipid complex as a protective agent. Enzyme Microbiol. Technol. 1984; 3: 249
  • Kowda M. W., Simard R. E. Growth characteristics of baker's yeast in ethanol. Biotechnol. Bioeng. 1982; 24: 1125
  • Lamptey J., Robinson C. W., Moo-Young M. Kinetics of fuel grade ethanol production in an immobilized yeast, packed bed bioreactor. Can. Inst. Chem. Eng. 1981; 1: 630
  • Laureiro-Dias M. C., Peinado J. M. Effect of ethanol and other alkanols on the maltose transport system of Saccharomyces cerevisiae. Biotechnol. Lett. 1982; 4: 721
  • Leao C., van Uden N. Effects of ethanol and other alkanols on the glucose transport system of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1982; 24: 2601
  • Luong J. H. T. Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol. Bioeng. 1985; 27: 280
  • Mota M., Strehaiano P., Goma G. Studies on the conjugate effects of substrate (glucose) and product (ethanol) on cell growth kinetics during fermentation of different yeast strains. J. Inst. Brew. 1984; 90: 360
  • Moulin G., Boze H., Galzy P. Inhibition of alcoholic fermentation by substrate and ethanol. Biotechnol. Bioeng. 1980; 22: 2375
  • Moulin G., Boze H., Galzy P. A comparative study of the inhibitory effect of ethanol and substrates on the fermentation rate of parent and a respiratory-deficient mutant. Biotechnol. Lett. 1981; 3: 351
  • Nagatani M., Shoda M., Aiba S. Kinetics of product inhibition in alcohol fermentation. I. Batch experiments. J. Ferment. Technol. 1968; 46: 241
  • Novak M., Strehaiano P., Moreno M., Goma G. Alcoholic fermentation: on the inhibitory effect of ethanol. Biotechnol. Bioeng. 1981; 23: 201
  • Pironti F. F. Kinetics on Alcoholic Fermentation. Ph.D. thesis, Cornell University, New York 1971
  • Rahn O. The decreasing rate of fermentation. J. Bacteriol. 1929; 18: 207
  • Righelato R. C. Anaerobic fermentation: alcohol production. Philos. Trans. R. Soc. London 1980; B290: 303
  • Righelato R. C., Rose D., Westwood A. W. Kinetics of ethanol production by yeast in continuous culture. Biotechnol. Lett. 1981; 3: 3
  • Roman G. N., Jansen N. B., Tsao G. T. Ethanol inhibition of D-xyulose fermentation by Saccharomyces pombe. Biotechnol. Lett. 1984; 6: 7
  • Ryder D., Woods D. R., Murray J. P., Masschelein C. A. Some practical implications of yeast growth and performance. M.B.A.A. Tech. Q. 1983; 20: 9
  • Sa-Correia I., van Uden N. Effects of ethanol on the fructose transport system of Kluyveromyces fragilis. Biotechnol. Lett. 1983; 5: 413
  • Thomas D. S., Rose A. H. Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma membrane lipid composition. Arch. Microbiol. 1979; 122: 49
  • Tseng M. M., Wayman M. Kinetics of yeast growth: inhibition-threshold substrate concentrations. Can. J. Microbiol. 1975; 21: 994
  • Wasungu K. M., Simard R. E. Growth characteristics of bakers' yeast in ethanol. Biotechnol. Bioeng. 1982; 24: 1125
  • Zines D. O., Rogers P. L. A chemostat study of ethanol inhibition. Biotechnol. Bioeng. 1971; 13: 293
  • Ghose T. K., Tyagi R. D. Rapid ethanol fermentation of cellulose hydrolysate. I. Batch versus continuous system. Biotechnol. Bioeng. 1979; 21: 1387
  • Holcberg I. B., Margalith P. The effect of natural polymers on ethanol fermentation by Saccharomyces cerevisiae. Microbiol. Lett. 1983; 23: 29
  • Loureiro V., van Uden N. Effects of ethanol on the maximum temperature for growth ofSaccharomyces: a model. Biotechnol. Bioeng. 1982; 24: 1881
  • Nagodawithana T. W., Steinkraus K. H. Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in “rapid fermentations”. Appl. Environ. Microbiol. 1976; 31: 158
  • Navarro J. M., Durand G. Fermentation alcoolique: influence de la temperature sur l'accumulation d'alcool dans les cellules de levure. Ann. Microbiol. (Inst. Pasteur) 1978; 129B: 215
  • Strehaiano P., Moreno M., Goma G. Fermentation alcoolique: influence de la concentration en glucose sur le taux de production d'ethanol et le taux de croissance. C.R. Acad. Sci. Ser. D 1978; 286: 225
  • Cysewski G. R., Wilke C. R. Utilization of cellulosic materials through enzymatic hydrolysis. I. Fermentation of hydrolysate to ethanol and single-cell protein. Biotechnol. Bioeng. 1976; 18: 1297
  • Guijarro J. M., Lagunas R. Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient. J. Bacteriol. 1984; 160: 874
  • Loureiro V., Ferreira H. G. On the intracellular accumulation of ethanol in yeast. Biotechnol. Bioeng. 1983; 25: 2263
