88
Views
43
CrossRef citations to date
0
Altmetric
Research Article

Ecology, Metabolism, and Genetics of Ruminal Selenomonads

, &
Pages 27-65 | Published online: 25 Sep 2008

References

  • Bryant M. P. Bacterial species of the rumen. Bacteriol. Rev. 1959; 23: 125
  • Hungate R. E. Symposium: selected topics in microbiol ecology. I. Microbial ecology of the tumen. Bacteriol. Rev. 1960; 24: 353
  • Bryant M. P., Burkey L. A. Numbers and some predominant groups of bacteria in the rumen of cows fed different rations. J. Dairy Sci. 1953; 36: 218
  • Bryant Small M. P., Bouma N. C., Robinson I. Studies on the composition of the ruminal flora and fauna of young calves. J. Dairy Sci. 1958; 41: 1747
  • Hungate Bryant R. E. M. P., Mah R. A. The rumen bacteria and protozoa. Annu. Rev. Microbiol. 1964; 18: 131
  • Bryant M. P. Normal flora — rumen bacteria. Am. J. Clin. Nutr. 1970; 23: 1440
  • Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl. Microbiol. 1966; 14: 794
  • Holdeman Kelley L. V.R. W., Moore W. E. C. Anaerobic gram negative straight, curved and helical rods. Family, I. Bacteroidaceae, Pribram 1933, 10AL. Bergey's Manual of Systematic Bacteriology, N. R. Krieg, J. G. Holt. Williams &Wilkins, Baltimore 1984; Vol. I: 602
  • Kamio Y., Takahashi H. Isolation and characterization of outer and inner membranes of Selenomonas ruminantium: lipid compositions. J. Bacteriol. 1980; 141: 888
  • Kamio Y., Takahashi H. Outer membrane proteins and cell surface structure of. Selenomonas ruminantium, J. Bacteriol. 1980; 141: 899
  • Kamio Itoh Y., Terawaki Y. Y., Kusano T. A new form of structural peptidoglycan in Selenomonas ruminantium: existence of polyamine in peptidoglycan. Agric. Biol. Chem. 1980; 44: 2523
  • Kamio Itoh Y. Y., Terawaki Y. Chemical structure of peptidoglycan in Selenomonas ruminantium: cadaverine links covalently to the D-glutamic acid residue of peptidoglycan. J. Bacteriol. 1981; 146: 49
  • Kamio Itoh Y., Terawaki Y. Y., Kusano T. Cadaverine is covalently linked to peptidoglycan in. Selenomonas ruminantium, J. Bacteriol. 1981; 145: 122
  • Kamio Terawaki Y. Y., Izaki K. Biosynthesis of cadaverine-containing peptidoglycan in. Selenomonas ruminantium, J. Biol. Chem. 1982; 257: 3326
  • Cheng K.-J., Costerton J. W. Alkaline phosphatase activity of rumen bacteria. Appl. Environ. Microbiol. 1977; 34: 586
  • Stackebrandt Pohla E., Kroppenstedt H., Hippe R. H., Woese C. R. 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphaera: on the phylogenetic origin of Gram-positive Eubacteria. Arch. Microbiol. 1985; 143: 270
  • Simons H. Eine saprophytische Oscillarie in Darm des Meerschweinchens. Zentralbl. Bakteriol Parasitenkd. Infektionskr. Hyg. Abt. I: Orig. 1920; 5: 356
  • Simons H. Ueber Selenomonas palpitans n. sp. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I. Orig. 1922; 87: 50
  • Kingsley V. V., Hoeniger J. F. M. Growth, structure and classification of. Selenomonas, Bacteriol. Rev. 1973; 37: 479
  • Barnes E. M., Burton G. C. The effect of hibernation on the caecal flora of the thirteen-lined ground squirrel (Citellus tridecemlineatus). J. Appl. Bacteriol. 1970; 33: 505
  • Lessel E. F., Jr. Genus I.X. Selenomonas von Prowazek, 1913. Bergey's Manual of Determinative Bacteriolog 7th, R. S.E. G. D. Breed Murray, N. R. Smith. Williams & Wilkins, Baltimore 1957; 258, Devi 54
  • Bryant M. P. Genus Selenomonas von Prowazek, 1913, 36 Nom. cons. Bergey's Manual of Determinative Bacteriology 8th, R. E. Buchanan, N. E. Gibbons. Williams & Wilkins, Baltimore 1974; 424
  • Robinson Allison I. M.M. J., Bucklin J. A. Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol. 1981; 41: 950
  • Moore Johnson L. V. H.J. L., Moore W. E. C. Selenomonas noxia sp. nov. Selenomonas flueggei sp. nov. Selenomonas infelix sp. nov. Selenomonas dianae sp. nov. and Selenomonas artemidis sp. nov. from the human gingival crevice. Int. J. Syst. Bacteriol. 1987; 36: 271
  • Nanninga Drent H. J.W. J., Gottschal J. G. Fermentation of glutamate by Selenomonas acidaminophila sp. nov. Arch. Microbiol. 1987; 147: 152
  • Schleifer Leuterwitz K. H., Weiss M., Ludwig N., Kirchhof W.G., Seidel-Rufer H. Taxonomic study of anaerobic, gram-negative, rod-shaped bacteria from breweries: amended description of Pectinatus cerevisiiphilus and description of Pectinatus frisingensis sp. nov. Selenomonas lacticifex sp. nov. Zymophilus raffinosivorans gen. nov. sp. nov. and Zymophilus paucivorans sp. nov. Int. J. Syst. Bacteriol. 1990; 40: 19
  • Hobson P. N., Mann S. O. The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. J. Gen. Microbiol. 1961; 25: 227
  • Bryant M. P. Genus, I.X. Selenomonas Von Prowazek 1913, 36AL. Bergey's Manual of Systematic Bacteriology, N. R. Krieg, J. G. Holt. Williams & Wilkins, Baltimore 1984; Vol. 1: 650
  • Hobson Mann P. N. S. O., Smith W. Serological tests of a relationship between rumen selenomonads in vitro. in vivo, J. Gen. Microbiol. 1962; 29: 265
  • Prins R. A. Isolation, culture, and fermentation characteristic of Selenomonas ruminantium var. bryanti var. n. from the rumen of sheep. J. Bacteriol. 1971; 105: 820
  • Purdom M. R. Micromanipulation in the examination of rumen bacteria. Nature (London) 1963; 198: 307
  • Hobson P. N. Continuous culture of some anaerobic and facultatively anaerobic rumen bacteria. J. Gen. Microbiol. 1965; 38: 167
  • Kanegasaki S., Takahashi H. Function of growth factors for rumen microorganisms. I. Nutritional characteristics of. Selenomonas ruminantium, J. Bacteriol. 1967; 93: 456
