578
Views
157
CrossRef citations to date
0
Altmetric
Research Article

Functions of Bacterial Flagella

&
Pages 67-100 | Published online: 25 Sep 2008

References

  • Thomashow L. S., Rittenberg S. C. Isolation and composition of sheathed flagella from Bdellovibrio bacteriovorus 109J. J. Bacteriol. 1985; 163: 1047
  • Sjobald Emala R. D.C.W., Doetsch R. N. Bacterial flagellar sheaths: structures in search of a function. Cell. Motil. 1983; 3: 93
  • Geis Leying G., Suerbaum H., Mai S.U., Opferkuch W. Ultrastructure and chemical analysis of Campylobacter pylori flagella. J. Clin. Microbiol. 1989; 27: 436
  • Hirota Kitada N.M., Imae Y. Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett. 1981; 132: 278
  • Larsen Adler S. H., Gargus J.J.J., Hogg R. W. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1239
  • Allen R. D., Baumann P. Structure and arrangement of flagella in species of the genus Beneckea and. Photobacterium fischeri, J. Bacteriol. 1971; 107: 295
  • Tarrand Krieg J. J.N.R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group with description of a new genus. Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol 1978; 24: 967
  • Aizawa S.-I. Flagellar assembly in. Salmonella typhimurium, Mol. Microbiol. 1996; 19: 1
  • Blair D. F. How bacteria sense and swim. Annu. Rev. Microbiol. 1995; 49: 489
  • Macnab R. M. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 1992; 26: 131
  • Shapiro L. The bacterial flagellum: from genetic network to complex architecture. Cell 1995; 80: 525
  • Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol Rev. 1972; 36: 478
  • Bradley D. E. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can. J. Microbiol. 1980; 26: 146
  • O'Rear Alberti J.L., Harshey R. M. Mutations that impair swarming motility in Serratia marcescens 274 include but are not limited to those affecting chemotaxis of flagellar function. J. Bacterioi 1992; 174: 6125
  • Macnab R. M. Motility and chemotaxis. Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology, F. C. Neidhardt Ingraham, J. Low, K. B. Magasanik, B.M. Schaechter, H. E. Umbarger. ASM Publications, Washington, D.C. 1987; Vol. I: 732
  • Charon Greenberg N. W., Koopman E. P.M.B.H., Limberger R. J. Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Res. Microbiol. 1992; 143: 597
  • Holt S. C. Anatomy and chemistry of spirochetes. Microbiol. Rev. 1978; 38: 114
  • Goldstein Charon S. F.N.W., Kreiling J. A. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 3433
  • Götz Limmer R., Ober N.K., Schmitt R. Motility and chemotaxis in two strains of Rhizobium with complex flagella. J. Gen. Microbiol. 1982; 128: 789
  • Krupski G., Götz Ober R., Pleier K.E., Schmitt R. Structure of complex flagellar filaments in. Rhizobium meliloti, J. Bacteriol. 1985; 162: 361
  • Belas R. The swarming phenomenon of. Proteus mirabilis, ASM News 1992; 58: 15
  • Williams F. D., Schwarzkopf R. H. Nature of the swarming phenomenon in. Proteus, Annu. Rev. Microbiol. 1978; 32: 101
  • Allison Lai C.H., Gygi C.D., Hughes C. Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Mol. Microbiol. 1993; 8: 53
  • Gygi Rahman D., Lai M. M.H., Carlson C., Guard-Petter R.J., Hughes C. A cell surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of. Proteus mirabilis, Mol. Microbiol. 1995; 17: 1167
  • Alberti L., Harshey R. M. Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J. Bacteriol. 1990; 172: 4322
  • Eberl Christiansen L., Molin G.S., Givskov M. Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. J. Bacteriol 1996; 178: 554
  • Ulitzer S. Induction of swarming in. Vibrio parahaemolyticus, Arch. Microbiol. 1974; 101: 357
  • Ulitzer S. The mechanism of swarming in. Vibrio alginolyticus, Arch. Microbiol. 1975; 104: 67
  • Harshey R. M., Matsuyama T. Dimorphic transition in Escherichia coli, Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc. Natl Acad. Sci. U.S.A 1994; 91: 8631
  • Ragatz Jiang L.Z., Bauer Y.C.E., Gest H. Macroscopic phototactic behavior of the purple photosynthetic bacterium. Rhodospirillum centenum, Arch. Microbiol. 1995; 163: 1
  • Hall P. G., Krieg N. R. Swarming of Azospirillum brasilense on solid media. Can. J. Microbiol. 1983; 29: 1592
  • Harshey R. M. Bees aren't the only ones: swarming in Gram-negative bacteria. Mol. Microbiol. 1994; 13: 389
  • Belas Simon R.M., Silverman M. Regulation of lateral flagella gene transcription in. Vibrio parahaemolyticus, J. Bacteriol. 1986; 167: 210
  • McCarter L., Silverman M. Surface-induced swarmer cell differentiation of. Vibrio parahaemolyticus, Mol. Microbiol. 1990; 4: 1057
  • Shinoda S., Okamoto K. Formation and function of Vibrio parahaemolyticus lateral flagella. J. Bacteriol. 1977; 129: 1266
  • Atsumi McCarter T.L., Imae Y. Polar and lateral flagella motors of marine Vibrio are driven by different ion membrane forces. Nature (London 1992; 355: 182
  • Sar McCarter N., Simon L.M., Silverman M. Chemotactic control of the two flagellar systems of. Vibrio parahaemolyticus, J. Bacteriol. 1990; 172: 334
  • McCarter Hilmen L.M.L., Silverman M. Flagellar dynamometer controls swarmer cell differentiation of. V. parahaemolyticus, Cell 1988; 54: 345
  • McCarter L., Silverman M. Iron regulation of swarmer cell differentiation of. Vibrio parahaemolyticus, J. Bacteriol. 1989; 171: 731
  • Tomita T., Kanegasaki S. Enhanced phagocytic response of macrophages to bacteria by physical impact caused by bacterial motility or centrifugation. Infect. Immun. 1982; 38: 865
  • Drake D., Montie T. C. Protection against Pseudomonas aeruginosa infection by passive transfer of anti-flagellar serum. Can. J. Microbiol. 1987; 33: 755