  • Brown S. W., Sugden D. A., Oliver S. G. Ethanol production and tolerance in grande and petite yeasts. J. Chem. Technol. Biotechnol. 1984; 34B: 116
  • Panchal C. J., Stewart G. G. The effect of osmotic pressure on the production and excretion of ethanol and glycerol by a brewing yeast strain. J. Inst. Brew. 1980; 86: 207
  • Troyer J. R. A relation between cell multiplication and alcohol tolerance in yeasts. Mycologia 1953; 45: 20
  • Lee S. S., Robinson F. M., Wang H. Y. Rapid determination of yeast viability. Biotechnol. Bioeng. Symp. 1981; 11: 641
  • Suto T., Kosaka S., Umenura T. Physiological properties of the sake yeast. I. The relationship between nitrogen metabolism and fermenting ability of the yeast. J. Ferm. Technol. 1951; 29: 105
  • Benitez T., Castillo L., Aguiler A., Conde J., Cerda-Olmedo E. Selection of wine yeasts for growth and fermentation in the presence of ethanol and sucrose. Appl. Environ. Microbiol. 1983; 45: 1429
  • Lee J. H., Williamson D., Rogers P. L. The effect of temperature on the kinetics of ethanol production by Saccharomyces uvarum. Biotechnol. Lett. 1980; 2: 141
  • Moulin G., Boze H., Galzy P. Utilization of a respiratory-deficient mutant for alcohol production. J. Ferm. Technol. 1982; 60: 25
  • Fricker R. Industrial alcohol by continuous fermentation. Proc. 17th Conv. Inst. Brew. (Aust. and N.Z. Sect.), B. J. Clarke, J. V. Harvey, S. Itzcovitz, A. A. James. Institute of Brewing, Sydney 1982; 162
  • Aiyar A. S., Luedeking R. A kinetic study of the alcoholic fermentation of glucose by Saccharomyces cerevisiae. Bioeng. Food Process. 1969; 62: 55
  • Franz B. Investigation of the kinetics of alcohol fermentation under the condition of baker's yeast. Nahrung 1961; 5: 457
  • Navarro J. M. Fermentation alcoolique: influence des conditions de culture sur l'inhibition par l'ethanol. Cell. Mol. Biol. 1980; 26: 241
  • Gray W. D., Sova C. Effects of alcohol on yeast hexokinase. Mycopathol. Mycol. Appl. 1969; 37: 70
  • Nagodawithana T. W., Whitt J. T., Cutaia A. J. Study on the feedback effect of ethanol on selected enzymes of the glycolytic pathway. J. Am. Soc. Brew. Chem. 1977; 35: 179
  • Navarro J. M., Finck J. D. Saccharomyces uvarum hexokinase behavior during alcoholic fermentation. Cell. Mol. Biol. 1982; 28: 85
  • Panchal C. J., Stewart G. G. The influence of media conditions on the utilization of monosaccharides by a strain of Saccharomyces uvarum (carlsbergensis). J. Inst. Brew. 1982; 88: 86
  • Millar D. G., Griffiths-Smith K., Algar E., Scopes R. K. Activity and stability of glycolytic enzymes in the presence of ethanol. Biotechnol. Lett. 1982; 4: 601
  • Larue F., Lafon-Lafourcade S., Ribereau-Gayon P. Relationship between the inhibition of alcoholic fermentation by Saccharomyces cerevisiae and the activites of hexokinase and alcohol dehydrogenase. Biotechnol. Lett. 1984; 6: 687
  • Sakurada T., Matsumura H. Oxidoreductases and sugar metabolism of Saccharomyces cerevisiae grown on ethanol. Keio J. Med. 1965; 14: 167
  • Hamada H., Shimotakahara Y., Kurihara Y., Kojima M. Effects of 1-phenyl-1-propanol and ethanol during respiratory adaptation in yeast. J. Ferment. Technol. 1984; 62: 81
  • Leao C., van Uden N. Effects of ethanol and other alkanols on the ammonium transport system of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1983; 25: 2085
  • Leao C., van Uden N. Effects of ethanol and other alkanols on the general amino permease of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1984; 26: 403
  • Leao C., van Uden N. Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1984; 774: 43
  • Brown B. G., Coyne C., Letters R. New evidence on ethanol tolerance of yeast. Proc. 17th Inst. Brew. Conv. (Aust. and N.Z. Sect.), B. J. Clarke, J. V. Harvey, S. Itzcovitz, A. A. James. Institute of Brewing, Sydney 1982; 138
  • Gray W. D. Further studies on the alcohol tolerance of yeast: its relationship to cell storage products. J. Bacteriol. 1948; 55: 53
  • Andreasen A. A., Stier T. J. Anaerobic nutrition of Saccharomyces cerevisiae I. Ergosterol requirements for growth in a defined medium. J. Cell. Comp. Physiol. 1953; 41: 23
  • Andreasen A. A., Stier T. J. Anaerobic nutrition of Saccharomyces cerevisiae II. Unsaturated fatty acid requirements for growth in a defined medium. J. Cell. Comp. Physiol. 1954; 43: 271
  • Rattray J. B. M., Schibeci A., Kidby D. K. Lipids of yeast. Bacteriol. Rev. 1975; 39: 197