  • Hudman J. F. Glucose-induced morphological variation in. Selenomonas ruminantium, FEMS Microbiol. Lett. 1984; 22: 201
  • Marounek M., Wallace R. J. Influence of culture E. on the growth and metabolism of the rumen bacteria Selenomonas ruminantium, Bacteroides amylophilus, Bacteroides succinogenes, Streptococcus bovis in batch culture. J. Gen. Microbiol. 1984; 130: 223
  • Silley P., Armstrong D. G. Changes in metabolism and cell size of the anaerobic bacterium Selenomonas ruminantium 0078A at the onset of growth in continuous culture. J. Appl. Bacteriol. 1984; 56: 487
  • Vicini Brulla J. L., Davis W. J. C. L., Bryant M. P. Quin's oval and other microbiota in the rumens of molasses-fed sheep. Appl. Environ. Microbiol. 1987; 53: 1273
  • Ricke Schaefer S. C., Cook D. M. M. E., Kang K. H. Differentiation of ruminal bacterial species by enzyme-linked immunosorbent assay using egg yolk antibodies from immunized chicken hens. Appl. Environ. Microbiol. 1988; 54: 596
  • Ricke S. C., Schaefer D. M. Characterization of egg yolk antibodies for detection and quantification of Selenomonas ruminantium by using an enzyme-linked immunosorbent assay. Appl. Environ. Microbiol. 1990; 56: 2795
  • Brooker J. D., Stokes B. Monoclonal antibodies against the ruminal bacterium. Selenomonas ruminantium, Appl. Environ. Microbiol. 1990; 56: 2193
  • Ning Attwood Z., Lockington G. T. R. A., Brooker J. D. Genetic diversity in ruminal isolates of. Selenomonas ruminantium, Curr. Microbiol. 1991; 22: 279
  • Lockington Attwood R. A. G. T., Brooker J. D. Isolation and characterization of a temperate bacteriophage from the ruminal anaerobe. Selenomonas ruminantium, Appl. Environ. Microbiol. 1988; 54: 1575
  • Flint H. J., Bisset J. Genetic diversity in Selenomonas ruminantium isolated from the rumen. FEMS Microbiol. Ecol. 1990; 73: 351
  • Bryant Robinson M. P. I. M., Lindahl I. L. A note on the flora and fauna in the rumen of steers fed a feedlot bloat-provoking ration and the effect of penicillin. Appl. Microbiol. 1961; 9: 511
  • Thorley Sharpe C. M. M. E., Bryant M. P. Modification of the rumen bacterial flora by feeding cattle ground and pelleted roughage as determined with culture media with and without rumen fluid. J. Dairy Sci. 1968; 51: 1811
  • Eadie Hyldgaard-Jensen J. M., Mann J., Reid S. O. R. S., Whitelaw F. G. Observations on the microbiology and biochemistry of the rumen in cattle given different quantities of a pelleted barley ration. Br. J. Nutr. 1970; 24: 157
  • Latham Sharpe M. J. M. E., Sutton J. D. The microbial flora of the rumen of cows fed hay and high cereal rations and its relationship to the rumen fermentation. J. Appl. Bacteriol. 1971; 34: 425
  • Warner A. C. I. Some factors influencing the rumen microbial population. J. Gen. Microbiol. 1962; 28: 129
  • Orpin G. C. Quantitative aspects of the association of rumen bacteria with plant particles in vitro. Soc. Gen. Microbiol. Q. Proc. 1980; 7: 174
  • Mead L. J., Jones G. A. Isolation and presumptive identification of adherent epithelial bacteria (epimural bacteria) from the ovine rumen wall. Appl Environ. Microbiol. 1981; 41: 1020
  • Warner A. C. I. Enumeration of rumen microorganisms. J. Gen. Microbiol. 1962; 28: 119
  • Eadie J. M. The development of rumen microbial populations in lambs and calves under various conditions of management. J. Gen. Microbiol. 1962; 29: 563
  • Wimpenny J. W. T., Samah O. A. Some effects of oxygen on the growth and physiology of. Selenomonas ruminantium, J. Gen. Microbiol. 1978; 108: 329
  • Samah O. A., Wimpenny J. W. T. Some effects of oxygen on the physiology of Selenomonas ruminantium WPL 151/1 grown in continuous culture. J. Gen. Microbiol. 1982; 128: 355
  • Hungate R. E. The Rumen and Its Microbes. Academic Press, New York 1966; 533
  • Bryant M. P. The characteristics of strains of Selenomonas isolated from bovine rumen contents. J. Bacteriol. 1956; 72: 162
  • Scheifinger Linehan C. C.B., Wolin M. J. H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria. Appl. Microbiol. 1975; 29: 480
  • Chen M., Wolin M. J. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium. Appl. Environ. Microbiol. 1977; 34: 756
  • Stewart C. S., Bryant M. P. The rumen bacteria. The Rumen Microbial Ecosystem, P. N. Hobson. Elsevier, New York 1988; 21
  • Russell J. B. Factors influencing competition and composition of the rumen bacterial flora. Herbivore Nutrition in the Subtropics and Tropics, F. M. C. Gilchrist, R. I. Mackie. Science Press, Craighall, South Africa 1984; 313
  • Russell J. B. Fermentation of cellodextrins by cellulolytic and noncellulolytic bacteria. Appl. Environ. Microbiol. 1985; 49: 572
  • Tomerska H., Wojciechowicz M. Utilization of the intermediate products of die decomposition of pectin and of galacturonic acid by pure strains of rumen bacteria. Acta Microbiol. Pol. Ser. B 1973; 5: 63
  • Slyter Blank L. L. F. C., Putnam P. A. Microbial changes associated widi decreased pH in a continuous culture artificial rumen. Fed. Proc. 1966; 25: 554
  • Mackie Gilchrist R. I., Robberts F. M. C., Hannah A. M. P. E., Schwartz H. M. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J. Agric. Sci. 1978; 90: 241
  • Mackie R. I., Gilchrist F. M. C. Changes in lactate-producing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a high-concentrate diet. Appl. Environ. Microbiol. 1979; 38: 422