  • Drake D., Montie T. C. Flagella, motility and invasive virulence of. Pseudomonas aeruginosa, J. Gen. Microbiol. 1988; 134: 43
  • Holder Wheeler I. A.R., Montie T. C. Flagellar preparations from Pseudomonas aeruginosa: animal protection studies. Infect. Immun. 1982; 35: 276
  • Landsperger Kelly-Wintenberg W. J., Montie K. D., Knight T. C., Hansen L. S., Huntenburg M. B.C.C., Schneidkraut M. J. Inhibition of bacterial motility with human antiflagellar monoclonal antibodies attenuates Pseudomonas aeruginosa-induced pneumonia in the immunocompetent rat. Infect. Immun. 1994; 62: 4825
  • Ochi Ohtsuka H., Yokota H.S., Uezumi I., Terashima I., Irie M.K., Noguchi H. Inhibitory activity on bacterial motility and in vivo protective activity of human monoclonal antibodies against flagella of. Pseudomonas aeruginosa, Infect. Immun. 1991; 59: 550
  • Rosok Stebbins M. J., Connelly M. R., Lostrom K.M.E., Siadak A. W. Generation and characterization of murine antiflagellum antibodies that are protective against lethal challenge with. Pseudomonas aeruginosa, Infect. Immun. 1990; 58: 3819
  • Rudner Hazlett X. L.L.D., Berk R. S. Systemic and topical protection studies using Pseudomonas aeruginosa flagella in an ocular model of infection. Curr. Eye Res. 1992; 11: 727
  • Weigelt Schneider W.T., Lange R. Sequence homology between spirochaete flagellin and human myelin basic protein. Immunol. Today 1992; 13: 279
  • Acero-Reyes J. R., Newton S. M. C. Expression of cholera toxin epitopes inserted in flagellin by attenuated Salmonella strains. Rev. Bras. Genet. 1994; 17: 249
  • Newton Joys S. M. C., Anderson T. M., Kennedy S. A., Hovi R. C.M.E., Stocker B. A. D. Expression and immunogenicity of an 18-residue epitope of HIVI gp41 inserted in the flagellar protein of a Salmonella live vaccine. Res. Microbiol. 1995; 146: 203
  • Taylor D. E. Genetics of Campylobacter and. Helicobacter, Annu. Rev. Microbiol. 1992; 46: 35
  • Seidler R. J., Starr M. P. Structure of the flagellum of. Bdellovibrio bacteriovorus, J. Bacteriol. 1968; 95: 1952
  • Abram D., Duvis B. K. Structural properties and features of parasitic. Bdellovibrio bacteriovorus, J. Bacteriol. 1970; 104: 948
  • Burnham Hashimoto J. C.T., Conti S. F. Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into Gram-negative hosts. J. Bacteriol. 1968; 96: 1366
  • Stolp H., Petzold H. Untersuchungen über einen obligat parasitischen Mikroorganismus mit lytischer Aktivität für Pseudomonas-Bakterien. Phytopathol Z 1962; 45: 364
  • Stolp H., Starr M. P. Bdellovibrio bacteriovorus gen. et sp. n. a predatory, ectoparasitic, and bacteriolytic microorganism, Antonie VanLeeuwenhoek. J. Microbiol. Serol. 1963; 29: 217
  • Varon M., Shilo M. Interaction of Bdellovibrio bacteriovorus and host bacteria. I. Kinetic studies of attachment and invasion of Escherichia coli. B by. Bdellovibrio bacteriovorus, J. Bacteriol 1968; 95: 744
  • Chandler Thomason F. W.B.M., Hebert G. A. Flagella on Legionnaires' disease bacteria in the human lung. Ann. Intern. Med. 1980; 93: 715
  • Winn W. C. Legionnaires disease, historical perspective. Clin. Microbiol. Rev. 1988; 1: 60
  • Chandler Roth F. W., Callaway I. L., Bump C. L., Thomason J. L.B.M., Weaver R. E. Flagella on Legionnaires' disease bacteria. Ann. Intern. Med. 1980; 93: 711
  • Rodgers Greaves F. G., Macrae P. W.A.D., Lewis M. J. Electronmicroscopic evidence of flagella and pili on. Legionella pneumophila, J. Clin. Pathol. 1980; 33: 1184
  • Elliott J. A., Johnson W. Virulence conversion of Legionella pneumophila serogroup 1 by passage in guinea pigs and embryonated eggs. Infect. Immun. 1982; 35: 943
  • Ott Messner M., Heesemann P., Marre J.R., Hacker J. Temperature-dependent expression of flagella in. Legionella, J. Gen. Microbiol. 1991; 137: 1955
  • Pruckler Benson J. M., Moyenuddin R. F., Martin M.W.T., Fields B. S. Association of flagellum expression and intracellular growth of. Legionella pneumophila, Infect. Immun. 1995; 63: 4928
  • Leben C., Whitmoyer R. E. Adherence of bacteria to leaves. Can. J. Microbiol. 1979; 25: 896
  • Hattermann D. R., Ries S. M. Motility of Pseudomonas syringae pv. glycinea and its role in infection. Phytopathology 1989; 79: 284
  • Panopoulos N. J., Schroth M. N. Role of flagellar motility in the invasion of bean leaves by. Pseudomonas phaseolicola, Phytopathology 1974; 64: 1389
  • Billing Baker E., Crosse L. A. E.J.E., Garrett C. M. E. Characteristics of English isolates of Erwinia amylovora (Burr.) Winslow, et al. J. Appl. Bacteriol. 1961; 24: 195
  • Huang J. J., Goodman R. N. Morphology and ultrastructure of normal rodshaped and filamentous forms of Erwinia amylovora. J. Bacteriol. 1970; 102: 862
  • Bayot R. G., Ries S. M. Role of motility in apple blossom infection by Erwinia amylovora and studies of fire blight control with attractant and repellent compounds. Phytopathology 1986; 76: 441
  • Raymundo A. K., Ries S. M. Motility of. Erwinia amylovora, Phytopathology 1981; 71: 45
  • Bradbury J. F. Xanthomonas Dowson1939, in Bergey's Manual of Systematic Bacteriology, N. R. Krieg, J. G. Holt. Williams & Wilkins, Baltimore. 1984; Vol. 1: 199
  • Zoller B. G. Ph.D. dissertation. University of California, Davis. 1972
  • Kamoun S., Kado C. I. Phenotypic switching affecting chemotaxis, xanthan production, and virulence in. Xanthomonas campestris, Appl. Environ. Microbiol. 1990; 56: 3855
  • Kelman A. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 1954; 44: 693
  • Kelman A., Hruschka J. The role of motility and aerotaxis in the selective increase of avirulent bacteria in still broth cultures of. Pseudomonas solanacearum, J. Gen. Microbiol. 1973; 76: 177