  • David M. H., Kirsop B. H. The varied response of brewing yeasts to oxygen and sterol treatment. J. Am. Soc. Brew. Chem. 1972; 30: 14
  • Kirsop B. H. Oxygen in brewery fermentation. J. Inst. Brew. 1974; 80: 252
  • Klein H. P. Synthesis of lipids in resting cells of Saccharomyces cerevisiae. J. Bacteriol. 1955; 69: 620
  • Maugenet J., Dupay P. Synthese des sterols par la levure. Ann. Technol. Agric 1964; 13: 329
  • Popjak G., Cornforth J. W. The biosynthesis of cholesterol. Adv. Enzymol. 1960; 22: 281
  • Aries V., Kirsop B. H. Sterol biosynthesis by strains of Saccharomyces cerevisiae in the presence and absence of dissolved oxygen. J. Inst. Brew. 1978; 84: 118
  • Olson J. A., Lindberg M., Bloch K. On the demethylization of lanosterol to cholesterol. J. Biol. Chem. 1957; 226: 941
  • Bloomfield D. K., Bloch K. The role of oxygen in the biosynthesis of unsaturated fatty acids. Biochim. Biophys. Acta 1958; 30: 220
  • Bloomfield D. K., Bloch K. The formation of '-unsaturated fatty acids. J. Biol. Chem. 1960; 235: 337
  • Berndt J., Boll M., Lowel M., Gaumert R. Regulation of sterol biosynthesis in yeast: induction of 3-hydroxy-3-methyl glutaryl-CoA reductase by glucose. Biochem. Biophys. Res. Commun. 1973; 51: 843
  • Carratore R. D., Morganti C., Galli A., Bronzette G. Cytochrome P-450 inducibility by ethanol and 7-ethoxycoumarin O-deethylation in S. cerevisiae. Biochem. Biophys. Res. Commun. 1984; 123: 186
  • Mortina T., Mifuchi I. Ethanol enhancement of cytochrome P-450 content in yeast Saccharomyces cerevisiae D7. Chem. Pharm. Bull. 1984; 34: 1624
  • Ahvenainen J. Lipid composition of aerobically and anaerobically propagated brewers bottom yeast. J. Inst. Brew. 1982; 88: 367
  • Ahvenainen J., Makinen V. The effect of pitching yeast aeration on fermentation and beer flavour. Proc. 18th Conv. Eur. Brew. Cong. IRL Press, Oxford 1981; 285
  • Thompson C. C., Ralph D. J. Studies on yeast viability. Proc. 11th Conv. Eur. Brew. Cong. IRL Press, Oxford 1967; 177
  • Demel R. A., Kruyff B. The function of sterols in membranes. Biochim. Biophys. Acta 1976; 457: 109
  • Nes W. R., Sekula B. C., Nes W. D., Adler J. H. The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 1978; 253: 6218
  • Parks L. W., McLean-Brown C., Bothema C. K., Taylor F. R., Gonzales R., Jensen B. W., Ramp J. R. Aspects of sterol metabolism in the yeast Saccharomyces cerevisiaeand in Phytophthora. Lipids 1982; 17: 187
  • Parks L., McLean-Brown C., Taylor F. R., Hough S. Sterols in yeast subcellular fractions. Lipids 1978; 13: 730
  • David M. H., Kirsop B. H. Correlation between oxygen requirements and the products of sterol synthesis in swains of Saccharomyces cerevisiae. J. Gen. Microbiol. 1973; 77: 529
  • Haukeli A. D., Lie S. Yeast growth and metabolic changes during brewery fermentation. Proc. 17th Conv. Eur. Brew. Cong. IRL Press, Oxford 1979; 461
  • Aries V., Kirsop B. H. Sterol synthesis in relation to growth and fermentation by brewing yeast inoculated at different concentrations. J. Inst. Brew. 1977; 83: 220
  • Hossack J. A., Rose A. H. Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols. J. Bacteriol. 1976; 127: 67
  • Nes W. R., Alder J. H., Sekula B. C., Krevitz K. Discrimination between cholesterol and ergosterol by yeast membranes. Biochem. Biophys. Res. Commun. 1976; 71: 1296
  • Pinto W. J., Lozano R., Sekula B. C., Nes W. R. Stereochemically distinct roles for sterol in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1983; 112: 47
  • Pinto W. J., Nes W. R. Stereochemical specificity for sterols in Saccharomyces cerevisiae. J. Biol. Chem. 1983; 258: 4472
  • Alterthum F., Rose A. H. Osmotic lysis of sphaeroplasts from Saccharomyces cerevisiae grown anaerobically in media containing different unsaturated fatty acids. J. Gen. Microbiol. 1973; 77: 371
  • Proudlock J. W., Wheeldon L. W., Jollow D. J., Linnane A. W. Role of sterols in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1968; 152: 434
  • Chen E. C. Fatty acid profiles of cultured and wild yeasts in brewing. J. Am. Soc. Brew. Chem. 1981; 39: 117
  • Ingram L. O. Adaptation of membrane lipids to alcohols. J. Bacteriol. 1976; 125: 670
  • Buttke T. M., Ingram L. O. Mechanism of ethanol-induced changes in the lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo. Biochemistry 1978; 17: 637