  • Therion Kistner J. J.A., Kornelius J. H. Effect of pH on growth rates of rumen amylolytic and lactilytic bacteria. Appl. Environ. Microbiol. 1982; 44: 428
  • Hishinuma Kanegasaki F. S., Takahashi H. Ruminal fermentation and sugar concentrations: a model experiment with. Selenomonas ruminantium, Agric. Biol. Chem. 1968; 32: 1325
  • Russell J. B., Baldwin R. L. Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Appl. Environ. Microbiol. 1978; 36: 319
  • Russell Delfino J. B. F. J., Baldwin R. L. Effects of combinations of substrates on maximum growth rates of several rumen bacteria. Appl. Environ. Microbiol. 1979; 37: 544
  • Slyter L. L., Weaver J. M. Dietary influence on ruminal microbes at constant pH. J. Anim. Sci. 1972; 35: 288
  • Slyter L. L. Influence of acidosis on rumen function. J. Anim. Sci. 1976; 43: 910
  • Mackie R. I., Heath S. Enumeration and isolation of lactate utilizing bacteria from the rumen of sheep. Appl. Environ. Microbiol. 1979; 38: 416
  • Bryant M. P. Symposium on microbial digestion in ruminants: identification of groups of anaerobic bacteria active in the rumen. J. Anim. Sci. 1963; 22: 801
  • Russell Sharp J. B. W. M., Baldwin R. L. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen. J. Anim. Sci. 1979; 48: 251
  • Russell J. B., Dombroski D. B. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 1980; 39: 604
  • Wood W. A. Fermentation of carbohydrates and related compounds. The Bacteria-A Treatise on Structure and Function Metabolism, I. C. Gunsalus, R. Y. Stanier. Academic Press, New York 1961; Vol. II: 59
  • Baldwin R. L. Pathways of carbohydrate metabolism in the rumen. Physiology of Digestion in the Ruminant, R. W. Dougherty. Butterworths, Washington, D.C. 1965; 379
  • Joyner A. E., Jr., Baldwin R. L. Enzymatic studies of pure cultures of rumen microorganisms. J. Bacteriol. 1966; 92: 1321
  • Cotta M. A. Utilization of nucleic acids by Selenomonas ruminantium and other ruminal bacteria. Appl. Environ. Microbiol. 1990; 56: 3867
  • Rasmussen M. A. Isolation and characterization of Selenomonas ruminantium strains capable of 2-deoxyribose utilization. Appl. Environ. Microbiol. 1993; 59: 2077
  • Melville Michel S. B.T. A., Macy J. M. Pathway and sites for energy conservation in the metabolism of glucose by. Selenomonas ruminantium, J. Bacteriol. 1988; 170: 5298
  • Gottschalk G. Bacterial Metabolism,2nd. Springer-Verlag, New York 1986; 359
  • Henderson C. The influence of extracellular hydrogen on the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium. J. Gen. Microbiol. 1980; 119: 485
  • Michel T. A., Macy J. M. Ferredoxin from Selenomonas ruminantium. Arch Microbiol. 1990; 153: 518
  • Michel T. A., Macy J. M. Purification of an enzyme responsible for acetate formation from acetyl coenzyme A in Selenomonas ruminantium. FEMSMicrobiol Lett. 1990; 68: 189
  • Hobson P. N., Summers R. ATP pool and growth yield in Selenomonas ruminantium. J. Gen. Microbiol. 1972; 70: 351
  • Scheifinger Latham C. C.M. J., Wolin M. J. Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by. Selenomonas ruminantium, Appl Microbiol. 1975; 30: 916
  • Wallace R. J. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate. J. Gen. Microbiol. 1978; 107: 45
  • Patterson J. A., Hespell R. B. Effect of dilution rate and NH4 concentration on growth yields and nitrogen assimilation enzymes in Selenomonas ruminantium. J. Anim. Sci. 1980; 51((Suppl. 1))387
  • Russell J. B. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy. J. Bacteriol. 1986; 168: 694
  • Melville Michel S. B.T. A., Macy J. M. Involvement of D-lactate and lactic acid racemase in the metabolism of glucose by. Selenomonas ruminantium, FEMS Microbiol. Lett. 1987; 40: 289
  • Ricke S. C., Schaefer D. M. Selenomonas ruminantium HD4 fermentation and cell yield response to limiting and non-limiting concentrations of ammonium chloride. paper presented at 20th Biennial Rumen Function Conference. 1989
  • Melville Michel S. B. T. A., Macy J. M. Regulation of carbon flow in Selenomonas ruminantium grown in glucose-limited continuous culture. J. Bacteriol. 1988; 170: 5305
  • Ricke S. C., Schaefer D. M. Glucose fermentation and growth of Selenomonas sputigena on a minimal medium. J. Rapid Methods Autom. Microbiol. 1996; 4: 173
  • Baldwin Wood R. L. W. A., Emery R. S. Lactate metabolism by Peptostreptococcus elsdenii: evidence for lactyl coenzyme A dehydrase. Biochim. Biophys. Acta 1965; 97: 202
  • Paynter M. J. B., Elsden S. R. Mechanism of propionate formation by Selenomonas ruminantium, a rumen microorganism. J. Gen. Microbiol. 1970; 61: 1
  • Scheifinger C. C., Wolin M. J. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes. Selenomonas ruminantium, Appl Microbiol. 1973; 26: 789
  • Dryden Hartman L. P., Bryant A. M., Robinson M. P. J. M., Moore L. A. Production of vitamin B12 and vitamin B12 analogues by pure cultures of ruminal bacteria. Nature (London) 1962; 195: 201
  • Huber Cooley T. L., Goetsch J. H. D. D., Das N. K. Lactic acid utilizing bacteria in ruminal fluid of a steer adapted from hay feeding to a high grain ration. Am. J. Vet. Res. 1976; 37: 611
  • Newbold Williams C. J. A. G., Chamberlain D. G. The in-vitro metabolisjn of D.L-lactic acid by rumen microorganisms. J. Sci. Food Agric. 1987; 38: 9
  • Smith C. J., Hespell R. B. Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminal bacteria. J. Dairy Sci. 1983; 66: 1536