  • Feng T. Y., Kuo T. G. Bacterial leaf blight of rice plants. VI. Chemotactic responses of Xanthomonas oryzae to water droplets exudated from water pores on the leaves of rice plants. Bot. Bull. Acad. Sin. 1975; 16: 126
  • Pirhonen Saarilahti M., Karlsson H.M.-B., Palva E. T. Identification of pathogenicity determinants of Erwinia carotovora subsp. carotovora by transposon mutagenesis. Mol. Plant-Microb. Interact 1991; 4: 276
  • Mulholland Hinton V., Sidebotham J. C. D., Toth J., Hyman I. K., Pérombelon Reeves L. J. M. C. M.P.J., Salmond G. P. C. A pleiotropic reduced virulence (Rvi) mutant of Erwinia carotovora subspecies atroseptica is defective in flagella assembly proteins that are conserved in plant and animal bacterial pathogens. Mol. Microbiol 1993; 9: 343
  • VanGijsegem Gough F., Zischek C., Niqueux C., Arlat E., Genin M., Barberis S., German P., Castello S.P., Boucher C. The hrp locus of Pseudomonas solanacearum which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Mol. Microbiol 1995; 15: 1095
  • Haefele D. M., Lindow S. E. Flagellar motility confers epiphytic fitness advantages upon. Pseudomonas syringae, Appl. Environ. Microbiol. 1987; 53: 2528
  • Lindow S. E. The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopathol. 1983; 21: 363
  • Shaw Loake C. H., Brown G. J., Garrett A. P., Deakin C. S., Alton W., Hall G., Jones M.S.A., O'Leary M., Primavesi L. Isolation and characterization of behavioural mutants and genes of. Agrobacterium tumefaciens, J. Gen. Microbiol. 1991; 137: 1939
  • Bradley Douglas D. E.C.J., Peschon J. Flagella-specific bacteriophages of Agrobacterium tumefaciens: demonstration of virulence of nonmotile mutants. Can. J. Microbiol. 1984; 30: 676
  • Douglas Halperin C. J.W., Nester E. W. Agrobacterium tumefaciens mutants affected in attachment to plant cells. J. Bacteriol. 1982; 152: 1265
  • Hawes M. C., Smith L. Y. Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soilgrown pea plants. J. Bacteriol. 1989; 171: 5668
  • Hawes Smith M. C.L.Y., Howarth A. J. Agrobacterium tumefaciens mutants deficient in chemotaxis to root exudates. Mol. Plant-Microb. Interact. 1988; 1: 182
  • Heierson A., Sidén Kivaisi I.A., Boman H. G. Bacteriophage-resistant mutants of Bacillus thuringiensis with decreased virulence in pupae of. Hyalophora cecropia, J. Bacteriol. 1986; 167: 18
  • Lövgren Zhang A.M.-Y., Engström A., Landén R. Identification of two expressed flagellin genes in the insect pathogen Bacillus thuringiensis subsp. alesti, J. Gen. Microbiol. 1993; 139: 21
  • Samakovlis Asling C., Boman B., Gateff H. G.E., Hultmark D. In vitro induction of cecropin genes — an immune response in a Drosophila blood cell line. Biochem. Biophys. Res. Commun 1992; 188: 1169
  • Zhang M.-Y., LövgrenLow A.M.G., Landén R. Characterization of an avirulent pleiotropic mutant of the insect pathogen Bacillus thuringiensis: reduced expression of flagellin and phospholipases. Infect. Immun. 1993; 61: 4947
  • Zhang M.-Y., Lövgren A., Landén R. Adhesion and cytotoxicity of Bacillus thuringiensis to cultured Spodoptera, Drosophila cells. J. Invertebr. Pathol 1995; 66: 46
  • Maxwell Dunphy P. W.G.B., Niven D. F. Effects of bacterial age and method of culture on the interaction of Xenorhabdus nematophilus (Enterobacteriaceae) with hematocytes of nonimmune Galleria mellonella (Insecta) larvae. J. Gen. Appl. Microbiol 1995; 41: 207
  • Jarrell K. F., Kropinski A. M. The virulence of protease and cell surface mutants of Pseudomonas aeruginosa for larvae of. Galleria mellonella, J. Invertebr. Pathol. 1982; 39: 395
  • Thomas Navab D. D., Haake M., Fogelman D. A., Miller A. M.J.N., Lovett M. A. Treponema pallidum invades intercellular junctions of endothelial cell monolayers. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 3608
  • Kennedy Rosnick M. J., Ulrich D. K.R.G., Yancey R. J., Jr. Association of Treponema hyodysenteriae with porcine intestinal mucosa. J. Gen. Microbiol. 1988; 134: 1565
  • Sadziene Thomas A., Bundoc D. D., Holt V. G.S.C., Barbour A. G. A flagellaless mutant of. Borrelia burgdorferi, J. Clin. Invest. 1991; 88: 82
  • Kaiser G. E., Doetch R. N. Enhanced translational motion of Leptospira in viscous environments. Nature 1975; 255: 656, (London)
  • Taraura Y., Tanaka S. Effect of antiflagellar serum in the protection of mice against. Clostridium chauvoei, Infect. Immun. 1984; 43: 612
  • Tamura Minamoto Y.N., Tanaka S. Demonstration of protective antigen carried by flagella of. Clostridium chauvoei, Microbiol. Immunol. 1984; 28: 1325
  • Tanaka Hirayama M.N., Tamura Y. Production, characterization, and protective effect of monoclonal antibodies to. Clostridium chauvoei, Infect. Immun. 1987; 55: 1779
  • Tamura Kijima-Tanaka Y., Aoki M., Ogikubo A.Y., Takahashi T. Reversible expression of motility and flagella in Clostridium chauvoei and their relationship to virulence. Microbiology. 1995; 141: 605
  • Leifson E., Palen M. I. Variations and spontaneous mutations in the genus Listeria in respect to flagellation and motility. J. Bacteriol. 1955; 70: 233
  • Peel Donachie M.W., Shaw A. Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and Western blotting. J. Gen. Microbiol. 1988; 134: 2171
  • Dons Rasmussen L.O.F., Olsen J. E. Cloning and characterization of a gene encoding flagellin of. Listeria monocytogenes, Mol. Microbiol. 1992; 6: 2919
  • Czuprynski Brown C. J.J.F., Roll J. T. Growth at reduced temperatures increases the virulence of Listeria monocytogenes for intravenously but not intragastrically inoculated mice. Microbial Pathogen. 1989; 7: 213
