1,113
Views
28
CrossRef citations to date
0
Altmetric
Review Article

From endocytosis to membrane fusion: emerging roles of dynamin in virus entry

&
Pages 166-179 | Received 20 Feb 2012, Accepted 14 May 2012, Published online: 28 Jun 2012

References

  • Achiriloaie M, Barylko B, Albanesi JP. (1999). Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Mol Cell Biol, 19, 1410–1415.
  • Acosta EG, Castilla V, Damonte EB. (2009). Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol, 11, 1533–1549.
  • Anantharam A, Bittner MA, Aikman RL, Stuenkel EL, Schmid SL, Axelrod D, Holz RW. (2011). A new role for the dynamin GTPase in the regulation of fusion pore expansion. Mol Biol Cell, 22, 1907–1918.
  • Anantharam A, Onoa B, Edwards RH, Holz RW, Axelrod D. (2010). Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. J Cell Biol, 188, 415–428.
  • Bashkirov PV, Akimov SA, Evseev AI, Schmid SL, Zimmerberg J, Frolov VA. (2008). GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell, 135, 1276–1286.
  • Binns DD, Barylko B, Grichine N, Atkinson MA, Helms MK, Jameson DM, Eccleston JF, Albanesi JP. (1999). Correlation between self-association modes and GTPase activation of dynamin. J Protein Chem, 18, 277–290.
  • Brindley MA, Maury W. (2008). Equine infectious anemia virus entry occurs through clathrin-mediated endocytosis. J Virol, 82, 1628–1637.
  • Bürmann F, Ebert N, van Baarle S, Bramkamp M. (2011). A bacterial dynamin-like protein mediating nucleotide-independent membrane fusion. Mol Microbiol, 79, 1294–1304.
  • Cao H, Thompson HM, Krueger EW, McNiven MA. (2000). Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J Cell Sci, 113 (Pt 11), 1993–2002.
  • Chappie JS, Acharya S, Leonard M, Schmid SL, Dyda F. (2010). G domain dimerization controls dynamin’s assembly-stimulated GTPase activity. Nature, 465, 435–440.
  • Chappie JS, Mears JA, Fang S, Leonard M, Schmid SL, Milligan RA, Hinshaw JE, Dyda F. (2011). A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell, 147, 209–222.
  • Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC, Vallee RB. (1991). Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature, 351, 583–586.
  • Chen YJ, Zhang P, Egelman EH, Hinshaw JE. (2004). The stalk region of dynamin drives the constriction of dynamin tubes. Nat Struct Mol Biol, 11, 574–575.
  • Cheng Y, Boll W, Kirchhausen T, Harrison SC, Walz T. (2007). Cryo-electron tomography of clathrin-coated vesicles: structural implications for coat assembly. J Mol Biol, 365, 892–899.
  • Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ. (2002). Molecular architecture and functional model of the endocytic AP2 complex. Cell, 109, 523–535.
  • Conner SD, Schmid SL. (2003). Regulated portals of entry into the cell. Nature, 422, 37–44.
  • Connolly SA, Jackson JO, Jardetzky TS, Longnecker R. (2011). Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol, 9, 369–381.
  • Coyne CB, Kim KS, Bergelson JM. (2007). Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J, 26, 4016–4028.
  • Cureton DK, Harbison CE, Cocucci E, Parrish CR, Kirchhausen T. (2012). Limited transferrin receptor clustering allows rapid diffusion of canine parvovirus into clathrin endocytic structures. J Virol, 86, 5330–5340.
  • Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan SP. (2009). Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog, 5, e1000394.
  • Daecke J, Fackler OT, Dittmar MT, Kräusslich HG. (2005). Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol, 79, 1581–1594.
  • de la Vega M, Marin M, Kondo N, Miyauchi K, Kim Y, Epand RF, Epand RM, Melikyan GB. (2011). Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion. Retrovirology, 8, 99.
  • de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jiménez V, Scholte F, García-Sastre A, Rottier PJ, de Haan CA. (2011). Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog, 7, e1001329.
