4,223
Views
142
CrossRef citations to date
0
Altmetric
Review Article

Recognition of bacterial infection by innate immune sensors

, , &
Pages 229-246 | Received 21 Feb 2012, Accepted 21 Jun 2012, Published online: 06 Aug 2012

References

  • Abel B, Thieblemont N, Quesniaux VJ, Brown N, Mpagi J, Miyake K, Bihl F, Ryffel B. (2002). Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol, 169, 3155–3162.
  • Adhikari A, Xu M, Chen ZJ. (2007). Ubiquitin-mediated activation of TAK1 and IKK. Oncogene, 26, 3214–3226.
  • Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. (2004). NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity, 20, 319–325.
  • Akira S, Uematsu S, Takeuchi O. (2006). Pathogen recognition and innate immunity. Cell, 124, 783–801.
  • Akira S. (2009). Innate immunity to pathogens: diversity in receptors for microbial recognition. Immunol Rev, 227, 5–8.
  • Alcaïs A, Quintana-Murci L, Thaler DS, Schurr E, Abel L, Casanova JL. (2010). Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity? Ann N Y Acad Sci, 1214, 18–33.
  • Ali SR, Timmer AM, Bilgrami S, Park EJ, Eckmann L, Nizet V, Karin M. (2011). Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity, 35, 34–44.
  • Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, Logan SM, Aderem A. (2005). Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci USA, 102, 9247–9252.
  • Anderson KV, Bokla L, Nüsslein-Volhard C. (1985a). Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell, 42, 791–798.
  • Anderson KV, Jürgens G, Nüsslein-Volhard C. (1985b). Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell, 42, 779–789.
  • Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. (2005). TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med, 202, 1715–1724.
  • Barbalat R, Ewald SE, Mouchess ML, Barton GM. (2011). Nucleic acid recognition by the innate immune system. Annu Rev Immunol, 29, 185–214.
  • Barton GM, Kagan JC, Medzhitov R. (2006). Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol, 7, 49–56.
  • Bella J, Hindle KL, McEwan PA, Lovell SC. (2008). The leucine-rich repeat structure. Cell Mol Life Sci, 65, 2307–2333.
  • Bertrand MJ, Doiron K, Labbé K, Korneluk RG, Barker PA, Saleh M. (2009). Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity, 30, 789–801.
  • Betterle C, Morlin L. (2011). Autoimmune Addison’s disease. Endocr Dev, 20, 161–172.
  • Borghini S, Tassi S, Chiesa S, Caroli F, Carta S, Caorsi R, Fiore M, Delfino L, Lasigliè D, Ferraris C, Traggiai E, Di Duca M, Santamaria G, D’Osualdo A, Tosca M, Martini A, Ceccherini I, Rubartelli A, Gattorno M. (2011). Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum, 63, 830–839.
  • Botos I, Segal DM, Davies DR. (2011). The structural biology of Toll-like receptors. Structure, 19, 447–459.
  • Bowdish DM, Sakamoto K, Kim MJ, Kroos M, Mukhopadhyay S, Leifer CA, Tryggvason K, Gordon S, Russell DG. (2009). MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and Mycobacterium tuberculosis. PLoS Pathog, 5, e1000474.
  • Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, O’Neill LA. (2000). A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA, 97, 10162–10167.
  • Brodsky IE, Medzhitov R. (2011). Pyroptosis: macrophage suicide exposes hidden invaders. Curr Biol, 21, R72–R75.
  • Brooks MN, Rajaram MV, Azad AK, Amer AO, Valdivia-Arenas MA, Park JH, Núñez G, Schlesinger LS. (2011). NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell Microbiol, 13, 402–418.
  • Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C. (2009). Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol, 182, 3173–3182.
  • Bryant C, Fitzgerald KA. (2009). Molecular mechanisms involved in inflammasome activation. Trends Cell Biol, 19, 455–464.
  • Buchholz KR, Stephens RS. (2008). The cytosolic pattern recognition receptor NOD1 induces inflammatory interleukin-8 during Chlamydia trachomatis infection. Infect Immun, 76, 3150–3155.
  • Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G. (2009). An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol, 10, 266–272.
  • Bustamante J, Boisson-Dupuis S, Jouanguy E, Picard C, Puel A, Abel L, Casanova JL. (2008). Novel primary immunodeficiencies revealed by the investigation of paediatric infectious diseases. Curr Opin Immunol, 20, 39–48.