  • Ingram L. O. Preferential inhibition of phosphatidyl ethanolamine synthesis in Escherichia coli by alcohols. Can. J. Microbiol. 1977; 23: 779
  • Nandini-Kinshore S. G., Mattox S. M., Martin C. E. Membrane changes during growth of Tetrahymena in the presence of ethanol. Biochim. Biophys. Acta 1979; 551: 315
  • Taneja R., Khuller G. K. Ethanol-induced alterations in phospholipids and fatty acids in Mycobacterium smegmatis ATCC 607. FEMS Microbiol. Lett. 1980; 8: 83
  • Beaven M. J., Charpentier C., Rose A. H. Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. J. Gen. Microbiol. 1982; 128: 1447
  • Ohta K., Supanwong K., Hayashida S. Environmental effects on ethanol tolerance of Zymomonas mobilis. J. Bacteriol. 1981; 59: 435
  • Carey V. C., Ingram L. O. Lipid composition of Zymomonas mobilis Effects of ethanol and glucose. J. Bacteriol. 1983; 154: 1291
  • Ingram L. O. Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl. Environ. Microbiol. 1977; 33: 1233
  • Sullivan K. H., Hegeman G. D., Cordes E. H. Alteration of the fatty acid composition of Escherichia coli by growth in the presence of normal alcohols. J. Bacteriol. 1979; 138: 133
  • Grisham C. M., Barnett R. E. The effects of long chain alcohols on membrane lipids and the (Na+ + K+)-ATPase. Biochim. Biophys. Acta 1973; 311: 417
  • Hui F. K., Burton P. G. Mesomorphic behaviour of some phospholipids with aliphatic alcohols and other non-ionic substance. Biochim. Biophys. Acta 1973; 296: 510
  • Paterson S. J., Butler K. W., Huang P., Labelle J., Smith I. C., Schenider H. The effects of alcohols on lipid bilayers: spin label study. Biochim. Biophys. Acta 1972; 266: 597
  • Rigomier D., Bohin J.-P., Lubochinsky B. Effects of ethanol and methanol on lipid metabolism in Bacillus subtilis. J. Gen. Microbiol. 1980; 121: 139
  • Vanderkooi J. M., Landesberg R., Selick H., McDonald G. G. Interaction of general anesthetics with phospholipid vesicles and biological membranes. Biochim. Biophys. Acta 1977; 464: 1
  • Tanigawa T., Umezu M. Morphological studies on the cell wall of “Hiochi bacteria” with special reference to the change of its thickness due to growth conditions. J. Gen. Appl. Microbiol. 1979; 25: 31
  • Uchida K. Occurrence of saturated and mono-unsaturated fatty acids with unusually long chains (C20-C30) in Lactobacillus heterohiochii and alcoholphilic bacterium. Biochim. Biophys. Acta 1974; 348: 86
  • Dombek K. M., Ingram L. O. Effects of ethanol on the Escherichia coli plasma membrane. J. Bacteriol. 1984; 157: 233
  • Hongo M., Hayashida S., Inoue S., Koizum R., Kawaharada H. The mechanism of formation of high concentration alcohol in sake brewing. I. An effective component of rice and its function. J. Agric. Chem. Soc. 1967; 41: 629
  • Kawaharada H., Hayashida S., Hongo M. The mechanism of formation of high concentration alcohol in sake brewing. VI. Stimulation of yeast growth by koji mold. J. Ferment. Technol. 1970; 48: 229
  • Kawaharada H., Koga H., Hayashida S., Hongo M. The mechanism of formation of high concentration alcohol in sake brewing. III. Stimulation of yeast growth by black koji mold. J. Agric. Chem. Soc. 1967; 41: 640
  • Hayashida S., Feng D., Ohta K., Chaitiumvong S., Hongo M. Composition and role of Aspergillus oryzae proteolipid as a high concentration alcohol producing factor. Agric. Biol. Chem. 1976; 40: 73
  • Hayashida S., Ohta K. Cell structure of yeasts grown anaerobically in Aspergillus oryzae—proteolipid supplemented media. Agric. Biol. Chem. 1978; 42: 1139
  • Hayashida S., Ohta K., Flor P. Q., Nanri N., Miyahara I. High concentration ethanol fermentation of raw ground corn. Agric. Biol. Chem. 1982; 46: 1947
  • Hayashida S., Ohta K. Effects of phosphatidyl-choline or ergosterol oleate on physiological properties of Saccharomyces sake. Agric. Biol. Chem. 1980; 44: 2561
  • Ohta K., Hayashida S. Role of Tween 80 and monolein in a lipid-sterol-protein complex which enhances ethanol tolerance of sake yeast. Appl. Environ. Microbiol. 1983; 46: 821
  • Ziffer J., Iosif M. O. High ethanol yields using Aspergillus oryzae koji and corn media. Biotechnol. Lett. 1982; 4: 573
  • Jin C. K., Wang S. S. Continuous production of ethanol in a two-stage fermentation process using a protein-phospholipid complex as a protective agent. Enzyme Microbiol. Technol. 1982; 4: 256
  • Hackstaff B. W. Various aspects of high gravity brewing. M.B.A.A. Tech. Q. 1978; 15: 1