  • Teather R. M. Application of gene manipulation to rumen microflora. Can. J. Anim. Sci. 1985; 65: 563
  • Russell J. B., Wilson D. B. Potential opportunities and problems for genetically altered rumen microorganisms. J. Nutr. 1988; 118: 271
  • Kung L., Jr, Hession A. O. Preventing in vitro lactate accumulation in ruminal fermentation by inoculation with Megasphaera elsdenii. J. Anim. Sci. 1995; 73: 250
  • Linehan Scheifinger B. C. C., Wolin M. J. Nutritional requirements of Seleno-monas ruminantium for growth on lactate, glycerol, or glucose. Appl. Environ. Microbiol. 1978; 35: 317
  • Nisbet D. J., Martin S. A. Effects of fumarate, L-malate and an Aspergillus oryzae fermentation extract on D-lactate utilization by the ruminal bacterium. Selenomonas ruminantium, Curr. Microbiol. 1993; 26: 133
  • Nisbet D. J., Martin S. A. Effect of dicarboxylic acids and Aspergillus oryzae fermentation extract on lactate uptake by the ruminal bacterium. Selenomonas ruminantium, Appl. Environ. Microbiol. 1990; 56: 3515
  • Nisbet D. J., Martin S. A. Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium. Selenomonas ruminantium, J. Anim. Sci. 1991; 69: 4628
  • Nisbet D. J., Martin S. A. Factors affecting L-lactate utilization by. Selenomonas ruminantium, J. Anim. Sci. 1994; 72: 1355
  • Strobel H. J., Russell J. B. Role of sodium in the growth of a ruminal selenomonad. Appl. Environ. Microbiol. 1991; 57: 1663
  • Martin S. A., Park C. M. Effect of extracellular hydrogen on organic acid utilization by the ruminal bacterium. Selenomonas ruminantium, Curr. Microbiol. 1996, accepted
  • Blackburn T. H., Hungate R. E. Succinic acid turnover and propionate production in the bovine rumen. Appl. Microbiol. 1963; 11: 132
  • Michel T. A., Macy J. M. Generation of a membrane potential by sodium-dependent succinate efflux in. Selenomonas ruminantium, J. Bacteriol. 1990; 172: 1430
  • Strobel H. J., Russell J. B. Succinate transport by a ruminal selenomonad and its regulation by carbohydrate availability and osmotic strength. Appl Environ. Microbiol. 1991; 57: 248
  • Russell J. B., Baldwin R. L. Comparison of substrate affinities among several rumen bacteria: a possible determinant of rumen bacterial competition. Appl. Environ. Microbiol. 1979; 37: 531
  • Martin S. A., Russell J. B. Mechanisms of sugar transport in the rumen bacterium. Selenomonas ruminantium, J. Gen. Microbiol. 1988; 134: 819
  • Martin S. A., Russell J. B. Phospho-enolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system. Appl. Environ. Microbiol. 1986; 52: 1348
  • Martin S. A. Hexose phosphorylation by the ruminal bacterium Selenomonas ruminantium. J. Dairy Sci., in press.
  • Romano Eberhard A. H., Dingle S. J.S. L., McDowell T. D. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J. Bacteriol. 1970; 104: 808
  • Romano Trifone A. H. J. D., Brustolon M. Distribution of the phospho-enolpyruvate: glucose phosphotransferase system in fermentative bacteria. J. Bacteriol. 1979; 139: 93
  • Strobel H. J. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium. Selenomonas ruminantium, Appl. Environ. Microbiol. 1993; 59: 40
  • Williams D. K., Martin S. A. Xylose uptake by the ruminal bacterium. Selenomonas ruminantium, Appl. Environ. Microbiol. 1990; 56: 1683
  • Czerkawski J. W. An Introduction to Rumen Studies. Pergamon Press, New York 1986; 236
  • Russell J. B., Baldwin R. L. Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture. Appl. Environ. Microbiol. 1979; 37: 537
  • Dawson Preziosi K. A. M. C., Caldwell D. R. Some effects of uncouplers and inhibitors on growth and electron transport in rumen bacteria. J. Bacteriol 1979; 139: 384
  • Ricke S. C., Schaefer D. M. Growth inhibition of the rumen bacterium Selenomonas ruminantium by ammonium salts. Appl. Microbiol. Biotechnol. 1991; 36: 394
  • Bauchop T., Elsden S. R. The growth of microorganisms in relation to their energy supply. J. Gen. Microbiol. 1960; 23: 457
  • Isaacson Hinds H. R., Bryant F. C. M. P., Owens F. N. Efficiency of energy utilization by mixed rumen bacteria in continuous culture. J. Dairy Sci. 1975; 58: 1645
  • Hespell R. B., Bryant M. P. Efficiency of rumen microbial growth: influence of some theoretical and experimental factors on YATP. J. Anim. Sci. 1979; 49: 1640
  • Hobson P. N., Wallace R. J. Microbial ecology and activities in the rumen. II. Crit. Rev. Microbiol. 1982; 9: 253
  • Stouthamer A. H., Bettenhaussen C. W. Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochem. Biophys. Acta 1973; 301: 53
  • Stouthamer A. H. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie VanLeeuwenhoek 1973; 39: 545
  • Stouthamer A. H. The search for correlation between theoretical and experimental growth yields. International Review of Biochemistry — Microbial Biochemistry, J. R. Quayle. University Park Press, Baltimore, MD 1979; Vol. 21: 1
  • Kamio Terawaki Y., Nakajima Y.T., Matsuda K. Structure of glycogen produced by Selenomonas ruminantium. Agric. Biol. Chem. 1981; 45: 209
  • Wallace R. J. Cytoplasmic reserve polysaccharide of Selenomonas ruminantium. Appl. Environ. Microbiol. 1980; 39: 630
  • Stouthamer A. H. Yield studies in microorganisms. Patterns of Progress, J. G. Cook. Meadowfield Press, Durham, UK 1976; 88
  • Thauer Jungermann R. K.K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacterioi. Rev. 1977; 41: 100
  • Hungate R. E. Polysaccharide storage and growth efficiency in. Ruminococcus albus, J. Bacteriol. 1963; 86: 848