  • Stephens Roberts J. C., Jones I. S.D., Andrew P. W. Effect of growth temperature on virulence of strains of Listeria monocytogenes in the mouse: evidence for a dose dependence. J. Appl. Bacteriol. 1991; 70: 239
  • Kathariou Kanenaka S., Allen R., Fok R. D.A.K., Mizumoto C. Repression of motility and flagellin production at 37°C is stronger in Listeria monocytogenes than in the nonpathogenic species. Listeria innocua, Can. J. Microbiol. 1995; 41: 572
  • Cossart P. Actin-based bacterial motility. Curr. Opin. Cell Biol. 1995; 7: 94
  • Portnoy Chakraborty D. A., Goebel T.W., Cossart P. Molecular determinants of Listeria monocytogenes pathogenesis. J. Bacteriol. 1992; 60: 1263
  • Benson Kar L. A., McLaughlin S.G., Ihler G. M. Entry of Bartonella bacilliformis into erythrocytes. Infect. Immun. 1986; 54: 347
  • Mernaugh G., Ihler G. M. Deformation factor: an extracellular protein synthesized by Bartonella bacilliformis that deforms erythrocyte membranes. Infect. Immun. 1992; 60: 937
  • Scherer D. C., De Buron-Connors I., Minnick M. F. Characterization of Bartonella bacilliformis flagella and effect of antiflagellin antibodies on invasion of human erythrocytes. Infect. Immun. 1993; 61: 4962
  • Carpenter Zuberi P. B.A.R., Ordal G. W. Bacillus subtilis flagellar proteins FliP, FliQ, FliR and FlhB are related to Shigella flexneri virulence factors. Gene 1993; 137: 243
  • Hughes Gillen K. T., Semon K. L.M.J., Karlinsey J. E. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 1993; 262: 1277
  • Schmitt Darnell C. K., Tesh S. C., Stocker V. L.B.A.D., O'Brien A. D. Mutation of flgM attenuates virulence of Salmonella typhimurium and mutation of fliA represses the attenuated phenotype. J. Bacteriol 1994; 176: 368
  • Tominaga Mahmoud A., Mukaihara M. A. H.T., Enomoto M. Molecular characterization of intact, but cryptic, flagellin genes in the genus. Shigella, Mol. Microbiol. 1994; 12: 277
  • Girón J. A. Expression of flagella and motility by. Shigella, Mol. Microbiol. 1995; 18: 63
  • Arico Miller B., Roy J. F., Stibitz C., Monack S., Falkow D., Gross S.R., Rappuoli R. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 6671
  • Uhl M. A., Miller J. F. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 1163
  • Akerley Cotter B. J.P.A., Miller J. F. Ectopic expression of the flagellar regulon alters development of the Bordetella host interaction. Cell 1995; 80: 611
  • Akerley B. J., Miller J. F. Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J. Bacteriol. 1993; 175: 3468
  • Akerley Monack B. J., Falkow D. M.S., Miller J. F. The bvgAS locus negatively controls motility and synthesis of flagella in. Bordetella bronchiseptica, J. Bacteriol. 1992; 174: 980
  • Cotter P. A., Miller J. F. BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect. Immun. 1994; 62: 3381
  • Cornelis G. Yersiniae, finely tuned pathogens. Molecular Biology of Bacterial Infection: Current Status and Future Perspectives, C. E.C.W. Hormaeche Penn, C. J. Smyth. Cambridge University Press, Cambridge 1992; 231
  • Kapatral V., Minnich S. A. Co-ordinate, temperature-sensitive regulation of the three Yersinia enterocolitica flagellin genes. Mol. Microbiol. 1995; 17: 49
  • Iriarte Stainier M., Mikulskis I.A.V., Cornelis G. R. The fliA gene encoding σ28 in. Yersinia enterocolitica, J. Bacteriol 1995; 177: 2299
  • Grimont P. A. D., Grimont F. The genus. Serratia, Annu. Rev. Microbiol. 1978; 32: 221
  • Daschner F. D. The epidemiology of Serratia marcescens. The Genus Serratia, A. von Graevenitz, S. J. Rubin. CRC Press, Boca Raton, FL. 1980; 187
  • Paruchuri D. K., Harshey R. M. Flagellar variation in Serratia marcescens is associated with color variation. J. Bacteriol. 1987; 169: 61
  • Givskov Eberl M., Christiansen L., Benedik G.M.J., Molin S. Induction of phospholipase- and flagellar synthesis in Serratia liquefaciens is controlled by expression of the flagellar master operon. flhD, Mol. Microbiol. 1995; 15: 445
  • Allison Lai C.H.-C., Hughes C. Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of. Proteus mirabilis, Mol. Microbiol. 1992; 6: 1583
  • Harmon Rutherford R. C., Wu R. L.H.M., Collins M. S. Monoclonal antibody-mediated protection and neutralization of motility in experimental Proteus mirabilisinfection. Infect. Immun. 1989; 57: 1936
  • Pazin G. J., Braude A. I. Immobilizing antibodies in pyelonephritis. J. Immunol. 1969; 102: 454
  • Pazin G. J., Braude A. I. Immobilizing antibodies in urine: prevention of ascending spread of. Proteus mirabilis. Invest. Urol. 1974; 12: 129
  • Allison C., Emödy Coleman L.N., Hughes C. The role of swarm cell differentiation and multicellular migration in the uropathogenicity of. Proteus mirabilis, J. Infect. Dis. 1994; 169: 1155
  • Allison Coleman C., Jones N.P.L., Hughes C. Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect. Immun. 1992; 60: 4740
  • Nuijten VanAsten P. J. M.A., Gaastra J. A. M.W., Vander Zeijst B. A. M. Structural and functional analysis of two Campylobacter jejuni flagellin genes. J. Biol. Chem. 1990; 265: 17798
  • Nuijten P. J.M., Vander Zeijst B. A. M., Newell D. G. Localization of immunogenic regions on the flagellin proteins of Campylobacter jejuni 81116. Infect. Immun. 1991; 59: 1100
  • Nuijten Bleumink-Pluym P. J. M., Gaastra N. M. C.W., Vander Zeijst B. A. M. Flagellin gene expression in Campylobacter jejuni is regulated at the transcriptional level. Infect. Immun. 1989; 57: 1084
  • Wassenaar Bleumink-Pluym T. M., Newell N. M. C., Nuijten D. G.P.J.M., Vander Zeijst B. A. M. Differential flagellin expression in a flaA flaB+ mutant of. Campylobacter jejuni, Infect. Immun 1994; 62: 3901