  • Jones M., Pierce J. S. Some factors influencing the individual amino acid composition of wort. J. Am. Soc. Brew. Chem. 1964; 22: 130
  • Kirsop B. H. Developments in beer fermentation. Top. Enzyme Ferment. Biotechnol. 1982; 6: 79
  • Ingledew W. M. Utilization of wort carbohydrates and nitrogen by Saccharomyces carlsbergensis. M.B.A.A. Tech. Q. 1975; 12: 146
  • Baker C. D., Morton S. Oxygen levels in air-saturated worts. J. Inst. Brew. 1977; 83: 348
  • Day A., Martin P. A. Yeast lipid composition and the control of viability in fermentations of concentrated brewers wort. Int. Ferment. Symp. (Berlin) 1976; 5: 468
  • Owades J. L. The role of osmotic pressure in high and low gravity fermentations. M.B.A.A. Tech. Q. 1981; 18: 163
  • Gemin C. C. Concentrated wort processing method. M.B.A.A. Tech. Q. 1974; 11: 21
  • Skinner K. High gravity brewing—theory and practice. Brewer 1977; 63: 6
  • Whitworth C. Technological advances in high gravity fermentations. Eur. Brew. Conv. Ferm. Stor. Symp. Brauwelt-Verlag, Nurnberg 1978; 155
  • Witt P. R., Blythe P. Considerations—the fermentation of high gravity wort. J. Am. Soc. Brew. Chem. 1976; 34: 76
  • Casey G. P., Ingledew W. M. High gravity brewing: influence of pitching rate and wort gravity on early yeast viability. J. Am. Soc. Brew. Chem. 1983; 41: 148
  • Ingledew W. M., Kunkee R. E. Factors influencing sluggish fermentations of grape juice. Am. J. Enol. Vitic 1985; 36: 56
  • Bell A. A., Ough C. S., Kliewer W. M. Effects on must and wine composition, rate of fermentation, and wine quality of nitrogen fertilization of Vitis vinifer var. Thompson Seedless grapevines. Am. J. Enol. Vitic 1979; 30: 124
  • Kunkee R. E., Goswell R. W. Table wines. Economic Microbiology, A. H. Rose. Academic Press, London 1977; Vol. 1: 315
  • Giudici P., Guerzoni M. E. Sterol content as a character for selecting yeast strains in enology. Vitis 1982; 21: 5
  • Lafon-Lafourcade S., Larue F., Brechot P., Ribereau-Gayon P. Les steroides “facteurs de survie” des levures au cours de la fermentation alcoolique de mout de raisin. C.R. Acad. Sci. Ser. D. 1977; 284: 1939
  • Lafon-Lafourcade S., Larue F., Ribereau-Gayon P. Evidence for the existence of “survival factors” as an explanation for some peculiarities of yeast growth, especially in grape must of high sugar concentration. Appl. Environ. Microbiol. 1979; 38: 1069
  • Larue F., Lafon-Lafourcade S., Ribereau-Gayon P. Relation entre la teneur cellulaire en sterols et l'activite fermentaire des levures dans le mout de raisin. Role fonctionnel des steroides. C.R. Acad. Sci. Ser. D. 1978; 287: 1445
  • Larue F., Lafon-Lafourcade S., Ribereau-Gayon P. Les differents roles fonctionnels des steroides sur les levures dans le mout de raisin en fermentation: notion de facteur de survie. Ann. Microbiol. 1979; 130: 231
  • Larue F., Lafon-Lafourcade S., Ribereau-Gayon P. Relationship between the sterol content of yeast cells and their fermentation activity in grape must. Appl. Environ. Microbiol. 1980; 39: 808
  • Larue F., Lafon-Lafourcade S., Ribereau-Gayon P. Inhibition de Saccharomyces cerevisiae dans le moute de raisin. C.R. Acad. Sci. Ser. D 1982; 294: 587
  • Traverso-Rueda S., Kunkee R. E. The role of sterols on growth and fermentation of wine yeasts under vinification conditions. Dev. Ind. Microbiol. 1981; 23: 131
  • Damiano D., Wang S. S. Improvements in ethanol concentration and fermentor ethanol productivity in yeast fermentations using whole soy flour in batch, and continuous recycle systems. Biotechnol. Lett. 1985; 7: 135
  • Watson K. Unsaturated fatty acid but not ergosterol is essential for high ethanol production in Saccharomyces. Biotechnol. Lett. 1982; 4: 397
  • Nagodawithana T. W., Castellano C., Steinkraus K. H. Effect of dissolved oxygen, temperature, initial cell count and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations. Appl. Microbiol. 1974; 28: 383
  • Janssens J. H., Burris N., Woodward A., Bailey R. B. Lipid-enhanced ethanol production by Kluyveromyces fragilis. Appl. Environ. Microbiol. 1983; 45: 598
  • Saigal D., Viswanathon L. Effects of oils and fatty acids on molasses fermentation by distillers' yeast. Enzyme Microbiol. Technol. 1984; 6: 78
  • Ryu D. D., Kim Y. J., Kim J. H. Effect of air supplement on the performance of continuous ethanol system. Biotechnol. Bioeng. 1984; 26: 12
  • Ito T., Ito A. Enhancement of porphyrin photosensitization of yeast cells by ethanol. Photochem. Photobiol. 1984; 40: 429