  • Casanova JL, Abel L. (2004). The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol, 4, 55–66.
  • Casanova JL, Abel L. (2007). Human genetics of infectious diseases: a unified theory. EMBO J, 26, 915–922.
  • Casanova JL, Abel L, Quintana-Murci L. (2011). Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol, 29, 447–491.
  • Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K, Alcais A, Picard C, Mahfoufi N, Nicolas N, Lorenzo L, Plancoulaine S, Sénéchal B, Geissmann F, Tabeta K, Hoebe K, Du X, Miller RL, Héron B, Mignot C, de Villemeur TB, Lebon P, Dulac O, Rozenberg F, Beutler B, Tardieu M, Abel L, Casanova JL. (2006). Herpes simplex virus encephalitis in human UNC-93B deficiency. Science, 314, 308–312.
  • Chambaud I, Wróblewski H, Blanchard A. (1999). Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol, 7, 493–499.
  • Chapgier A, Wynn RF, Jouanguy E, Filipe-Santos O, Zhang S, Feinberg J, Hawkins K, Casanova JL, Arkwright PD. (2006). Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J Immunol, 176, 5078–5083.
  • Charrel-Dennis M, Latz E, Halmen KA, Trieu-Cuot P, Fitzgerald KA, Kasper DL, Golenbock DT. (2008). TLR-independent type I interferon induction in response to an extracellular bacterial pathogen via intracellular recognition of its DNA. Cell Host Microbe, 4, 543–554.
  • Chau TL, Gioia R, Gatot JS, Patrascu F, Carpentier I, Chapelle JP, O’Neill L, Beyaert R, Piette J, Chariot A. (2008). Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci, 33, 171–180.
  • Chen GY, Liu M, Wang F, Bertin J, Núñez G. (2011). A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol, 186, 7187–7194.
  • Chu J, Thomas LM, Watkins SC, Franchi L, Núñez G, Salter RD. (2009). Cholesterol-dependent cytolysins induce rapid release of mature IL-1β from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J Leukoc Biol, 86, 1227–1238.
  • Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. (2010). Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med, 16, 228–231.
  • Clarke TB, Francella N, Huegel A, Weiser JN. (2011). Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium. Cell Host Microbe, 9, 404–414.
  • Conforti-Andreoni C, Beretta O, Licandro G, Qian HL, Urbano M, Vitulli F, Ricciardi-Castagnoli P, Mortellaro A. (2010). Synergism of NOD2 and NLRP3 activators promotes a unique transcriptional profile in murine dendritic cells. J Leukoc Biol, 88, 1207–1216.
  • Courtois G, Smahi A, Reichenbach J, Döffinger R, Cancrini C, Bonnet M, Puel A, Chable-Bessia C, Yamaoka S, Feinberg J, Dupuis-Girod S, Bodemer C, Livadiotti S, Novelli F, Rossi P, Fischer A, Israël A, Munnich A, Le Deist F, Casanova JL. (2003). A hypermorphic IκBα mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest, 112, 1108–1115.
  • Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, Ting JP, Duncan JA. (2009). Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS ONE, 4, e7446.
  • Cressman DE, Chin KC, Taxman DJ, Ting JP. (1999). A defect in the nuclear translocation of CIITA causes a form of type II bare lymphocyte syndrome. Immunity, 10, 163–171.
  • Davila S, Hibberd ML, Hari Dass R, Wong HE, Sahiratmadja E, Bonnard C, Alisjahbana B, Szeszko JS, Balabanova Y, Drobniewski F, van Crevel R, van de Vosse E, Nejentsev S, Ottenhoff TH, Seielstad M. (2008). Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet, 4, e1000218.
  • Davis BK, Wen H, Ting JP. (2011). The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol, 29, 707–735.
  • Derbigny WA, Johnson RM, Toomey KS, Ofner S, Jayarapu K. (2010). The Chlamydia muridarum-induced IFN-ß response is TLR3-dependent in murine oviduct epithelial cells. J Immunol, 185, 6689–6697.
  • Derbigny WA, Shobe LR, Kamran JC, Toomey KS, Ofner S. (2012). Identifying a role for Toll-like receptor 3 in the innate immune response to Chlamydia muridarum infection in murine oviduct epithelial cells. Infect Immun, 80, 254–265.