  • DeVay RM, Dominguez-Ramirez L, Lackner LL, Hoppins S, Stahlberg H, Nunnari J. (2009). Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J Cell Biol, 186, 793–803.
  • Faelber K, Posor Y, Gao S, Held M, Roske Y, Schulze D, Haucke V, Noé F, Daumke O. (2011). Crystal structure of nucleotide-free dynamin. Nature, 477, 556–560.
  • Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB. (1994). Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell, 79, 199–209.
  • Ford MG, Jenni S, Nunnari J. (2011). The crystal structure of dynamin. Nature, 477, 561–566.
  • Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC, Kirchhausen T, Walz T. (2004). Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature, 432, 573–579.
  • Gastaldelli M, Imelli N, Boucke K, Amstutz B, Meier O, Greber UF. (2008). Infectious adenovirus type 2 transport through early but not late endosomes. Traffic, 9, 2265–2278.
  • Gerondopoulos A, Jackson T, Monaghan P, Doyle N, Roberts LO. (2010). Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway. J Gen Virol, 91, 1428–1438.
  • Ghigo E, Kartenbeck J, Lien P, Pelkmans L, Capo C, Mege JL, Raoult D. (2008). Ameobal pathogen mimivirus infects macrophages through phagocytosis. PLoS Pathog, 4, e1000087.
  • Gianni T, Gatta V, Campadelli-Fiume G. (2010). {alpha}V{beta}3-integrin routes herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and dynamin2. Proc Natl Acad Sci USA, 107, 22260–22265.
  • Gold ES, Underhill DM, Morrissette NS, Guo J, McNiven MA, Aderem A. (1999). Dynamin 2 is required for phagocytosis in macrophages. J Exp Med, 190, 1849–1856.
  • Griffin EE, Chan DC. (2006a). Domain interactions within Fzo1 oligomers are essential for mitochondrial fusion. J Biol Chem, 281, 16599–16606.
  • Griffin EE, Detmer SA, Chan DC. (2006b). Molecular mechanism of mitochondrial membrane fusion. Biochim Biophys Acta, 1763, 482–489.
  • Gruenberg J. (2009). Viruses and endosome membrane dynamics. Curr Opin Cell Biol, 21, 582–588.
  • Gruenberg J, van der Goot FG. (2006). Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol, 7, 495–504.
  • Guo CJ, Liu D, Wu YY, Yang XB, Yang LS, Mi S, Huang YX, Luo YW, Jia KT, Liu ZY, Chen WJ, Weng SP, Yu XQ, He JG. (2011). Entry of tiger frog virus (an Iridovirus) into HepG2 cells via a pH-dependent, atypical, caveola-mediated endocytosis pathway. J Virol, 85, 6416–6426.
  • Gutiérrez M, Isa P, Sánchez-San Martin C, Pérez-Vargas J, Espinosa R, Arias CF, López S. (2010). Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol, 84, 9161–9169.
  • Heikkilä O, Susi P, Tevaluoto T, Härmä H, Marjomäki V, Hyypiä T, Kiljunen S. (2010). Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. J Virol, 84, 3666–3681.
  • Hernaez B, Alonso C. (2010). Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J Virol, 84, 2100–2109.
  • Hinshaw JE, Schmid SL. (1995). Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature, 374, 190–192.
  • Hoppins S, Nunnari J. (2009). The molecular mechanism of mitochondrial fusion. Biochim Biophys Acta, 1793, 20–26.
  • Huang CY, Lu TY, Bair CH, Chang YS, Jwo JK, Chang W. (2008). A novel cellular protein, VPEF, facilitates vaccinia virus penetration into HeLa cells through fluid phase endocytosis. J Virol, 82, 7988–7999.
  • Huang WR, Wang YC, Chi PI, Wang L, Wang CY, Lin CH, Liu HJ. (2011). Cell entry of avian reovirus follows a caveolin-1-mediated and dynamin-2-dependent endocytic pathway that requires activation of p38 mitogen-activated protein kinase (MAPK) and Src signaling pathways as well as microtubules and small GTPase Rab5 protein. J Biol Chem, 286, 30780–30794.
  • Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, Hattori T, Sugamura K. (2007). Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol, 81, 8722–8729.
  • Iversen TG, Skretting G, van Deurs B, Sandvig K. (2003). Clathrin-coated pits with long, dynamin-wrapped necks upon expression of a clathrin antisense RNA. Proc Natl Acad Sci USA, 100, 5175–5180.
  • Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Höning S, Evans PR, Owen DJ. (2010). A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell, 141, 1220–1229.
  • Jin M, Park J, Lee S, Park B, Shin J, Song KJ, Ahn TI, Hwang SY, Ahn BY, Ahn K. (2002). Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis. Virology, 294, 60–69.
  • Johannsdottir HK, Mancini R, Kartenbeck J, Amato L, Helenius A. (2009). Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol, 83, 440–453.
  • Kälin S, Amstutz B, Gastaldelli M, Wolfrum N, Boucke K, Havenga M, DiGennaro F, Liska N, Hemmi S, Greber UF. (2010). Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J Virol, 84, 5336–5350.
  • Kelly BT, McCoy AJ, Späte K, Miller SE, Evans PR, Höning S, Owen DJ. (2008). A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature, 456, 976–979.
  • Kirkham M, Parton RG. (2005). Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta, 1746, 349–363.
  • Kosaka T, Ikeda K. (1983). Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J Neurobiol, 14, 207–225.
  • Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science, 305, 858–862.
  • La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D. (2008). The virophage as a unique parasite of the giant mimivirus. Nature, 455, 100–104.
  • Lajoie P, Nabi IR. (2007). Regulation of raft-dependent endocytosis. J Cell Mol Med, 11, 644–653.
  • Laliberte JP, Weisberg AS, Moss B. (2011). The membrane fusion step of vaccinia virus entry is cooperatively mediated by multiple viral proteins and host cell components. PLoS Pathog, 7, e1002446.
  • Leonard M, Song BD, Ramachandran R, Schmid SL. (2005). Robust colorimetric assays for dynamin’s basal and stimulated GTPase activities. Meth Enzymol, 404, 490–503.
  • Liu XQ, Bian X, Klemm RW, Liu TY, Zhang M, Sun S, Sui XW, Rapoport TA, Hu JJ. (2011). Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc Nat Academy Sci USA, 108, 3976–3981.
  • Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, Danuser G, Schmid SL. (2009). Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol, 7, e57.
  • López S, Arias CF. (2004). Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol, 12, 271–278.
  • Lopez S, Arias CF. (2006). Early steps in rotavirus cell entry. Curr Top Microbiol Immunol, 309, 39–66.
  • Lundmark R, Carlsson SR. (2009). SNX9 - a prelude to vesicle release. J Cell Sci, 122, 5–11.
  • Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y, Parton RG, McMahon HT. (2008). The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol, 18, 1802–1808.
  • Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. (2006). Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell, 10, 839–850.
  • Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek RA, Zitzmann N, Nichita NB. (2010). Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol, 84, 243–253.
  • Marks B, Stowell MH, Vallis Y, Mills IG, Gibson A, Hopkins CR, McMahon HT. (2001). GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature, 410, 231–235.
  • Marsh M, Helenius A. (2006). Virus entry: open sesame. Cell, 124, 729–740.
  • McMahon HT, Boucrot E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 12, 517–533.
  • Mears JA, Ray P, Hinshaw JE. (2007). A corkscrew model for dynamin constriction. Structure, 15, 1190–1202.
  • Meertens L, Bertaux C, Dragic T. (2006). Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol, 80, 11571–11578.
  • Mercer J, Helenius A. (2008). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science, 320, 531–535.
  • Mercer J, Helenius A. (2009). Virus entry by macropinocytosis. Nat Cell Biol, 11, 510–520.