  • Hahn-Hagerdal B., Larsson M., Mattison B. Shift in metabolism towards ethanol production in Saccharomyces cerevisiae using alterations of the physical-chemical micro-environment. Biotechnol. Bioeng. Symp. 1982; 12: 199
  • Jones R. P., Greenfield P. F. Batch ethanol production with dual organisms. Biotechnol. Lett. 1981; 3: 225
  • Maiorella B., Wilke C. R., Blanch H. W. Alcohol production and recovery. Adv. Biochem. Eng. 1981; 20: 43
  • Ough C. S. Fermentation rates of grape juice. III. Effects of initial ethyl alcohol, pH and fermentation temperature. Am. J. Enol. Vitic. 1966; 17: 74
  • Holcberg I. B., Margalith P. Alcoholic fermentation by immobilized yeast at high sugar concentrations. Eur. J. Appl. Microbiol. Biotechnol. 1981; 13: 133
  • Tarkow L., Fellers C. R., Levine A. S. Relative inhibition of microorganisms by glucose and sucrose syrups. J. Bacteriol. 1944; 44: 367
  • Strehaiano P., Goma G. Effect of initial substrate concentration on two wine yeasts: relations between glucose sensitivity and ethanol inhibition. Am. J. Enol. Vitic. 1983; 34: 1
  • Gray W. D. The acclimatization of yeast to high concentrations of glucose: the subsequent effect upon alcohol tolerance. J. Bacteriol. 1946; 52: 703
  • Gray W. D. The sugar tolerance of four strains of distillers' yeast. J. Bacteriol. 1945; 49: 445
  • Ziffer J. Hexitol repression effects in the high corn ethanol fermentation system. Biotechnol. Lett. 1983; 5: 805
  • Panchal C. J., Peacock L., Stewart G. G. Increased osmotolerance of genetically modified ethanol producing strains of Saccharomycessp. Biotechnol. Lett. 1982; 4: 639
  • Stucley C. R., Pamment N. B. Ethanol inhibition in yeasts: the role of intracellular ethanol. Alcohol Fuel Technol. Symp. 1982; 1: 291
  • Hayashida S., Nanri N., Feng D., Hongo M. The mechanism of formation of high concentration alcohol in sake brewing. VII. The high alcohol concentration producing factor in koji. J. Agric. Chem. Soc. 1974; 48: 529
  • Panchal C. J., Stewart G. G. Ethanol production by a highly flocculent brewing yeast strain. Dev. Ind. Microbiol. 1980; 22: 711
  • Panchal C. J., Stewart G. G. Regulatory factors in alcohol fermentations. Current Developments in Yeast Research. Pergamon Press, Oxford 1981; 9
  • Cruess W. V., Brown E. M., Flossfeder F. Sweet wines of high alcohol content without fortification. J. Ind. Eng. Chem. 1916; 8: 1124
  • Cruess W. V., Hohl L. Syruped fermentation of sweet wines. Wine Rev. 1937; 5: 12
  • Hohl L., Creuss W. V. Effect of temperature, variety of juice and method of increasing sugar content on maximum alcohol production by Saccharomyces ellipsoideus. Food Res. 1936; 1: 405
  • Amerine M. A., Kunkee R. E. Yeast stability tests on dessert wines. Vitis 1965; 5: 187
  • Izaguirre M. E., Castillo F. J. Selection of lactose fermenting yeast for ethanol production from whey. Biotechnol. Lett. 1982; 4: 257
  • Jones L. P., Alexander D., Zajic J. E. Ethanol production from sucrose and sugarbeet substrates using a mixed culture of Saccharomyces sp. Dev. Ind. Microbiol. 1981; 23: 367
  • Jones R. P., Pamment N., Greenfield P. F. Alcohol fermentation by yeasts; the effect of environmental and other variables. Process Biochem. 1981; 16: 42
  • Oliver S. G. Economic possibilities for fuel alcohol. Chem. Ind. 1984; 12: 425
  • Ough C. S., Amerine M. A. Effects of temperature on wine making. Calif. Agric. Exp. Stn. Bull. 1965, No. 821
  • Ryu Y. W., Kwon J. J. Effect of fermentation temperature on the production of high content alcohol. Korean J. Microbiol. 1982; 20: 67
  • Ryu Y. W., Navarro J. M., Durand G. Comparative study of ethanol production by immobilized yeast in a tubular reactor and in a multistage reactor. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 1
  • Ziffer J., Iosif M. O. Temperature effects in ethanol fermentation of high corn media. Biotechnol. Lett. 1982; 4: 809
  • Hughes D. B., Tudroszen N. J., Moye C. J. The effect of temperature on the kinetics of ethanol production by a thermotolerant strain on Kluyveromyces marxianus. Biotechnol. Lett. 1984; 6: 1
  • Ough C. S. Fermentation rates of grape juice. II. Effects of initial Brix, pH and fermentation temperature. Am. J. Enol. Vitic. 1966; 17: 20
  • Krouwel P. G., Braber L. Ethanol production by yeast at supraoptimal temperatures. Biotechnol. Lett. 1979; 1: 403