  • Divangahi M, Mostowy S, Coulombe F, Kozak R, Guillot L, Veyrier F, Kobayashi KS, Flavell RA, Gros P, Behr MA. (2008). NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol, 181, 7157–7165.
  • Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, Bodemer C, Kenwrick S, Dupuis-Girod S, Blanche S, Wood P, Rabia SH, Headon DJ, Overbeek PA, Le Deist F, Holland SM, Belani K, Kumararatne DS, Fischer A, Shapiro R, Conley ME, Reimund E, Kalhoff H, Abinun M, Munnich A, Israël A, Courtois G, Casanova JL. (2001). X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat Genet, 27, 277–285.
  • Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J, Frémond C, Wagner H, Kirschning C, Ryffel B. (2004). Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol, 164, 49–57.
  • Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R. (2002). Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis, 186, 798–806.
  • Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI, Flavell RA. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 145, 745–757.
  • Ermolaeva MA, Michallet MC, Papadopoulou N, Utermöhlen O, Kranidioti K, Kollias G, Tschopp J, Pasparakis M. (2008). Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol, 9, 1037–1046.
  • Ewald SE, Engel A, Lee J, Wang M, Bogyo M, Barton GM. (2011). Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med, 208, 643–651.
  • Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA, Barton GM. (2008). The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature, 456, 658–662.
  • Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. (2009). AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature, 458, 509–513.
  • Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnemri ES. (2010). The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol, 11, 385–393.
  • Ferwerda G, Kullberg BJ, de Jong DJ, Girardin SE, Langenberg DM, van Crevel R, Ottenhoff TH, Van der Meer JW, Netea MG. (2007). Mycobacterium paratuberculosis is recognized by Toll-like receptors and NOD2. J Leukoc Biol, 82, 1011–1018.
  • Figdor CG, van Kooyk Y, Adema GJ. (2002). C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol, 2, 77–84.
  • Franchi L, Warner N, Viani K, Nuñez G. (2009). Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev, 227, 106–128.
  • Freche B, Reig N, van der Goot FG. (2007). The role of the inflammasome in cellular responses to toxins and bacterial effectors. Semin Immunopathol, 29, 249–260.
  • Gandotra S, Jang S, Murray PJ, Salgame P, Ehrt S. (2007). Nucleotide-binding oligomerization domain protein 2-deficient mice control infection with Mycobacterium tuberculosis. Infect Immun, 75, 5127–5134.
  • Gilleron M, Quesniaux VF, Puzo G. (2003). Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette Guerin and mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem, 278, 29880–29889.
  • Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S, Weiss JP. (2004). Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA, 101, 4186–4191.
  • Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J, Tedin K, Taha MK, Labigne A, Zähringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ. (2003a). Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science, 300, 1584–1587.
  • Girardin SE, Travassos LH, Hervé M, Blanot D, Boneca IG, Philpott DJ, Sansonetti PJ, Mengin-Lecreulx D. (2003b). Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem, 278, 41702–41708.
  • Grimes CL, Podolsky DK, O’Shea EK. (2010). Synthesis of biologically active biotinylated muramyl dipeptides. Bioorg Med Chem Lett, 20, 6061–6063.
  • Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG. (2006). Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell, 126, 1135–1145.
  • Harder J, Franchi L, Muñoz-Planillo R, Park JH, Reimer T, Núñez G. (2009). Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-κ B activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol, 183, 5823–5829.
  • Harding CV, Boom WH. (2010). Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol, 8, 296–307.
  • Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Brière F, Vlach J, Lebecque S, Trinchieri G, Bates EE. (2005). Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol, 174, 2942–2950.
  • Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A. (2003). A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med, 198, 1563–1572.
  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410, 1099–1103.
  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. (2000). A Toll-like receptor recognizes bacterial DNA. Nature, 408, 740–745.
  • Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature, 458, 514–518.
  • Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M, Hemmi H, Ohara O, Akira S, Kaisho T. (2006). IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature, 440, 949–953.
  • Hsu LC, Ali SR, McGillivray S, Tseng PH, Mariathasan S, Humke EW, Eckmann L, Powell JJ, Nizet V, Dixit VM, Karin M. (2008). A NOD2-NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA, 105, 7803–7808.
  • Hsu YM, Zhang Y, You Y, Wang D, Li H, Duramad O, Qin XF, Dong C, Lin X. (2007). The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol, 8, 198–205.
  • Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 411, 599–603.