  • Thauer R. K., Morris J. G. Metabolism of chemotrophic anaerobes: old views and new aspects. The Microbe, Part, I.I. Prokaryotes and Eukaryotes — 36th Symp. Soc. Gen. Microbiol, D. P. Kelly, N. G. Carr. Cambridge University Press, New York 1984; 123
  • Dimroth P. Biotin-dependent decarboxylases as energy transducing systems. Ann. N. Y. Acad. Sci. 1985; 447: 72
  • Konings W. N. Generation of metabolic energy by end-product efflux. Trends Biochem. Sci. 1985; 10: 317
  • Feighner S. D., Reddy C. A. Nitrate metabolism in Selenomonas ruminantium. paper presented at 80th Annu. Meet. American Society for Microbiology, Miami Beach, FL, Abstr. K57. 1980
  • Feighner S. D., Reddy C. A. Evidence for formate dehydrogenase activity coupled to nitrate reduction and concomitant ATP synthesis in Selenomonas ruminantium. paper presented at 81st Annu. Meet. American Society for Microbiology, Dallas, TX, Abstr. K143. 1981
  • Caldwell D. R., Lichtenwanger S. Electron transport components of predominant rumen bacteria. paper presented at 73rd Annu. Meet. American Society for Microbiology, Miami Beach, FL, Abstr. P125. 1973
  • John Isaacson A.H. R., Bryant M. P. Isolation and characteristics of a ureolytic strain of Selenomonas ruminantium. J. Dairy Sci 1974; 57: 1003
  • de Vries W., Van Wijck-Kapteyn W. M. C., Oosterhuis S. K. H. The presence and function of cytochromes in Selenomonas ruminantium, Anaerovibrio lipolytica and Veillonella alcalescens. J. Gen. Microbiol. 1974; 81: 69
  • Tempest D. W. The biochemical significance of microbial growth yields: a reassessment. Trends Biochem. Sci. 1978; 3: 180
  • Pirt S. J. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch. Microbiol. 1982; 133: 300
  • Herbert Elsworth D. R., Telling R. C. The continuous culture of bacteria: a theoretical and experimental study. J. Gen. Microbiol. 1956; 14: 601
  • Herbert D. A theoretical analysis of continuous culture systems. Continuous Culture of Microorganisms. S.C.I. Monogr. No. 12, Society of Chemical Industry, London 1961; 21
  • Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. B. 1965; 163: 224
  • Stouthamer A. H. Energy-yielding pathways. The Bacteria — A Treatise on Structure and Function, Vol. VI: Bacterial Diversity, I. C. L. N. Gunsalus Ornston, J. R. Sokatch. Academic Press, New York 1978; 389
  • Watson T. G. Effects of sodium chloride on steady-state growth and metabolism of. Saccharomyces cerevisiae, J. Gen. Microbiol. 1970; 64: 91
  • De Vries Kapteijn W. W. M., Vander C., Beek E. G., Stouthamer A. H. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and continuous culture. J. Gen. Microbiol. 1970; 63: 333
  • Hespell R. B. Efficiency of growth by luminal bacteria. Fed. Proc. 1979; 38: 2707
  • Tempest D. W., Neijssel O. M. The status of YATP and maintenance energy as biologically interpretable phenomena. Annu. Rev. Microbiol. 1984; 38: 459
  • Hempfling W. P., Mainzer S. E. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture. J. Bacteriol. 1975; 123: 1076
  • Mink R. W., Hespell R. B. Long-term nutrient starvation of continuously cultured (glucose-limited). Selenomonas ruminantium, J. Bacteriol. 1981; 148: 541
  • Mink Patterson R. W. J. A., Hespell R. B. Changes in viability, cell composition, and enzyme levels during starvation of continuously cultured (ammonia-limited). Selenomonas ruminantium, Appl. Environ. Microbiol. 1982; 44: 913
  • Rasmussen Cray M. A.W. C., Jr., Casey T. A., Whipp S. C. Rumen contents as a reservoir of enterohemorrhagic. Escherichia coli, FEMS Microbiol. Lett. 1993; 114: 79
  • Ha Nisbet S. D., Corrier D. J., DeLoach D. E. J. R., Ricke S. C. Comparison of Salmonella typhimurium and selected facultative cecal bacteria survivability after specific amino acid-limited batch growth. J. Food Prot. 1995; 58: 1335
  • Patterson J. A. Regulation of Ammonia Assimilating Enzymes in the Ruminal Bacteria Selenomonas ruminantium and Succinivibrio dextrinosolvens. Ph.D. dissertation, University of Illinois, Urbana 1982; 127
  • Hespell R. B. Influence of ammonia assimilation pathways and survival strategy on ruminal microbial growth. Herbivore Nutrition in the Subtropics and Tropics, F. M. C. Gilchrist, R. I. Mackie. Science Press, Craighall, South Africa 1984; 346
  • Neijssel O. M., Tempest D. W. Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Arch. Microbiol. 1976; 107: 215
  • Stouthamer A. H. Energetic aspects of the growth of micro-organisms. Microbiol Energetics, 27th Symp. Soc. Gen. Microbiol, B. A. Haddock, W. A. Hamilton. Cambridge University Press, New York 1977; 285
  • Harder VanDijken W.J. P., Roels J. A. Utilization of energy in methylotrophs. Microbiol Growth on CI Compounds, H. Dalton. Heyden & Sons, London 1981; 258
  • Bryant M. P. The Nitrogen Metabolism of Pure Cultures of Ruminal Bacteria. ARS 44–92, U.S. Department of Agriculture, Washington, D.C. 1961; 1
  • Hespell R. B., Smith C. J. Utilization of nitrogen sources by gastrointestinal tract bacteria. Human Intestinal Microflora in Health and Disease, D. J. Hentges. Academic Press, New York 1983; 167
  • Mangan J. L. Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of free amino acids. Br. J. Nutr. 1972; 27: 261
  • Blackburn T. H., Hobson P. N. Further studies on the isolation of proteolytic bacteria from the sheep rumen. J. Gen. Microbiol. 1962; 29: 69
  • Abou Akkada A. R., Blackburn T. H. Some observations on the nitrogen metabolism of rumen proteolytic bacteria. J. Gen. Microbiol. 1963; 31: 461