  • Sugden P. A., Oliver S. G. Reduced ethanol tolerance: one of the pleiotropic effects of the pep 4.3 mutation in Saccharomyces cerevisiae. Biotechnol. Lett. 1983; 5: 419
  • Kilian S. G., Prior B. A., Lategan P. M., Kruger W. C. J. Temperature effects on ethanol and isopropanol utilization by Candida krusei. Biotechnol. Bioeng. 1981; 23: 267
  • Hacking A. J., Taylor I. W. F., Hanas C. M. Selection of yeast able to produce ethanol from glucose at 40°C. Appl. Microbiol. Biotechnol. 1984; 19: 361
  • Porter L. J., Ough C. S. The effects of ethanol, temperature and DMDC on viability of Saccharomyces cerevisiae Montrachet No. 552 in wine. Am. J. Enol. Vitic. 1982; 33: 222
  • Leao C., van Uden N. Effects of ethanol and other alkanols on the kinetics and activation parameters of thermal death in Saccharomyces cerevisiae. Biotechnol. Bioeng. 1982; 14: 1581
  • Sa-Correia I., van Uden N. Temperature profiles of ethanol tolerance: effect of ethanol on the minimum and maximum temperatures for growth of the yeast Saccharomyces cerevisiae and Kluyveromyces fragilis. Biotechnol. Bioeng. 1983; 25: 1665
  • van Uden N., Cruz Duarte H. Effects of ethanol on the temperature profile of Saccharomyces cerevisiae. Z. Allg. Mikrobiol. 1981; 21: 743
  • Sa-Corriea I., van Uden N. Effects of ethanol on thermal death and on the maximum temperature for growth of the yeast Kluyveromyces fragilis. Biotechnol. Lett. 1982; 4: 805
  • Cabeca-Silva C., Madeira-Lopes A., van Uden N. Temperature relations of ethanol-enhanced petite mutation in Saccharomyces cerevisiae : mitochondria as targets of thermal death. FEMS Microbiol. Lett. 1982; 15: 149
  • Simoes-Mendes B., Madeira-Lopes A., van Uden N. Kinetics of petite mutation and thermal death in Saccharomyces cerevisiae growing at superoptimal temperatures. Z. Allg. Mikrobiol. 1978; 18: 275
  • van Uden N., Leao C., Sa-Correia I., Loureiro V. Effects of ethanol on yeast performance: targets and underlying mechanism. Proc. 19th Cong. Eur. Brew. Conv. IRL Press, Oxford 1983; 137
  • Zakharov I. A., Bandas E. L. Induction of mutations of respiratory deficiency in yeast by ethyl alcohol. Sov. Genet. 1979; 15: 620
  • Cowland T. W., Maule D. R. Some effects of aeration on the growth and metabolism of Saccharomyces cerevisiae in continuous culture. J. Inst. Brew. 1966; 72: 480
  • Dasari G., Roddick F., Connor M. A., Pamment N. B. Factors affecting the estimation of intracellular ethanol concentrations. Biotechnol. Lett. 1983; 5: 715
  • Goma G., Moreno M., Strehaiano P. Mechanism of inhibition during alcohol fermentation in strict anaerobiosis. Bioconvers. Bioeng. Symp. Proc. 1981; 2: 97
  • Rose A. H., Beaven M. J. End product tolerance and ethanol. Trends in the Biology of Fermentation for Fuels and Chemicals, A. Hollander. Plenum Press, London 1981; Vol. 18: 513
  • Del Rosario E. J., Lee K. J., Rogers P. L. Kinetics of alcohol fermentation at high yeast levels. Biotechnol. Bioeng. 1979; 21: 1477
  • Rahn O., Iske B., Zemgalis R. A tolerance theory of vitamin action. Growth 1951; 15: 267
  • Fukai S., Tani Y., Nishibe T. Influence of vitamins on alcoholic fermentations by Saccharomyces yeast. J. Ferment. Technol. 1955; 33: 59
  • Campbell I. Composition of serological and physiological classifications of the genus Saccharomyces. J. Gen. Microbiol. 1971; 63: 189
  • Ismail A. A., Ali A. M. M. Selection of high ethanol yielding Saccharomyces II. Genetics of ethanol tolerance. Folia Microbiol. 1971; 16: 350
  • Brown S. W., Oliver S. G. Isolation of ethanol-tolerant mutants of yeast by continuous selection. Eur. J. Appl. Microbiol. Biotechnol. 1982; 16: 119
  • Alikhanyan S. I., Malbandyan G. M., Avakyan B. P. Selection of wine yeasts using mutagens. II. Selection of highly active, alcohol resistant strains of Saccharomyces oviformis for the production of Kheres wines. Sov. Genet. 1971; 1: 1287
  • Johansson M., Sjostrom J.-E. Ethanol and glycerol production under aerobic conditions by wild-type, respiratory-deficient mutants and a fusion product of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1984; 20: 105
  • Seki T., Myoga S., Limtong S., Uedono S., Kumnuanta J., Taguchi H. Genetic construction of yeast strains for high ethanol production. Biotechnol. Lett. 1983; 5: 351
  • Plesset J., Palm C., McLaughlin C. S. Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1982; 108: 1340