  • Ferrero R. L., Lee A. Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rodshaped bacteria. J. Gen. Microbiol. 1988; 134: 53
  • Szymanski King C. M., Haardt M.M., Armstrong G. D. Campylobacter jejuni motility and invasion of Caco-2 cells. Infect. Immun. 1995; 63: 4295
  • Caldwell Guerry M. B., Lee P., Burans E. C.J.P., Walker R. I. Reversible expression of flagella in. Campylobacter jejuni, Infect. Immun. 1985; 50: 941
  • Newell McBride D. G.H., Dolby J. M. Investigations on the role of flagella in the colonization of infant mice with Campylobacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines. J. Hyg. Camb 1985; 95: 217
  • Aguero-Rosenfeld Yang M. E.X.-H., Nachamkin I. Infection of adult Syrian hamsters with flagellar variants of. Campylobacter jejuni, Infect. Immun. 1990; 58: 2214
  • Pavlovskis Rollins O. R., Haberberger D. M.R.L., Jr., Green Habash A. E., Strocko L.S., Walker R. I. Significance of flagella in colonization resistance of rabbits immunized with Campylobacter spp. Infect. Immun. 1991; 59: 2259
  • Morooka Umeda T.A., Amako K. Motility as an intestinal colonization factor for. Campylobacter jejuni, J. Gen. Microbiol. 1985; 131: 1973
  • Nachamkin Yang I.X.-H., Stern N. J. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar mutants. Appl. Environ. Microbiol. 1993; 59: 1269
  • Wassenaar T. M., Vander Zeijst Ayling B. A. M.R., Newell D. G. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J. Gen. Microbiol. 1993; 139: 1171
  • Newell D. G. Monoclonal antibodies directed against the flagella of Campylobacter jejuni: production, characterization and lack of effect on the colonization of infant mice. J. Hyg. Camb. 1986; 96: 131
  • Black Levine R. E., Clements M. M., Hughes M. L.T.P., Blaser M. J. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 1988; 157: 472
  • Field Underwood L. H., Payne J. L.S.M., Berry L. J. Characteristics of an avirulent Campylobacter jejuni strain and its virulence-enhanced variants. J. Med. Microbiol. 1993; 38: 293
  • McSweegan E., Walker R. I. Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates. Infect. Immun. 1986; 53: 141
  • Wassenaar Bleumink-Pluym T. M.N.M.C., Vander Zeijst B. A. M. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 1991; 10: 2055
  • Grant Konkel C. C. R., Cieplak M. E.W., Jr., Tompkins L. S. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect. Immun. 1993; 61: 1764
  • Yao Burr R., Doig D. H., Trust P., Niu T. J.H., Guerry P. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol. Microbiol. 1994; 14: 883
  • Konkel M. E., Cieplak W., Jr. Altered synthetic response of Campylobacter jejuni to cocultivation with human epithelial cells is associated with enhanced internalization. Infect. Immun. 1992; 60: 4945
  • Russell R. G., Blake D. C., Jr. Cell association and invasion of Caco-2 cells by. Campylobacter jejuni, Infect. Immun. 1994; 62: 3773
  • Vandamme Falsen P.E., Rossau R. Revision of Campylobacter, Helicobacter, Wolinella taxonomy: emendations of generic descriptions and proposals of Arcobacter gen. nov. Int. J. Syst. Bacteriol 1991; 41: 88
  • Geis Suerbaum G., Forsthoff S., Leying B.H., Opferkuch W. Ultrastructure and biochemical studies of the flagellar sheath of. Helicobacter pylori, J. Med. Microbiol. 1993; 38: 371
  • Luke C. J., Penn C. W. Identification of a 29 kDa flagellar sheath protein in Helicobacter pylori using a murine monoclonal antibody. Microbiology 1995; 144: 597
  • Josenhans Labigne C.A., Suerbaum S. Comparative ultrastructural and functional studies of Helicobacter pylori, Helicobacter mustelae flagellin mutants: both flagellin units, FlaA and FlaB, are necessary for full motility in Helicobacter species. J. Bacteriol 1995; 177: 3010
  • Hazell Lee S. L., Brady A.L., Hennessy W. Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J. Infect. Dis. 1986; 153: 658
  • Eaton Morgan K. A.D.R., Krakowka S. Campylobacter pylori virulence factors in gnotobiotic piglets. Infect. Immun. 1989; 57: 1119
  • Eaton Morgan K. A.D.R., Krakowka S. Motility as a factor in the colonisation of gnotobiotic piglets by. Helicobacter pylori, J. Med. Microbiol. 1992; 37: 123
  • Koch C., Hoiby N. Pathogenesis of cystic fibrosis. Lancet 1993; 341: 1065
  • Poggio Glynn E. C., Schein R. J., Seddon O. D., Shannon J. M., Scardino M. J.V.A., Kenyon K. R. The incidence of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. N. Engl. J. Med. 1989; 321: 779
  • Schein Glynn O. D., Poggio R. J., Seddon E. C.J.M., Kenyon K. R. The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. A case-control study. N. Engl. J. Med. 1989; 321: 1773
  • Benerjee Emori S. S., Culver T. G., Gaynes D. H., Jarvis R. P., Horan W. R., Edwards T., Tolson J. R., Henderson J.T., Martone W. J. Secular trends in nosocomial primary bloodstream infections in the United States, 1980–1989. Am. J. Med 1991; 91((Suppl. 3B))86S
  • Bodey Bolivar G. P., Feinstein R.V., Jodega L. Infections caused by. Pseudomonas aeruginosa, Rev. Infect. Dis. 1983; 5: 279
  • Deitch Xu E. A., Qi D. Z.L., Berg R. D. Bacterial translocation from the gut impairs systemic immunity. Surgery 1991; 109: 269
  • Wells Jechorek C. L.R.P., Gillingham K. J. Relative contributions of host and microbial factors in bacterial translocation. Arch. Surg. 1991; 126: 247
  • Allison Dawson J. S., Drake M.D., Montie T. C. Electrophoretic separation and molecular weight characterization of Pseudomonas aeruginosa H-antigen flagellins. Infect. Immun. 1985; 49: 770