  • Fulghum R. S., Moore W. E. C. Isolation, enumeration, and characteristics of proteolytic ruminal bacteria. J. Bacteriol. 1963; 85: 808
  • Bladen Bryant H. A.M. P., Doetsch R. N. A study of bacterial species from the rumen which produce ammonia from protein hydrolysate. Appl. Microbiol. 1961; 9: 175
  • el- Shazly K. Degradation of protein in the rumen of sheep. II. The action of rumen micro-organisms on amino-acids. Biochem. J. 1952; 51: 647
  • Warner A. C. I. Proteolysis by rumen micro-organisms. J. Gen. Microbiol. 1956; 14: 749
  • Wallace R. J., Brammall M. L. The role of different species of bacteria in the hydrolysis of protein in the rumen. J. Gen. Microbiol. 1985; 131: 821
  • Wallace R. J. Hydrolysis of 14C-labelled proteins by rumen micro-organisms and by proteolytic enzymes prepared from rumen bacteria. Br. J. Nutr. 1983; 50: 345
  • Blackburn T. H. Protease production by Bacteroides amylophilus strain H18. J. Gen. Microbiol. 1968; 53: 27
  • Blackburn T. H., Hullah W. A. The cell-bound protease of Bacteroides amylophilus H18. Can. J. Microbiol. 1974; 20: 435
  • Hazlewood G. P., Edwards R. Proteolytic activities of a rumen bacterium Bacteroides ruminicola R8/4. J. Gen. Microbiol. 1981; 125: 11
  • Hazlewood Jones G. P.G. A., Mangan J. L. Hydrolysis of leaf fraction I protein by the proteolytic rumen bacterium Bacteroides ruminicola R8/4. J. Gen. Microbiol. 1981; 123: 223
  • Brock Forsberg F. M.C. W., Buchanan-Smith J. G. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. Environ. Microbiol. 1982; 44: 561
  • Kopecny J., Wallace R. J. Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl. Environ. Microbiol. 1982; 43: 1026
  • Wallace R. J. Synergism between different species of proteolytic rumen bacteria. Curr. Microbiol. 1985; 12: 59
  • Cotta M. A., Hespell R. B. Protein and amino acid metabolism of rumen bacteria. Control of Digestion and Metabolism in Ruminants, L. P. Milligan Grovum, W. L.A. Dobson. Prentice-Hall, Englewood Cliffs, NJ 1986; 122
  • Wallace R. J. Ecology of rumen microorganisms: protein use. Aspects of Digestive Physiology in Ruminants, A. Dopson, M. Dobson. Comstock Publishing, London 1986; 99
  • Wright D. E., Hungate R. E. Amino acid concentrations in rumen fluid. Appl. Microbiol. 1967; 15: 148
  • Leibholz J. Effect of diet on the concentration of free amino acids, ammonia and urea in the rumen liquor and blood plasma of the sheep. J. Anim. Sci. 1969; 29: 628
  • Broderick Kang-Meznarich G. A.J. H., Craig W. M. Total and individual amino acids in strained ruminal liquor from cows fed graded amounts of urea. J. Dairy Sci. 1981; 64: 1731
  • Church D. C. Digestive Physiology and Nutrition of Ruminants. Digestive Physiology 2nd. O & B Books, Corvallis OR 1976; Vol. 1: 350
  • Wohlt Clark J. E.J. H., Blaisdell F. S. Effect of sampling location, time, and method of concentration of ammonia nitrogen in rumen fluid. J. Dairy Sci. 1976; 59: 459
  • Chalupa W. Rumen bypass and protection of proteins and amino acids. J. Dairy Sci. 1975; 58: 1198
  • Chalupa W. Degradation of amino acids by the mixed rumen microbial population. J. Anim. Sci. 1976; 43: 828
  • Lewis D. Amino acid metabolism in the rumen of sheep. Br. J. Nutr. 1955; 9: 215
  • Lewis T. R., Emery R. S. Relative deamination rates of amino acids by rumen microorganisms. J. Dairy Sci. 1962; 45: 765
  • Lewis T. R., Emery R. S. Intermediate products in the catabolism of amino acids by rumen microorganisms. J. Dairy Sci. 1962; 45: 1363
  • Lewis T. R., Emery R. S. Metabolism of amino acids in the bovine rumen. J. Dairy Sci. 1962; 45: 1487
  • Chen Strobel G., Russell H. J.J. B., Sniffen C. J. Effect of hydrophobicity on utilization of peptides by ruminal bacteria in vitro. Appl. Environ. Microbiol. 1987; 53: 2021
  • Cotta M. A., Russell J. B. Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. J. Dairy Sci. 1982; 65: 226
  • Ling J. R., Armstead I. P. The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. J. Appl. Bacteriol. 1995; 78: 116
  • Wallace R. J., McKain N. A survey of peptidase activity in rumen bacteria. J. Gen. Microbiol. 1991; 137: 2259
  • Scheifinger Russell C.N., Chalupa W. Degradation of amino acids by pure cultures of rumen bacteria. J. Anim. Sci. 1976; 43: 821
  • Smith C. J., Bryant M. P. Introduction to metabolic activities of intestinal bacteria. Am. J. Clin. Nutr. 1979; 32: 149
  • Wallace R. J. Amino acid and protein synthesis, turnover, and breakdown by ruminal microorganisms. Principles of Protein Nutrition of Ruminants, J. M. Asplund. CRC Press, Boca Raton, FL 1994; 71
  • Bryant M. P., Robinson I. M. Apparent incorporation of ammonia and amino acid carbon during growdi of selected species of ruminal bacteria. J. Dairy Sci. 1963; 46: 150
  • Magasanik B. Classical and postclassical modes of regulation of the synthesis of degradative bacterial enzymes. Progress in Nucleic Acid Research and Molecular Biology, W. E. Cohn. Academic Press, New York 1976; Vol. 17: 99
  • Prival M. J., Magasanik B. Resistance to catabolite repression of histidase and proline oxidase during nitrogen-limited growth of Klebsiella aerogenes. J. Biol Chem. 1971; 246: 6288
  • Brown C. M. Ammonia assimilation and utilization in bacteria and fungi. Microorganisms and Nitrogen Sources, J. W. Payne. John Wiley & Sons, New York 1980; 511