  • Inohara N, Chamaillard M, McDonald C, Nunez G. (2005). NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem, 74, 355–383.
  • Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S. (2009). Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med, 206, 2879–2888.
  • Itoh H, Tatematsu M, Watanabe A, Iwano K, Funami K, Seya T, Matsumoto M. (2011). UNC93B1 physically associates with human TLR8 and regulates TLR8-mediated signaling. PLoS ONE, 6, e28500.
  • Iwasaki A, Medzhitov R. (2010). Regulation of adaptive immunity by the innate immune system. Science, 327, 291–295.
  • Iwasaki H, Takeuchi O, Teraguchi S, Matsushita K, Uehata T, Kuniyoshi K, Satoh T, Saitoh T, Matsushita M, Standley DM, Akira S. (2011). The I?B kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol, 12, 1167–1175.
  • Jack RS, Fan X, Bernheiden M, Rune G, Ehlers M, Weber A, Kirsch G, Mentel R, Fürll B, Freudenberg M, Schmitz G, Stelter F, Schütt C. (1997). Lipopolysaccharide-binding protein is required to combat a murine gram-negative bacterial infection. Nature, 389, 742–745.
  • Janeway CA Jr. (1989). Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol, 54 Pt 1, 1–13.
  • Janeway CA Jr, Medzhitov R. (2002). Innate immune recognition. Annu Rev Immunol, 20, 197–216.
  • Jéru I, Duquesnoy P, Fernandes-Alnemri T, Cochet E, Yu JW, Lackmy-Port-Lis M, Grimprel E, Landman-Parker J, Hentgen V, Marlin S, McElreavey K, Sarkisian T, Grateau G, Alnemri ES, Amselem S. (2008). Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci USA, 105, 1614–1619.
  • Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA. (2007). NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med, 356, 1216–1225.
  • Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, Hamann L, Schumann RR, Tapping RI. (2007). Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol, 178, 7520–7524.
  • Jones JW, Kayagaki N, Broz P, Henry T, Newton K, O’Rourke K, Chan S, Dong J, Qu Y, Roose-Girma M, Dixit VM, Monack DM. (2010). Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc Natl Acad Sci USA, 107, 9771–9776.
  • Kang JY, Lee JO. (2011). Structural biology of the Toll-like receptor family. Annu Rev Biochem, 80, 917–941.
  • Kanneganti TD, Ozören N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P, Bertin J, Coyle A, Grant EP, Akira S, Núñez G. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 440, 233–236.
  • Kawai T, Akira S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 11, 373–384.
  • Kawai T, Akira S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34, 637–650.
  • Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S. (2004). Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol, 5, 1061–1068.
  • Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, Zhang J, Lee WP, Roose-Girma M, Dixit VM. (2011). Non-canonical inflammasome activation targets caspase-11. Nature, 479, 117–121.
  • Kersse K, Bertrand MJ, Lamkanfi M, Vandenabeele P. (2011). NOD-like receptors and the innate immune system: coping with danger, damage and death. Cytokine Growth Factor Rev, 22, 257–276.
  • Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B. (2011). IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe, 9, 363–375.
  • Kim JG, Lee SJ, Kagnoff MF. (2004). Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect Immun, 72, 1487–1495.
  • Kim YG, Park JH, Reimer T, Baker DP, Kawai T, Kumar H, Akira S, Wobus C, Núñez G. (2011). Viral infection augments Nod1/2 signaling to potentiate lethality associated with secondary bacterial infections. Cell Host Microbe, 9, 496–507.
  • Kim YM, Brinkmann MM, Paquet ME, Ploegh HL. (2008). UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature, 452, 234–238.
  • Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R. (2011). Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol, 2011, 405310.
  • Kofoed EM, Vance RE. (2011). Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature, 477, 592–595.
  • Krutzik SR, Ochoa MT, Sieling PA, Uematsu S, Ng YW, Legaspi A, Liu PT, Cole ST, Godowski PJ, Maeda Y, Sarno EN, Norgard MV, Brennan PJ, Akira S, Rea TH, Modlin RL. (2003). Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med, 9, 525–532.
  • Ku CL, Yang K, Bustamante J, Puel A, von Bernuth H, Santos OF, Lawrence T, Chang HH, Al-Mousa H, Picard C, Casanova JL. (2005). Inherited disorders of human Toll-like receptor signaling: immunological implications. Immunol Rev, 203, 10–20.