  • Watson K., Cavicchioli R., Dunlop G. Primary and secondary heat shock induction of thermal and ethanol tolerance in yeast. Proc. 18th Conv. Inst. Brew. (Aust. and N.Z. Sect.), B. J. Clark, J. V. Harvey, S. Itzcovitz, G. W. Wheatland. Institute of Brewing, Sydney 1984; 229
  • Cysewski G. R., Wilke C. R. Rapid ethanol fermentations using Vacuferm and cell recycle. Biotechnol. Bioeng. 1977; 19: 1125
  • Cysewski G. R., Wilke C. R. Process design and economic studies of alternative fermentation methods for the production of ethanol. Biotechnol. Bioeng. 1978; 20: 1421
  • Ramalinghan A., Finn R. K. The Vacuferm process: a new approach to fermentation alcohol. Biotechnol. Bioeng. 1977; 19: 583
  • Haraldson A., Bjorling T. Yeast strains for concentrated substrates. Eur. J. Appl. Microbiol. Biotechnol. 1981; 13: 34
  • Lee J. H., Woodward J. C., Pagan R. J., Rogers P. L. Vacuum fermentation for ethanol production using strains of Zymomonas mobilis. Biotechnol. Lett. 1981; 3: 177
  • Minier M., Goma G. Production of ethanol by coupling fermentation and solvent extraction. Biotechnol. Lett. 1981; 3: 405
  • Minier M., Goma G. Ethanol production by extractive fermentation. Biotechnol. Bioeng. 1982; 24: 1565
  • Murphy T. K., Blanch H. W., Wilke C. R. Water recycling in extractive fermentation. Process Biochem. 1982; 17: 6
  • Matsumura M., Markel H. Applications of solvent extraction to ethanol fermentation. Appl. Microbiol. Biotechnol. 1984; 20: 371
  • Roddy J. W. Distribution of ethanol—water mixtures to organic liquids. Ind. Eng. Chem. Process Des. Dev. 1981; 20: 104
  • Maiorella B. L., Blanch H. W., Wilke C. R. Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 1984; 26: 1155
  • Maiorella B., Blanch H. W., Wilke C. R. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 1983; 25: 103
  • Pitt W. W., Haag G. L., Lee D. D. Recovery of ethanol from fermentation broths using selective sorption-desorption. Biotechnol. Bioeng. 1983; 25: 123
  • Haraldson A., Rosen C. G. Studies on continuous ethanol fermentation of sugar cane molasses. I. A system for continuous fermentation. Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 216
  • Haraldson A., Rosen C. G. Studies on continuous ethanol fermentation of sugar cane molasses. II. Continuous alcohol fermentation and product removal in a laboratory scale plant. Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 220
  • Kyung K., Gerhardt P. Continuous production of ethanol by yeast “immobilized” in a membrane contained fermentor. Biotechnol. Bioeng. 1984; 26: 252
  • Toledo R. T. Improving fermentation productivity with reverse osmosis. Food Technol. 1984; 38: 92
  • Rolz C., Cabrera S. Ethanol from sugar cane: flask experiments using the EX-FERM technique. Appl. Environ. Microbiol. 1980; 40: 466
  • Er-El Z., Battat E., Shecter U., Goldberg I. Ethanol production from sugar cane and segments in a high solids drum fermentor. Biotechnol. Lett. 1981; 3: 385
  • Navarro J. M., Durand G. Modification of yeast metabolism by immobilization onto porous glass. Eur. J. Appl. Microbiol. 1977; 4: 243
  • Panchal C. J., Harbison A., Russell I., Stewart G. G. Ethanol production by genetically modified strains of Saccharomyces. Biotechnol. Lett. 1982; 4: 33
  • Nagashima M., Azuma M., Noguchi S., Inuzaka K., Samejima H. Continuous ethanol fermentation using immobilized yeast cells. Biotechnol. Bioeng. 1984; 26: 992
  • Samejima H., Nagashima M., Azuma M., Noguchi S., Inuzuka K. Semicommerical production of ethanol using immobilized microbial cells. Ann. N. Y. Acad. Sci. 1984; 435: 394
  • De Mancilha I. M., Pearson A. M., Momose H., Pestka J. J. Increasing yield by selected fermentation of sweet sorghum. II. Isolation sand evaluation of mutants and wild types for ethanol production. Food Chem. 1984; 14: 313
  • Korhola M. Improvement of yeast strains for added ethanol tolerance, in Gene Expressions in Yeast. Proc. Alko Yeast Symp. Helsinki 1983; 231
  • Kalmokoff M. L. Evaluation of Ethanol Tolerance in Selected Saccharomyces Strains. M.Sc. thesis, University of Saskatchewan, Saskatoon 1985
  • Steinkraus K. H., Cullen R. E., Parekh L. J., Jelen V. Rapid fermentation to 18% (v/v) (14.36% [w/v]) ethanol. Bioconversion and Biochemical Engineering, T. Ghosh. Pramodh Kapur, New Delhi 1981; Vol. 2
  • Steinkraus K. H. Studies on the continuous production of wine and flor sherry. Int. Fermentation Symp. Kyoto March 19 to 25, 1972; 258, Abstr. 4th

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.