361
Views
73
CrossRef citations to date
0
Altmetric
Research Article

Light a Organ Symbioses in Fishes

Pages 191-216 | Published online: 25 Sep 2008

References

  • Margulis L. Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons, 2nd ed. Freeman, New York 1993; 452
  • Nealson K. H., Hasting J. W. The luminous bacteria. The Prokaryotes, A. Balows, H. G. Trüper, M Dworkin, W. Harder, K. -H. Schleifer. Springer-Verlag, New York 1992; 625
  • Meighen E. A. Molecular biology of bacterial luminescence. Microbiol. Rev. 1991; 55: 123
  • Dunlap P. V. Organization and regulation of bacterial luminescence genes. Photochem. Photobiol. 1991; 54: 1157
  • Dunlap P. V., Greenberg E. P. Role of intercellular chemical communication in the Vibrio fischeri-monocentrid fish symbiosis. Microbial Cell-Cell Interactions, M. Dworkin. American Society for Microbiology, Washington, D.C. 1991; 219
  • Hastings J. W., Potrikas C. J., Gupta S. C., Kurfurst M., Makemson J. C. Biochemistry and physiology of bioluminescent bacteria. Adv. Microbiol. Physiol 1985; 26: 235
  • McFall-Ngai M. J. Luminous bacterial symbiosis in fish evolution: adaptive radiation among the leiognathid fishes. Symbiosis As A Source of Evolutionary Innovation, L. Margulis, R. Fester. The MIT Press, Cambridge, MA 1991; 381
  • Ruby E. G., McFall-Ngai M. J. A squid that glows in the night — development of an animal-bacterial mutualism. J. Bacteriol. 1992; 174: 4865
  • Young R. E. Oceanic bioluminescence: an overview of general functions. Bull. Mar. Sci. 1983; 33: 829
  • Herring P. J. Aspects of the bioluminescence of fishes. Oceanogr. Mar. Biol. Annu. Rev. 1982; 20: 415
  • Leisman G., Cohn D. H., Nealson K. H. Bacterial origin of luminescence in marine animals. Science 1980; 208: 1271
  • Castle P. H. J., Paxton J. R. A new genus and species of luminescent eel (Pisces:Congridae) from the Arafura Sea, Northern Australia. Copeia 1984; 72: 1984
  • Foran D. Evidence of luminous bacterial symbionts in the light organs of myctophid and stomiiform fishes. J. Exp. ZooL 1991; 259: 1
  • Herring P. J. Systematic distribution of bioluminescence in living organisms. J. Biolumin. Chemilumin. 1987; 1: 147
  • McFall-Ngai M. J., Dunlap P. V. Three new modes of luminescence in the leiognathid fish Gazza minuta: discrete projected luminescence, ventral body flash, and buccal luminescence. Mar. Biol. 1983; 73: 227
  • Bowlby M. R., Widder E. A., Case J. F. Patterns of stimulated bioluminescence in two pyrosomes (Tunicata: Pyrosomatidae). BioL Bull. 1990; 179: 340
  • Tebo B. M., Linthicum D. S., Nealson K. H. Luminous bacteria and light-emitting fish: ultrastructure of the symbiosis. Biosystems 1979; 11: 269
  • Johnson G. D., Rosenblatt R. H. Mechanisms of light organ occlusion in flashlight fishes, family Anomalopidae (Teleostei: Beryciformes), and the evolution of the group. ZooL J. Linn. Soc. 1988; 94: 65
  • Dunlap P. V., McFall-Ngai M. J. Initiation and control of the bioluminescent symbiosis between Photobacterium leiognathi and leiognathid fish. Endocytobiology III, J. J. Lee, J. F. Frederick. New York Academy of Sciences, New York 1987; 269
  • Haygood M. G., Distel D. L. Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio. Nature 1993; 363: 154
  • Jensen M. J., Tebo B. M., Baumann P., Mandel M., Nealson K. H. Characterization of Alteromonas hanedai (sp.nov.) a non-fermentative luminous species of marine origin. Curr. Microbiol 1980; 3: 311
  • MacDonell M. T., Colwell R. R. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol 1985; 6: 171
  • Nealson K. H. Luminous bacteria symbiotic with entomopathogenic nematodes. Symbiosis As a Source of Evolutionary Innovation, L. Margulis, R. Fester. The MIT Press, Cambridge, MA 1991; 205