  • Montie Doyle-Huntzinger T. C., Craven D.R., Holder I. A. Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned mouse model. Infect. Immun. 1982; 38: 1296
  • Luzar Thomassen M. A.M.J., Montie T. C. Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical condition. Infect. Immun. 1985; 50: 577
  • Mahenthiralingam Campbell E.M.E., Speert D. P. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect. Immun. 1994; 62: 596
  • Mahenthiralingam E., Speert D. P. Nonopsonic phagocytosis of Pseudomonas aeruginosa by macrophages and polymorphonuclear leukocytes requires the presence of the bacterial flagellum. Infect. Immun. 1995; 63: 4519
  • Ritchings Almira B. W., Lory E. C.S., Ramphal R. Cloning and phenotypic characterization of fleS, fleR new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect. Immun 1995; 63: 4868
  • Simpson Ramphal D. A.R., Lory S. Genetic analysis of Pseudomonas aeruginosa adherence: distinct genetic loci control attachment to epithelial cells and mucins. Infect. Immun. 1992; 60: 3771
  • Simpson Ramphal D. A.R., Lory S. Characterization of Pseudomonas aeruginosa fliO a gene involved in flagellar biosynthesis and adherence. Infect. Immun. 1995; 63: 2950
  • Totten P. A., Lory S. Characterization of the type a flagellin gene from Pseudomonas aeruginosa PAK. J. Bacteriol. 1990; 172: 7188
  • Hazlett L. D., Rudner X. L. Investigations on the role of flagella in adhesion of Pseudomonas aeruginosa to mouse and human corneal epithelial proteins. Ophthal. Res. 1994; 26: 375
  • Wachsmuth Blake I. K.P.A., Olsvik O. Vibrio cholerae and Cholera: Molecular to Global Perspectives. American Society for Microbiology, Washington, D.C. 1994
  • Gill D. M. Mechanism of action of cholera toxin. Adv. Cyclic Nucleotide Res. 1977; 8: 85
  • DiRita Parsot V. J., Jander C.G., Mekalanos J. J. Regulatory cascade controls virulence in. Vibrio cholerae, Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 5403
  • Peterson K. M., Mekalanos J. J. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect. Immun. 1988; 56: 2822
  • Camilli A., Mekalanos J. J. Use of recombinase gene fusion to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 1995; 18: 671
  • Gardel C. L., Mekalanos J. J. Modus operandi of Vibrio cholerae: swim to arrive stop to kill. The relationship among chemotaxis, motility and virulence. J. Cell Biochem 1994; 18A: 65
  • Harkey Everiss C. W.K.D., Peterson K. M. The Vibrio cholerae toxin-co-regulated-pilus gene tcpI encodes a homolog of methyl-accepting chemotaxis proteins. Infect. Immun 1994; 62: 2669
  • Guentzel M. N., Berry L. J. Motility as a virulence factor for. Vibrio cholerae, Infect. Immun. 1975; 11: 890
  • Freter Allweiss P., O'Brien Halstead B. P. C. M.S.A., Macsai M. S. The role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. Infect. Immun. 1981; 34: 241
  • Freter P., O'Brien P. C. M., Macsai M. S. The role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect. Immun. 1981; 34: 234
  • Attridge S. R., Rowley D. The role of the flagellum in the adherence of. Vibrio cholerae, J. Infect. Dis. 1983; 147: 864
  • Richardson K. Role of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models. Infect. Immun. 1991; 59: 2727
  • Freter R., O'Brien P. C. M. The role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of non-chemotactic Vibrio cholerae mutants in infant mice. Infect. Immun. 1981; 34: 222
  • Jones G. W., Freter R. Adhesive properties of Vibrio cholerae: nature of the interaction with isolated rabbit brush border membranes and human erythrocytes. Infect. Immun. 1976; 14: 240
  • Freter R., O'Brien P. C. M. The role of chemotaxis in the association of motile bacteria with intestinal mucosa: chemotactic responses of Vibrio cholerae and description of motile nonchemotactic mutants. Infect. Immun. 1981; 34: 215
  • Mostow P., Richardson K. High-frequency spontaneous mutation of classical Vibrio cholerae to a nonmotile phenotype. Infect. Immun. 1990; 58: 3633
  • Joseph Colwell S. W.R.R., Kaper J. B. Vibrio parahemolyticus and related halophilic vibrios. Crit. Rev. Microbiol. 1983; 10: 77
  • Belas M. R., Colwell R. R. Adsorption kinetics of laterally and polarly flagellated. Vibrio, J. Bacteriol. 1982; 151: 1568
  • Iijima Yamada Y.H., Shinoda S. Adherence of Vibrio parahaemolyticus and its relation to pathogenicity. Can. J. Microbiol. 1981; 27: 1252
  • Merrell Walker B. R.R.I., Joseph S. W. In vitro, in vivo pathologic effects of Vibrio parahaemolyticus on human epithelial cells. Can. J. Microbiol 1984; 30: 381
  • Chart H. Multiflagellate variants of. Vibrio anguillarum, J. Gen. Microbiol. 1983; 129: 2196
  • Milton D. L., O'Toole R., Hörstedt P., Wolf-Watz H. Flagellin A is essential for the virulence of. Vibrio anguillarum, J. Bacteriol. 1996; 178: 1310
  • O'Toole Milton R.D.L., Wolf-Watz H. Chemotactic motility is required for invasion of the host by the fish pathogen. Vibrio anguillarum, Mol. Microbiol. 1996; 19: 625
  • Cantey J. R., Blake R. K. Diarrhea due to Escherichia coli in the rabbit: a novel mechanism. J. Infect. Dis. 1977; 135: 454
  • Ritter Blum A., Emödy Kerenyi G.L., Böck Neuhierl M.A., Rabsch B., Scheutz W.F., Hacker J. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic. Escherichia coli, Mol. Microbiol. 1995; 17: 109
  • Finlay B. B., Falkow S. Salmonella as an intracellular parasite. Mol. Microbiol. 1989; 3: 1833
  • Carsiotis Weinstein M., Karch D. L., Holder H.I.A., O'Brien A. D. Flagella of Salmonella typhimurium are a virulence factor in infected C57BL/6J mice. Infect. Immun. 1984; 46: 814
  • Weinstein Carsiotis D. L., Lissner M.C.C., O'Brien A. D. Flagella help Salmonella typhimurium survive within murine macrophages. Infect. Immun. 1984; 46: 819