  • Kustu McFarland S. G., Hui N. C., Esmon S. P.B., Ames G. F.-L. Nitrogen control in Salmonella typhimurium: co-regulation of synthesis of glutamine synthetase and amino acid transport systems. J. Bacteriol. 1979; 138: 218
  • Jones G. A., Pickard M. D. Effect of titanium (III) citrate as reducing agent on growth of rumen bacteria. Appl. Environ. Microbiol. 1980; 39: 1144
  • Ricke S. C., Schaefer D. M. An ascorbate-reduced medium for nitrogen metabolism studies with Selenomonas ruminantium. J. Microbiol. Methods 1990; 11: 219
  • Bryant M. P., Robinson I. M. Some nutritional characteristics of predominant cultivable ruminal bacteria. J. Bacteriol. 1962; 84: 605
  • Satter L. D., Slyter L. L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974; 32: 199
  • Mehrez Orskov A. Z.E. R., McDonald I. Rates of rumen fermentation in relation to ammonia concentration. Br. J. Nutr. 1977; 38: 437
  • Schaefer Davis D. M. C. L., Bryant M. P. Ammonia saturation constants for predominant species of rumen bacteria. J. Dairy Sci. 1980; 63: 1248
  • Leibholz J., Kellaway R. C. The nitrogen requirement of steers fed alkali-treated straw ad libitum. Proc. Aust. Soc. Anim. Prod. 1980; 13: 481
  • Pisulewski Okorie P. M., Buttery A. U., Haresign P. J.W., Lewis D. Ammonia concentration and protein synthesis in the rumen. J. Sci. Food Agric. 1981; 32: 759
  • Button D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 1985; 49: 270
  • Russell J. B., Strobel H. J. Concentration of ammonia across cell membranes of mixed rumen bacteria. J. Dairy Sci. 1987; 70: 970
  • Kleiner D. Bacterial ammonium transport. FEMS Microbiol. Rev. 1985; 32: 87
  • Cole J. A. Microbial gas metabolism. Adv. Microbial Physiol. 1976; 14: 1
  • Kleiner D. The transport of NH3 and NH4+ across biological membranes. Biochim. Biophys. Acta 1981; 639: 41
  • Patterson J. A., Hespell R. B. Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Curr. Microbiol. 1979; 3: 79
  • Ricke Schaefer S. C.D. M., Chang T. S. Influence of methylamine on anaerobic rumen bacterial growth and plant fiber digestion. Bioresour. Technol. 1994; 50: 253
  • Mackie R. I., Kistner A. Some frontiers of research in basic ruminant nutrition. S. Afr. J. Anim. Sci. 1985; 15: 72
  • Ricke S. C., Schaefer D. M. Batch culture growth response of ammonia-limited rumen bacteria and nitrogen-limited Selenomonas ruminantium strain D to methylamine addition. J. Dairy Sci. 1990; 73((Suppl. 1))172
  • Kleiner D., Fitzke E. Some properties of a new electrogenic transport system: the ammonium (methylammonium) carrier from. Clostridium pasteurianum, Biochim. Biophys. Acta 1981; 641: 138
  • Barnes E. M., Jr., Zimniak P., Jayakumar A. Role of glutamine synthetase in the uptake and metabolism of methyl-ammonium by. Azotobacter vinelandii, J. Bacteriol. 1983; 156: 752
  • Gober J. W., Kashket E. R. Methyl-ammonium uptake by Rhizobium sp. strain 32H1. J. Bacteriol. 1983; 153: 1196
  • Jayakumar A., Barnes E. M., Jr. A filtration method for measuring cellular uptake of [14C] methylamine and other highly permeant solutes. Anal. Biochem. 1983; 135: 475
  • Yoch Zhang D. C.Z.-M., Claybrook D. L. Methylamine metabolism and its role in nitrogenase “switch off in. Rhodopseudomonas capsulata, Arch. Microbiol. 1983; 134: 45
  • Servin-Gonzalez L., Bastarrachea F. Nitrogen regulation of synthesis of the high affinity methylammonium transport system of Escherichia coli. J. Gen. Microbiol. 1984; 130: 3071
  • Jayakumar Schulman A., MacNeil I.D., Barnes E. M., Jr. Role of the Escherichia coli glnALG operon in regulation of ammonium transport. J. Bacteriol. 1986; 166: 281
  • Servin-Gonzalez Ortiz L., Gonzalez M.A., Bastarrachea F. glnA mutations conferring resistance to methylammonium in Escherichia coli K12. J. Gen. Microbiol. 1987; 133: 1631
  • Smith Hespell C. J.R. B., Bryant M. P. Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium. J. Bacteriol. 1980; 141: 593
  • Smith Hespell C. J.R. B., Bryant M. P. Regulation of urease and ammonia assimilatory enzymes in Selenomonas ruminantium. Appl. Environ. Microbiol. 1981; 42: 89
  • Tronick Ciardi S. R.J. E., Stadtman E. R. Comparative biochemical and immunological studies of bacterial glutamine synthetases. J. Bacteriol. 1973; 115: 858
  • Kustu Hirschman S., Burton J., Jelesko D.J., Meeks J. C. Covalent modification of bacterial glutamine synthetase: physiological significance. Mol. Gen. Genet. 1984; 197: 309
  • Jenkinson Buttery H. F.P. J., Lewis D. Assimilation of ammonia by Bacteroides amylophilus in chemostat cultures. J. Gen. Microbiol. 1979; 113: 305
  • Patterson J. A., Hespell R. B. Glutamine synthetase activity in the ruminal bacterium Succinivibrio dextrinosolvens. Appl. Environ. Microbiol. 1985; 50: 1014
  • Salter Daneshvar D. N.K., Smith R. H. The origin of nitrogen incorporated into compounds in the rumen bacteria of steers given protein- and urea-containing diets. Br. J. Nutr. 1979; 41: 197
  • Chalupa Clark W., Opliger J.P., Lavker R. Ammonia metabolism in rumen bacteria and mucosa from sheep fed soy protein or urea. J. Nutr. 1970; 100: 161
  • Erfle Sauer J. D.F. D., Mahadevan S. Effect of ammonia concentration on activity of enzymes of ammonia assimilation and on synthesis of amino acids by mixed rumen bacteria in continuous culture. J. Dairy Sci. 1977; 60: 1064
  • Wallace R. J. Effect of ammonia concentrations on the composition, hydrolytic activity and nitrogen metabolism of the microbial flora of me rumen. J. Appl. Bacteriol. 1979; 47: 443