  • Wolfe C. J., Haygood M. G. Restriction fragment length polymorphism analysis reveals high levels of genetic divergence among the light organ symbionts of flashlight fish. Biol. Bull. 1991; 181: 135
  • Haygood M., Distel D., Herring P. Polymerase chain reaction and 16S rRNA gene sequences from the luminous bacterial symbionts of two deep-sea anglerfishes. J. Mar. Biol. Assoc. U.K. 1992; 71: 149
  • Ruby E. G., Morin J. G. Luminous enteric bacteria of marine fishes: a study of their distribution, densities, and dispersion. Appl. Environ. Microbiol 1979; 38: 406
  • Herdman M. The evolution of bacterial genomes. The Evolution of Genome Size, T. Cavalier-Smith. John Wiley & Sons, New York 1985; 37
  • Haygood M. G., Tebo B. M., Nealson K. H. Luminous bacteria of a monocentrid fish (Monocentris japonicus) and two anomalopid fishes (Photo-blepharon palpebratus and Kryptophanaron alfredi): population sizes and growth within the light organs, and rates of release into the seawater. Mar. Biol. 1984; 78: 249
  • Nealson K. H., Haygood M. G., Tebo B. M., Roman M., Miller E., McCosker J. E. Contribution by symbiotically luminous fishes to the occurrence and bioluminescence of luminous bacteria in seawater. Microb. Ecol. 1984; 10: 69
  • Ruby E. G., Greenberg E. P., Hastings J. W. Planktonic marine luminous bacteria: species distribution in the water column. Appl. Environ. Microbiol 1980; 39: 302
  • Ruby E. G., Nealson K. H. Seasonal changes in the species composition of luminous bacteria in nearshore seawater. Limnol. Oceanogr. 1978; 23: 530
  • Rosenblatt R. H., Johnson G. D. Parmops coruscans, a new genus and species of flashlight fish (Beryciformes:Anomalopidae) from the South Pacific. Proc. Biol. Soc. Wash. 1991; 104: 328
  • Silvester C. F., Fowler H. W. A new genus and species of phosphorescent fish, Kryptophanaron alfredi. Proc. Acad. Nat. Sci. Philadelphia 1926; 78: 245
  • Colin P. L., Arneson D. W., Smith-Vaniz W. F. Rediscovery and redescription of the Carib bean Anomalopid fish Kryptophanaron alfredi, Silvester and Fowler (Pisces:Anomalopidae). Bull. Mar. Sci. 1979; 29: 312
  • Morin J. G., Harrington A., Nealson K. H., Kreiger N., Baldwin T. O., Hastings J. W. Light for all reasons. Science 1975; 190: 74
  • Harvey E. N. A fish, with a luminous organ, designed for the growth of luminous bacteria. Science NS 1912; 53: 314
  • Bassot J. -M. Les organes lumineux a bacteries symbiotiques du teleosteen Anomalops. Donnees histologiques. Bull. Soc. Zool. France 1968; 93: 569
  • Kessel M. The ultrastructure of the relationship between the luminous organ of the teleost fish Photoblepharon palpebratus and its symbiotic bacteria. Cytobiologie 1977; 15: 145
  • Meyer-Rochow V. B. Loss of bioluminescence in Anomalops katoptron due to starvation. Experientia 1976; 32: 1175
  • Marliave J. B. The need for research in aquarium conservation. Ann. Proc. AAZPA 1987; 369
  • Bertelsen E. Ceratioidei. Fishes of the North-Eastern Atlantic and Mediterranean, P. J. P. Whitehead, M. -L. Bauchot, J. -C. Hureau, J. Nielsen, E. Tortonese. UNESCO, Paris 1986; 1371
  • Pietsch T. W., Grobecker D. B. Frogfishes of the World: Systematics, Zoogeography, and Behavioral Ecology. Stanford University Press, Stanford, CA 1987; 420
  • Dorsch M., Lane D., Stackebrandt E. Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int. J. Syst. Bacteriol 1992; 42: 58
  • Kita-Tsukamoto K., Oyaizu H., Nanba K., Simidu U. Phylogenetic relationships of marine bacteria, mainly members of the Family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int. J. Syst. Bacteriol. 1993; 43: 8
  • Zehren S. J. The Comparative Osteology and Phylogeny of the Beryciformes (Pisces: Teleostei). Evol. Monogr. University of Chicago, Chicago 1979; Vol. 1
  • Haygood M. G. Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes. Arch. Microbiol. 1990; 154: 496