  • Carsiotis Stocker M., Weinstein B. A. D.D.L., O'Brien A. D. A Salmonella typhimurium virulence gene linked to. flg, Infect. Immun. 1989; 57: 3276
  • Lockman H. A., Curtiss R., III. Salmonella typhimurium mutants lacking flagella or motility remain virulent in BALB/c mice. Infect. Immun. 1990; 58: 137
  • Betts J., Finlay B. B. Identification of Salmonella typhimurium invasiveness loci. Can. J. Microbiol. 1992; 38: 852
  • Jones Richardson G. W.L.A., Uhlman D. The invasion of HeLa cells by Salmonella typhimurium: reversible and irreversible bacterial attachment and the role of bacterial motility. J. Gen. Microbiol. 1981; 127: 351
  • Jones Lee B. D.C.A., Falkow S. Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 1992; 60: 2475
  • Fields Swanson P. I., Haidaris R. V.C.G., Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 5189
  • Liu S.-Ezaki L., Miura T., Matsui H.K., Yabuuchi E. Intact motility as a Salmonella typhi invasion-related factor. Infect. Immun. 1988; 56: 1967
  • Lawrence Delaquis J. R., Korber P. J.D.R., Caldwell D. E. Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments. Microb. Ecol. 1987; 14: 1
  • Marshall Stout K. C.R., Mitchell R. Mechanisms of the initial events in the sorption of marine bacteria to solid surfaces. J. Gen. Microbiol. 1971; 68: 337
  • Meadows P. S. The attachment of bacteria to solid surfaces. Arch. Microbiol. 1971; 75: 374
  • Korber Lawrence D. R., Sutton J. R.B., Caldwell D. E. Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot. Pseudomonas fluorescens, Microb. Ecol 1989; 18: 1
  • Stanley P. M. Factors affecting the irreversible attachment of Pseudomonas aeruginosa to stainless steel. Can. J. Microbiol. 1983; 29: 1493
  • Dufrěne Vermeiren Y. F., Vanderleyden H.J., Rouxhet P. G. Direct evidence for the involvement of extracellular proteins in the adhesion of Azospirillum brasilense. Microbiology, in press
  • Butler Stewart J. L., Vanderzant J. C., Carpenter C.Z.L., Smith G. C. Attachment of microorganisms to pork skin and surfaces of beef and lamb carcasses. J. Food Prot. 1979; 42: 401
  • Farber J. M., Idziak E. S. Attachment of psychrotrophic meat spoilage bacteria to muscle surfaces. J. Food Prot. 1984; 47: 92
  • Firstenberg-Eden R. Attachment of bacteria to meat surfaces: a review. J. Food Prot. 1981; 44: 602
  • Lillard H. S. Bacterial cell characteristics and conditions influencing their adhesion to poultry skin. J. Food Prot. 1985; 48: 803
  • McMeekin T. A., Thomas C. J. Retention of bacteria on chicken skin after immersion in bacterial suspensions. J. Appl. Bacteriol. 1978; 45: 383
  • Notermans Firstenberg-Eden S.R., VanSchothorst M. Attachment of bacteria to teats of cows. J. Food Prot. 1979; 42: 228
  • Notermans S., Kampelmacher E. H. Attachment of some bacterial strains to the skin of broiler chickens. Br. Poult. Sci. 1974; 15: 573
  • Notermans Dufrenne S.J., VanSchothorst M. The effect of cultural procedures on the attachment of bacteria to chicken breast meat. J. Appl. Bacteriol. 1980; 49: 273
  • Lillard H. S. Role of fimbriae and flagella in the attachment of Salmonella typhimurium to poultry skin. J. Food Sci. 1986; 51: 54
  • Piette J.-P.G., Idziak E. S. New method to study bacterial adhesion to meat. Appl. Environ. Microbiol. 1989; 55: 1531
  • Piette J.-P. G., Idziak E. S. Role of flagella in adhesion of Pseudomonas fluorescens to tendon slices. Appl. Environ. Microbiol. 1991; 57: 1635
  • Ray D. L. Agglutination of bacteria: a feeding mechanism in the soil amoeba. Hartmanella sp. J. Exp. Zool. 1951; 118: 442
  • Preston T. M., King C. A. Binding sites for bacterial flagella at the surface of the soil amoeba. Acanthamoeba, J. Gen. Microbiol. 1984; 130: 1449
  • McCormick Laux B. A.D.C., Cohen P. S. Neither motility nor chemotaxis play a role in the ability of Escherichia coli F-18 to colonize the streptomycin-treated mouse large intestine. Infect. Immun. 1990; 58: 2957
  • Stanton T. B., Savage D. C. Colonization of gnotobiotic mice by Roseburia cecicola a motile, obligately anaerobic bacterium from murine ceca. Appl. Environ. Microbiol. 1983; 45: 1677
  • Stanton T. B., Savage D. C. Roseburia cecicola gen. nov. sp. nov. a motile, obligately anaerobic bacterium from a murine cecum. Int. J. Syst. Bacteriol. 1983; 33: 618
  • Stanton T. B., Savage D. C. Motility as a factor in bowel colonization by Roseburia cecicola an obligately anaerobic bacterium from the mouse caecum. J. Gen. Microbiol. 1984; 130: 173
  • Arora Filinow D. K.A.B., Lockwood J. L. Bacterial chemotaxis to fungal propagules in vitro and in soil. Can. J. Microbiol. 1983; 29: 1104
  • Bashan Y. Migration of the rhizosphere bacteria Azospirillum brasilense, Pseudomonas fluorescens toward wheat roots in the soil. J. Gen. Microbiol 1986; 132: 3407
  • Soby S., Bergman K. Motility and chemotaxis of Rhizobium meliloti in soil. Appl. Environ. Microbiol. 1983; 46: 995
  • Wong P. T. W., Griffin D. M. Bacterial movement at high matric potentials. I. In artificial and natural soils. Soil Biol. Biochem. 1976; 8: 215
  • DeFlaun Tanzer M. F., McAteer A. S., Marshall A. L.B.M., Levy S. B. Development of an adhesion assay and characterization of an adhesion-deficient mutant of. Pseudomonas fluorescens, Appl. Environ. Microbiol. 1990; 56: 112
  • DeFlaun Marshall M. F., Kulle B. M.E.-P., Levy S. B. Tn5 insertion mutants of Pseudomonas fluorescens defective in adhesion to soil and seeds. Appl. Environ. Microbiol. 1994; 60: 2637
  • Misaghi Olsen I. J., Billotte M. W.J.M., Sonoda R. M. The importance of rhizobacterial mobility in biocontrol of bacterial wilt of tomato. Soil Biol. Biochem. 1992; 24: 287