  • Mercer J, Knébel S, Schmidt FI, Crouse J, Burkard C, Helenius A. (2010a). Vaccinia virus strains use distinct forms of macropinocytosis for host-cell entry. Proc Natl Acad Sci USA, 107, 9346–9351.
  • Mercer J, Schelhaas M, Helenius A. (2010b). Virus entry by endocytosis. Annu Rev Biochem, 79, 803–833.
  • Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. (2009). HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell, 137, 433–444.
  • Muhlberg AB, Warnock DE, Schmid SL. (1997). Domain structure and intramolecular regulation of dynamin GTPase. EMBO J, 16, 6676–6683.
  • Narayanan R, Leonard M, Song BD, Schmid SL, Ramaswami M. (2005). An internal GAP domain negatively regulates presynaptic dynamin in vivo: a two-step model for dynamin function. J Cell Biol, 169, 117–126.
  • Nichols B. (2003). Caveosomes and endocytosis of lipid rafts. J Cell Sci, 116, 4707–4714.
  • Nonnenmacher M, Weber T. (2011). Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe, 10, 563–576.
  • O’Bryan JP. (2010). Intersecting pathways in cell biology. Sci Signal, 3, re10.
  • Oh P, McIntosh DP, Schnitzer JE. (1998). Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol, 141, 101–114.
  • Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, Micaroni M, Egorova A, Martinuzzi A, McNew JA, Daga A. (2009). Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature, 460, 978–983.
  • Pang W, Wang RR, Yang LM, Liu CM, Tien P, Zheng YT. (2008). Recombinant protein of heptad-repeat HR212, a stable fusion inhibitor with potent anti-HIV action in vitro. Virology, 377, 80–87.
  • Parton RG, Simons K. (2007). The multiple faces of caveolae. Nat Rev Mol Cell Biol, 8, 185–194.
  • Pelkmans L, Kartenbeck J, Helenius A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol, 3, 473–483.
  • Pelkmans L, Püntener D, Helenius A. (2002). Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science, 296, 535–539.
  • Permanyer M, Ballana E, Esté JA. (2010). Endocytosis of HIV: anything goes. Trends Microbiol, 18, 543–551.
  • Perry JW, Wobus CE. (2010). Endocytosis of murine norovirus 1 into murine macrophages is dependent on dynamin II and cholesterol. J Virol, 84, 6163–6176.
  • Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science, 303, 495–499.
  • Pietiäinen V, Marjomäki V, Upla P, Pelkmans L, Helenius A, Hyypiä T. (2004). Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol Biol Cell, 15, 4911–4925.
  • Powell K. (2009). Cell biology: ahead of the curve. Nature, 460, 318–320.
  • Praefcke GJ, McMahon HT. (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol, 5, 133–147.
  • Pucadyil TJ, Schmid SL. (2008). Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell, 135, 1263–1275.
  • Pucadyil TJ, Schmid SL. (2009). Conserved functions of membrane active GTPases in coated vesicle formation. Science, 325, 1217–1220.
  • Pylypenko O, Lundmark R, Rasmuson E, Carlsson SR, Rak A. (2007). The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J, 26, 4788–4800.
  • Rahn E, Petermann P, Hsu MJ, Rixon FJ, Knebel-Mörsdorf D. (2011). Entry pathways of herpes simplex virus type 1 into human keratinocytes are dynamin- and cholesterol-dependent. PLoS ONE, 6, e25464.
  • Reubold TF, Eschenburg S, Becker A, Leonard M, Schmid SL, Vallee RB, Kull FJ, Manstein DJ. (2005). Crystal structure of the GTPase domain of rat dynamin 1. Proc Natl Acad Sci USA, 102, 13093–13098.
  • Rojek JM, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S. (2008). Different mechanisms of cell entry by human-pathogenic Old World and New World arenaviruses. J Virol, 82, 7677–7687.
  • Roux A, Uyhazi K, Frost A, De Camilli P. (2006). GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature, 441, 528–531.