  • Baumann P., Baumann L. Biology of the marine enterobacteria: genera Beneckea and Photo-bacterium. Annu. Rev. Microbiol. 1977; 31: 39
  • Ochman H., Wilson A. C. Evolution in bacteria: evidence for universal substitution rate in cellular genomes. J. Mol. Evol. 1987; 26: 74
  • Hastings J. W., Nealson K. H. Bacterial bioluminescence. Annu. Rev. Microbiol. 1977; 31: 549
  • Fox G. E., Wisotzkey J. D., Jurtshuk P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 1992; 42: 166
  • Boettcher K. J., Ruby E. G. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 1990; 172: 3701
  • Lee K. H., Ruby E. G. Detection of the light organ symbiont. Vibrio fishceri, in Hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol. 1992; 58: 942
  • Wolfe C. J., Haygood M. G. Bioluminescent symbionts of the Caribbean flashlight fish (Kryptophanaron alfredi) have a single rRNA operon. Mol. Marine Biol. BiotechnoL, in press
  • Condon C., Philips J., Fu Z. -Y., Squires C., Squires C. L. Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. EMBOJ. 1992; 11: 4175
  • Razin S. Molecular biology and genetics of mycoplasmas (Mollicutes). Microbiol. Rev. 1985; 49: 419
  • Bercovier H., Kafri O., Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem. Biophys. Res. Commun. 1986; 136: 1136
  • Bautsch W. Rapid physical mapping of the Mycoplasma mobile genome by two-dimensional field inversion gel electrophoresis techniques. Nucleic Acids Res. 1988; 16: 11461
  • Unterman B. M., Baumann P., McLean D. L. Pea aphid symbiont relationships established by analysis of 16S rRNAs. J. Bacteriol. 1989; 171: 2970
  • Bassot J. -M. Les organes lumineux a bactéries symbiotiques de quelques té1éostéens Léiognathides. Arch. Zool. Exp. Génet. 1975; 116: 359
  • Bertelsen E., Munk O. Rectal Light Organs in the Argentiniod Fishes Opisthoproctus and Winteria. Carlsberg Foundation. 1964; 62, Dana-Report
  • Dunlap P. Physiological and morphological state of the symbiotic bacteria from light organs of ponyfish. Biol. Bull. 1984; 167: 410
  • Gee D. L., Baumann P., Baumann L. Enzymes of D-fructose catabolism in species of Beneckea and Photobacterium. Arch. Microbiol. 1975; 103: 205
  • Haygood M. G., Nealson K. H. The effect of iron on the growth and luminescence of the symbiotic bacterium Vibrio fischeri. Symbiosis 1985; 1: 39
  • Rosson R. A., Nealson K. H. Autoinduction of bacterial bioluminescence in a carbon limited chemostat. Arch. Microbiol. 1981; 129: 299
  • Friedrich W. F., Greenberg E. P. Glucose repression of luminescence and luciferase in Vibrio fischeri. Arch. Micribiol. 1983; 134: 87
  • Dunlap P. V. Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch. Microbiol. 1985; 141: 44
  • Egli T. On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates, Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol 1991; 60: 225
  • Ruby E. G. Ecological Associations of the Marine Luminous Bacteria. Ph.D. thesis, University of California, San Diego 1977
  • Nealson K. H. Alternative strategies of symbiosis of marine luminous fishes harboring light-emitting bacteria. Trends Biochem. Sci. 1979; 4: 105
  • Zammit V. A., Newsholme E. A. Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem. J. 1979; 184: 313
  • Cao J. -G. Biosynthesis and stereochemistry of the autoinducer controlling luminescence in Vibrio harveyi. J. Bacterioi 1993; 175: 3856
  • Dunlap P. V., Mueller U., Lisa T. A., Lundberg K. S. Growth of the marine luminous bacterium Vibrio fischeri on 3′:5′-cyclic AMP: correlation with a periplasmic 3′:5′-cyclic AMP phosphodiesterase. J. Gen. Microbiol 1992; 138: 115
  • Harvey E. N. Bioluminescence. Academic Press, New York 1952; 649
  • Morin J. G. The microarchitecture of bacterial light organs in fishes, preprint
  • Hastings J. W. Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J. Mol. Evol 1983; 19: 309