  • Friedrich B., Magasanik B. Urease of Klebsiella aerogenes: control of its synthesis by glutamine synthetase. J. Bacteriol. 1977; 131: 446
  • Hausinger R. P. Purification of a nickel-containing urease from the rumen anaerobe Selenomonas ruminantium. J. Biol. Chem. 1986; 261: 7866
  • Neidhardt Ingraham F. C.J. L., Schaechter M. Physiology of the Bacterial Cell — A Molecular Approach. Sinauer Associates, Sunderland, MA 1990; 506
  • Maeng Van Nevel W. J., Baldwin C. J.R. L., Morris J. G. Rumen microbial growth rates and yields: effect of amino acids and protein. J. Dairy Sci. 1976; 59: 68
  • Rosenberger R. F., Elsden S. R. The yields of Streptococcus faecalis growth in continuous culture. J. Gen. Microbiol. 1960; 22: 726
  • Belaich J. P. Growth and metabolism in bacteria, in. Biological Calorimetry, A. E. Beezer. Academic Press, London 1980; 1
  • Stouthamer A. H., Bettenhaussen C. W. A continuous culture study of an AT-Pase-negative mutant of. Escherichia coli, Arch. Microbiol. 1977; 113: 185
  • Allison M. J. Biosynthesis of amino acids by ruminal microorganisms. J. Anim. Sci. 1969; 29: 797
  • Sauer Erfle F. D.J. D., Mahadevan S. Amino acid biosynthesis in mixed rumen cultures. Biochem. J. 1975; 150: 357
  • Nili N., Brooker J. D. A defined medium for rumen bacteria and identification of strains impaired in de novo biosynthesis of certain amino acids. Lett. Appl. Microbiol. 1995; 21: 69
  • Allison M. J. Nitrogen metabolism of ruminal micro-organisms. Physiology of Digestion and Metabolism in the Ruminant, A. T. Phillipson. Oriel Press, Newcastle upon Tyne, UK 1970; 456
  • Milligan L. P. Carbon dioxide fixing pathways of glutamic acid syndiesis in the rumen. Can. J. Biochem. 1970; 48: 463
  • Emmanuel B., Milligan L. P. Enzymes of the conversion of succinate to glutamate in extracts of rumen microorganisms. Can. J. Biochem. 1972; 50: 1
  • Allison Bucklin M. J.J. A., Robinson I. M. Importance of the isovalerate carboxylation pathway of leucine biosynthesis in the rumen. Appl. Microbiol. 1966; 14: 807
  • Bush R. S., Sauer F. D. Enzymes of 2-oxo acid degradation and biosynthesis in cell-free extracts of mixed rumen micro-organisms. Biochem. J. 1976; 157: 325
  • Allison Robinson M. J.I. M., Baetz A. L. Tryptophan biosynthesis from indole-3-acetic acid by anaerobic bacteria from the rumen. J. Bacteriol. 1974; 117: 175
  • Allison M. J., Robinson I. M. Biosynthesis of α-ketoglutarate by the reductive car-boxylation of succinate in Bacteroides ruminicola. J. Bacteriol. 1970; 104: 50
  • Robinson I. M., Allison M. J. Isoleucine biosynthesis from 2-methylbutyric acid by anaerobic bacteria from the rumen. J. Bacteriol. 1969; 97: 1220
  • Allison M. J., Peel J. L. The biosynthesis of valine from isobutyrate by Pepto-streptococcus elsdenii and Bacteroides ruminicola. Biochem. J. 1971; 121: 431
  • Allison Robinson M. J.I. M., Baetz A. L. Synthesis of α-ketoglutarate by reductive carboxylation of succinate in Veillonella, Selenomonas and Bacteroides species. J. Bacteriol. 1979; 140: 980
  • Caldwell D. R., Rasmussen C. K. Alpha-ketoglutarate metabolism by cytochrome-containing anaerobes. Can. J. Microbiol. 1983; 29: 790
  • Dehority B. A. Carbon dioxide requirement of various species of rumen bacteria. J. Bacteriol. 1971; 105: 70
  • Attwood G. T., Brooker J. D. Complete nucleotide sequence of a Selenomonas ruminantium plasmid and definition of a region necessary for its replication in Escherichia coli. Plasmid 1992; 28: 123
  • Dean Martin R. G. S. A., Carver C. Isolation of plasmid DNA from the ruminal bacterium Selenomonas ruminantium HD4. Lett. Appl. Microbiol. 1989; 8: 45
  • Martin S. A., Dean R. G. Characterization of a plasmid from the ruminal bacterium. Selenomonas ruminantium, Appl. Environ. Microbiol. 1989; 55: 3035
  • Zhang N., Brooker J. D. Characterization, sequence, and replication of a small cryptic plasmid from Selenomonas ruminantium subspecies lactilytica. Plasmid 1993; 29: 125
  • Flint Duncan H. J., Bisset S. H. J., Stewart C. S. The isolation of tetracycline-resistant strains of strictly anaerobic bacteria from the rumen. Lett. Appl. Microbiol. 1988; 6: 113
  • Rule Pratt G. S., Chin E. A., Wold C. C. Q.F., Ho C. Overproduction and nucleotide sequence of the respiratory D-lactate dehydrogenase of. Escherichia coli, J. Bacteriol. 1985; 161: 1059
  • Moore Martin G. A.S. A., Dean R. G. Genetics of lactate utilization by the ruminal bacterium Selenomonas ruminantium. paper presented at 92nd Annu. Meet. American Society for Microbiology, New Orleans, LA, Abstr. HI24. 1992
  • Martin S. A. Potential for manipulating gastrointestinal microflora: alternatives to antibiotics and ionophores?. Proceedings of the 29th Annual Georgia Nutrition Conference for the Feed Industry, Atlanta, GA, November 17 to 19, 1992, 28
  • Forsberg Crosby C. W.B., Thomas D. Y. Potential for manipulation of the rumen fermentation through the use of recombinant DNA techniques. J. Anim. Sci. 1986; 63: 310
  • Flint Martin H. J., McPherson J., Daniel C. A.A. S., Zhang J.-X. A Afunctional enzyme, with separate xylanase and β(1,3–1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 1993; 175: 2943
  • Hespell R. B., Whitehead T. R. Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J. Dairy Sci. 1990; 73: 3013
  • Mackie R. I., White B. A. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J. Dairy Sci. 1990; 73: 2971
  • Strobel H. J., personal communication.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.