  • Scher Kloepper F. M., Singleton J. W., Zaleska C.I., Laliberte M. Colonization of soybean roots by Pseudomonas, Serratia species: relationship to bacterial motility, chemotaxis, and generation time. Phytopathology 1988; 78: 1055
  • Howie Cook W. J.R.J., Weller D. M. Effects of soil matric potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 1987; 77: 286
  • De Weger L. A., Vander Vlugt Wijfjes C. I. M., Bakker A. H. M.P., Schippers A. H. M.B., Lugtenberg B. Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J. Bacteriol. 1987; 169: 2769
  • Bashan Y., Levanony H. Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheats and weeds in controlled and field environments. J. Gen. Microbiol. 1987; 133: 3473
  • Bashan Y., Holguin G. Root-to-root travel of the beneficial bacterium. Azospirillum brasilense, Appl. Environ. Microbiol. 1994; 60: 2120
  • Bashan Y., Holguin G. Inter-root movement of Azospirillum brasilense and subsequent root colonization of crop and weed seedlings growing in soil. Microb. Ecol. 1995; 29: 269
  • Michiels Croes K. W.C.L., Vanderleyden J. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol. 1991; 137: 2241
  • Croes Moens C. L., VanBastelaere S., Vanderleyden E.J., Michiels K. W. The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J. Gen. Microbiol. 1993; 139: 2261
  • De Ley J., Rassel A. DNA base composition, flagellation and taxonomy of the genus. Rhizobium, J. Gen. Microbiol. 1965; 41: 85
  • Tsien H.-C. Ultrastructure of free-living cells. Nitrogen Fixation, Rhizobium, W. J. Broughton. Clarendon Press, Oxford 1982; Vol 2: 192
  • Smit Kijne G.J.W., Lugtenberg B. J. J. Involvement of both cellulose fibrils and a Ca2+-dependent adhesin in the attachment of Rhizobium leguminosarum to pea root hair tips. J. Bacteriol 1987; 169: 4294
  • Smit Kijne G.J.W., Lugtenberg B. J. J. Roles of flagella, lipopolysaccharide, and a Ca2+-dependent cell surface protein in attachment of Rhizobium leguminosarum biovar viciae to pea root hair tips. J. Bacteriol 1989; 171: 569
  • Napoli C., Albersheim P. Infection and nodulation of clover by nonmotile. Rhizobium trifolii, J. Bacteriol. 1980; 141: 979
  • Mellor Glenn H. Y., Arwas A. R.R., Dilworth M. J. Symbiotic and competitive properties of motility mutants of Rhizobium trifolii TA1. Arch. Microbiol. 1987; 148: 34
  • Ames Schluederberg P.S.A., Bergman K. Behavioral mutants of. Rhizobium meliloti, J. Bacteriol. 1980; 141: 722
  • Ames P., Bergman K. Competitive advantage provided by bacterial motility in the formation of nodules by. Rhizobium meliloti, J. Bacteriol. 1981; 148: 728
  • Caetano-Anollés Wall G., De Micheli Macchi L.G.A.T., Bauer E. M.W.D., Favelukes G. Role of motility and chemotaxis in efficiency of nodulation by. Rhizobium meliloti, Plant Physiol. 1988; 86: 1228
  • Malek W. The role of motility in the efficiency of nodulation by. Rhizobium meliloti, Arch. Microbiol. 1992; 158: 26
  • Liu Tran R.V.M., Schmidt E. L. Nodulating competitiveness of a nonmotile Tn7 mutant of Bradyrhizobium japonicum in nonsterile soil. Appl Environ. Microbiol. 1989; 55: 1895
  • Ruby E. G., Asato L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 1993; 159: 160
  • Tebo Linthicum B. M.D.S., Nealson K. H. Luminous bacteria and light-emitting fish: ultrastructure of the symbiosis. BioSystems 1979; 11: 269
  • Vincent J. M. Factors controlling the legume-Rhizobium symbiosis. Nitrogen Fixation, W. E. Newton, W. H. Orme-Johnson. University Park Press, Baltimore 1980; Vol. 2: 103
  • Wilson D. R., Beveridge T. J. Bacterial flagellar filaments and their component flagellins. Can. J. Microbiol. 1993; 39: 451
  • Beveridge T. J. The bacterial surface: general considerations towards design and function. Can. J. Microbiol. 1988; 34: 363
  • Sugiyama S. Na+-driven flagellar motors as a likely Na+ re-entry pathway in alkalophilic bacteria. Mol. Microbiol 1995; 15: 592
  • Allaloui Woestyn A., Sluiters S.C., Cornelis G. R. YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J. Bacteriol. 1994; 176: 4534
  • Dreyfus Williams G., Kawagishi A. W.I., Macnab R. M. Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens. J. Bacteriol 1993; 175: 3131
  • Fenselau S., Bonas U. Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion systems. Mol. Plant Microb. Interact 1995; 8: 845
  • Lidell M. C., Hutcheson S. W. Characterization of the hrpJ, hrpU operons of Pseudomonas syringae pv. syringae Pss61: similarity with components of enteric bacteria involved in flagellar biogenesis and demonstration of their role in HarpinPss secretion. Mol. Plant. Microb. Interact 1994; 7: 488
  • Miller Pesci S.E.C., Pickett C. L. A Campylobacter jejuni homolog of the LcrD/FlbF family of proteins is necessary for flagellar biogenesis. Infect. Immun. 1993; 61: 2930
  • Plano Barve G. V.S.S., Straley S. C. LcrD: a membrane-bound regulatory protein of the Yersinia pestis low-Ca2+ response. J. Bacteriol 1991; 173: 7293
  • Ramakrishnan Zhao G.J.L., Newton A. The cell cycle-regulated flagellar gene flbF of Caulobacter crescentus is homologous to a virulence locus (IcrD) of. Yersinia pestis, J. Bacteriol 1991; 173: 7283
  • Sanders VanWay L. A.S., Mullin D. A. Characterization of the Caulobacter crescentus flbF product as a homolog of the LcrD protein from. Yersinia enterocolitica, J. Bacteriol. 1992; 174: 857
  • Venkatesan Buysse M. M.J.M., Oaks E. V. Surface presentation of Shigella flexneri invasion plasmid antigens requires the products of the spa locus. J. Bacteriol 1992; 174: 1990

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.