  • Makemson J. C., Hastings J. W. Luciferase-dependent growth of cytochrome-deficient Vibrio harveyi. FEMS Microbiol. Ecol. 1986; 38: 79
  • Haygood M. G. Iron Regulation of Luminescence: Implications for the Ecology and Symbiotic Associations of the Luminous Bacteria. Ph.D. thesis, University of California, San Diego 1984
  • Seliger H. H. The origin of bioluminescence. Photochem. Photobiol. 1975; 21: 355
  • Rankin J. C., Henderson I. W., Brown J. A. Osmoregulation and the control of kidney function. Control Processes in Fish Physiology, J. C. Rankin, T. J. Pitcher, R. T. Duggan. John Wiley & Sons, New York 1983; 66
  • Leis J. M., Bullock S. The luminous cardinalfish Siphamia (Pisces, Apogonidae): development of larvae and the luminous organ. Indo-Pacific Fish Biology. 2nd Int. Conf. on Indo-Pacific Fishes, T. Uyeno, R. Arai, T. Taniuchi, K. Matsuura. Ichthyological Society of Japan, Tokyo 1986; 703
  • McFall-Ngai M. J., Ruby E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 1991; 254: 1491
  • Wei S. L., Young R. E. Development of symbiotic bacterial bioluminescence in a nearshore cephalopod Euprymnas calopes. Mar. Biol. 1989; 103: 541
  • Yamada K., Haygood M., Kabasawa H. On fertilization and early development in the pine-cone fish, Monocentris japonicus. Annu. Rep. Keikyu Aburatsubo Marine Park Aquarium 1979; 10: 31
  • Lee K. -H., DeSimone J. N., Ruby E. G. Ecological interactions between luminous Vibrio fischeri and their symbiotic animal hosts. Abstr. 92nd Gen. Meet. Am. Soc. Microbiol. 1992; 249
  • Ahlstrom E. H., Moser H. G., Cohen D. M. Argentinoidei: development and relationships, in Ontogeny and Systemantics of Fishes. Int. Symp. Dedicated to the Memory of Elbert Halvor Ahlstrom, H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, S. L. Richardson. American Society of Ichthyologists and Herpetologists, La Jolla, CA 1984; 155
  • Bertelsen E. Ceratioidei: development and relationships. Ontogeny and Systematics of Fishes. Int. Symp. Dedicated to the Memory of Elbert Halvor Ahlstrom, H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, S. L. Richardson. American Society of Ichthyologists and Herpetologists, La Jolla, CA 1984; 325
  • Fahay M. P., Markel D. F. Gadiformes: development and relationships. Ontogeny and Systematics of Fishes. Int. Symp. Dedicated to the Memory of Elbert Halvor Ahlstrom, H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, S. L. Richardson. American Society of Ichthyologists and Herpetologists, La Jolla, CA 1984; 265
  • Uchida K. Juvenile stage of Matsukasa-Uo. Zool Mag. 1929; 44: 366
  • Meyer-Rochow V. B. Some observations on spawning and fecundity in the luminescent fish Photoblepharon palpebratus. Mar. Biol. 1976; 37: 325
  • Smith D. C., Douglas A. E. The Biology of Symbiosis. E. Arnold, London 1987; 302
  • Troyer K. Transfer of fermentative microbes between generations in a herbivorous lizard. Science 1982; 216: 540
  • Colin P. L. Anomalopidae: flashlight fishes or lantern eyes. Larvae of Indo-Pacific Shore Fishes, J. Leis, T. Trnski. New South Wales University Press, Kensington 1989; 83
  • Baldwin C. C., Johnson D. G. A larva of the Atlantic flashlight fish, Kryptophanaron alfredi (Beryciformes:Anomalopidae), with a comparative look at known beryciform and stephanoberyciform larvae, preprint
  • Bertelsen E. The Ceratioid Fishes: Ontogeny, Taxonomy, Distribution and Biology. Carlsberg Foundation. 1951; 39, Dana-Report
  • Bertelsen E. Notes on Linophrynidae V: a revision of the deepsea anglerfishes of the Linophryne arborifera-gcoup (Pisces, Ceratioidei). Steenstrupia 1980; 6: 29
  • Knowlton N., Weigt L. A., Solorzano L. A., Mills D. K., Bermingham E. Divergence in proteins, mitochondrial DNA, and reproductive compatibility across the isthmus of Panama. Science 1993; 260: 1629

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.