  • Rust MJ, Lakadamyali M, Zhang F, Zhuang X. (2004). Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol, 11, 567–573.
  • Schelhaas M. (2010). Come in and take your coat off - how host cells provide endocytosis for virus entry. Cell Microbiol, 12, 1378–1388.
  • Schelhaas M, Malmström J, Pelkmans L, Haugstetter J, Ellgaard L, Grünewald K, Helenius A. (2007). Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell, 131, 516–529.
  • Schmid EM, McMahon HT. (2007). Integrating molecular and network biology to decode endocytosis. Nature, 448, 883–888.
  • Schmid SL, Frolov VA. (2011). Dynamin: functional design of a membrane fission catalyst. Annu Rev Cell Dev Biol, 27, 79–105.
  • Schmidt FI, Bleck CK, Mercer J. (2012). Poxvirus host cell entry. Curr Opin Virol, 2, 20–27.
  • Schnitzer JE. (1996). Role of GTP hydrolysis in fission of caveolae directly from plasma membranes (vol 274, pg 239, 1996). Science, 274, 1069.
  • Sever S, Damke H, Schmid SL. (2000). Dynamin:GTP controls the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol, 150, 1137–1148.
  • Sever S, Muhlberg AB, Schmid SL. (1999). Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature, 398, 481–486.
  • Shpetner HS, Vallee RB. (1989). Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell, 59, 421–432.
  • Smith JL, Campos SK, Ozbun MA. (2007). Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol, 81, 9922–9931.
  • Song BD, Schmid SL. (2003). A molecular motor or a regulator? Dynamin’s in a class of its own. Biochemistry, 42, 1369–1376.
  • Stowell MH, Marks B, Wigge P, McMahon HT. (1999). Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat Cell Biol, 1, 27–32.
  • Sweitzer SM, Hinshaw JE. (1998). Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell, 93, 1021–1029.
  • Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R. (2006). Molecular anatomy of a trafficking organelle. Cell, 127, 831–846.
  • Takei K, McPherson PS, Schmid SL, De Camilli P. (1995). Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature, 374, 186–190.
  • Timm D, Salim K, Gout I, Guruprasad L, Waterfield M, Blundell T. (1994). Crystal structure of the pleckstrin homology domain from dynamin. Nat Struct Biol, 1, 782–788.
  • Van Hamme E, Dewerchin HL, Cornelissen E, Verhasselt B, Nauwynck HJ. (2008). Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin. J Gen Virol, 89, 2147–2156.
  • Vela EM, Colpitts TM, Zhang L, Davey RA, Aronson JF. (2008). Pichindé virus is trafficked through a dynamin 2 endocytic pathway that is dependent on cellular Rab5- and Rab7-mediated endosomes. Arch Virol, 153, 1391–1396.
  • Vonderheit A, Helenius A. (2005). Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol, 3, e233.
  • Wang Q, Kaan HY, Hooda RN, Goh SL, Sondermann H. (2008). Structure and plasticity of Endophilin and Sorting Nexin 9. Structure, 16, 1574–1587.
  • Wilbur JD, Hwang PK, Ybe JA, Lane M, Sellers BD, Jacobson MP, Fletterick RJ, Brodsky FM. (2010). Conformation switching of clathrin light chain regulates clathrin lattice assembly. Dev Cell, 18, 841–848.
  • Xu Y, Liu Y, Lou Z, Qin L, Li X, Bai Z, Pang H, Tien P, Gao GF, Rao Z. (2004). Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core. J Biol Chem, 279, 30514–30522.
  • Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, Subbarao K, Nabel GJ. (2004). pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol, 78, 5642–5650.
  • Zhang P, Hinshaw JE. (2001). Three-dimensional reconstruction of dynamin in the constricted state. Nat Cell Biol, 3, 922–926.
  • Zhu J, Jiang X, Liu Y, Tien P, Gao GF. (2005). Design and characterization of viral polypeptide inhibitors targeting Newcastle disease virus fusion. J Mol Biol, 354, 601–613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.