  • Ku CL, von Bernuth H, Picard C, Zhang SY, Chang HH, Yang K, Chrabieh M, Issekutz AC, Cunningham CK, Gallin J, Holland SM, Roifman C, Ehl S, Smart J, Tang M, Barrat FJ, Levy O, McDonald D, Day-Good NK, Miller R, Takada H, Hara T, Al-Hajjar S, Al-Ghonaium A, Speert D, Sanlaville D, Li X, Geissmann F, Vivier E, Maródi L, Garty BZ, Chapel H, Rodriguez-Gallego C, Bossuyt X, Abel L, Puel A, Casanova JL. (2007). Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med, 204, 2407–2422.
  • Kufer TA, Sansonetti PJ. (2011). NLR functions beyond pathogen recognition. Nat Immunol, 12, 121–128.
  • Kumar H, Kawai T, Akira S. (2009a). Pathogen recognition in the innate immune response. Biochem J, 420, 1–16.
  • Kumar H, Kawai T, Akira S. (2009b). Toll-like receptors and innate immunity. Biochem Biophys Res Commun, 388, 621–625.
  • Kumar H, Kawai T, Akira S. (2011). Pathogen recognition by the innate immune system. Int Rev Immunol, 30, 16–34.
  • Lahiri A, Lahiri A, Das P, Vani J, Shaila MS, Chakravortty D. (2010). TLR 9 activation in dendritic cells enhances Salmonella killing and antigen presentation via involvement of the reactive oxygen species. PLoS ONE, 5, e13772.
  • Lamkanfi M. (2011). Emerging inflammasome effector mechanisms. Nat Rev Immunol, 11, 213–220.
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973–983.
  • Love W, Dobbs N, Tabor L, Simecka JW. (2010). Toll-like receptor 2 (TLR2) plays a major role in innate resistance in the lung against murine Mycoplasma. PLoS ONE, 5, e10739.
  • Ludlow LE, Johnstone RW, Clarke CJ. (2005). The HIN-200 family: more than interferon-inducible genes? Exp Cell Res, 308, 1–17.
  • Mahanta SK, Scholl T, Yang FC, Strominger JL. (1997). Transactivation by CIITA, the type II bare lymphocyte syndrome-associated factor, requires participation of multiple regions of the TATA box binding protein. Proc Natl Acad Sci USA, 94, 6324–6329.
  • Mancuso G, Gambuzza M, Midiri A, Biondo C, Papasergi S, Akira S, Teti G, Beninati C. (2009). Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol, 10, 587–594.
  • Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 440, 228–232.
  • Marina-García N, Franchi L, Kim YG, Miller D, McDonald C, Boons GJ, Núñez G. (2008). Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2. J Immunol, 180, 4050–4057.
  • Martinon F, Agostini L, Meylan E, Tschopp J. (2004). Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol, 14, 1929–1934.
  • Martinon F, Mayor A, Tschopp J. (2009). The inflammasomes: guardians of the body. Annu Rev Immunol, 27, 229–265.
  • Masihi KN, Brehmer W, Lange W, Werner H, Ribi E. (1985). Trehalose dimycolate from various mycobacterial species induces differing anti-infectious activities in combination with muramyl dipeptide. Infect Immun, 50, 938–940.
  • Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H, Akira S. (2009). Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 458, 1185–1190.
  • Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A, Kugler D, Hieny S, Caspar P, Núñez G, Schlueter D, Flavell RA, Sutterwala FS, Sher A. (2010). Caspase-1 independent IL-1β production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol, 184, 3326–3330.
  • McElvania Tekippe E, Allen IC, Hulseberg PD, Sullivan JT, McCann JR, Sandor M, Braunstein M, Ting JP. (2010). Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS ONE, 5, e12320.
  • Medzhitov R. (2007a). Recognition of microorganisms and activation of the immune response. Nature, 449, 819–826.
  • Medzhitov R. (2007b). TLR-mediated innate immune recognition. Semin Immunol, 19, 1–2.
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, 394–397.
  • Meixenberger K, Pache F, Eitel J, Schmeck B, Hippenstiel S, Slevogt H, N’Guessan P, Witzenrath M, Netea MG, Chakraborty T, Suttorp N, Opitz B. (2010). Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1β, depending on listeriolysin O and NLRP3. J Immunol, 184, 922–930.
  • Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JR, Woods CG, Reik W, Maher ER. (2009). Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet, 5, e1000423.
  • Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κ B activation. Nat Immunol, 5, 503–507.
  • Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, Warren SE, Wewers MD, Aderem A. (2010a). Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol, 11, 1136–1142.
  • Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A. (2010b). Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA, 107, 3076–3080.
  • Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita LF, Anes E. (2010). Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol, 12, 1046–1063.
  • Mu HH, Sawitzke AD, Cole BC. (2001). Presence of Lps(d) mutation influences cytokine regulation in vivo by the Mycoplasma arthritidis mitogen superantigen and lethal toxicity in mice infected with M. arthritidis. Infect Immun, 69, 3837–3844.
  • Mühlradt PF, Kiess M, Meyer H, Süssmuth R, Jung G. (1997). Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J Exp Med, 185, 1951–1958.
  • Muñoz-Planillo R, Franchi L, Miller LS, Núñez G. (2009). A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol, 183, 3942–3948.
  • Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, Kircheisen R, Ao A, Ratti B, Hanash S, Rouleau GA, Slim R. (2006). Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet, 38, 300–302.
  • Nemazee D, Gavin A, Hoebe K, Beutler B. (2006). Immunology: Toll-like receptors and antibody responses. Nature, 441, E4; discussion E4.
  • Nembrini C, Kisielow J, Shamshiev AT, Tortola L, Coyle AJ, Kopf M, Marsland BJ. (2009). The kinase activity of Rip2 determines its stability and consequently Nod1- and Nod2-mediated immune responses. J Biol Chem, 284, 19183–19188.
  • Ng J, Hirota SA, Gross O, Li Y, Ulke-Lemee A, Potentier MS, Schenck LP, Vilaysane A, Seamone ME, Feng H, Armstrong GD, Tschopp J, Macdonald JA, Muruve DA, Beck PL. (2010). Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology, 139, 542–52, 552.e1.
  • Nishiguchi M, Matsumoto M, Takao T, Hoshino M, Shimonishi Y, Tsuji S, Begum NA, Takeuchi O, Akira S, Toyoshima K, Seya T. (2001). Mycoplasma fermentans lipoprotein M161Ag-induced cell activation is mediated by Toll-like receptor 2: role of N-terminal hydrophobic portion in its multiple functions. J Immunol, 166, 2610–2616.
  • Normand S, Delanoye-Crespin A, Bressenot A, Huot L, Grandjean T, Peyrin-Biroulet L, Lemoine Y, Hot D, Chamaillard M. (2011). Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci USA, 108, 9601–9606.
  • Nour AM, Yeung YG, Santambrogio L, Boyden ED, Stanley ER, Brojatsch J. (2009). Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infect Immun, 77, 1262–1271.
  • Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, Zarnegar B, Perry A, Cheng G. (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 439, 208–211.
  • Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411, 603–606.
  • Opitz B, Förster S, Hocke AC, Maass M, Schmeck B, Hippenstiel S, Suttorp N, Krüll M. (2005). Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ Res, 96, 319–326.
  • Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA. (2009). NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog, 5, e1000500.
  • Park B, Brinkmann MM, Spooner E, Lee CC, Kim YM, Ploegh HL. (2008). Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol, 9, 1407–1414.
  • Park B, Buti L, Lee S, Matsuwaki T, Spooner E, Brinkmann MM, Nishihara M, Ploegh HL. (2011). Granulin is a soluble cofactor for toll-like receptor 9 signaling. Immunity, 34, 505–513.
  • Peter ME, Kubarenko AV, Weber AN, Dalpke AH. (2009). Identification of an N-terminal recognition site in TLR9 that contributes to CpG-DNA-mediated receptor activation. J Immunol, 182, 7690–7697.
  • Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C, Hitchcock R, Lammas D, Davies G, Al-Ghonaium A, Al-Rayes H, Al-Jumaah S, Al-Hajjar S, Al-Mohsen IZ, Frayha HH, Rucker R, Hawn TR, Aderem A, Tufenkeji H, Haraguchi S, Day NK, Good RA, Gougerot-Pocidalo MA, Ozinsky A, Casanova JL. (2003). Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science, 299, 2076–2079.
  • Picard C, von Bernuth H, Ghandil P, Chrabieh M, Levy O, Arkwright PD, McDonald D, Geha RS, Takada H, Krause JC, Creech CB, Ku CL, Ehl S, Maródi L, Al-Muhsen S, Al-Hajjar S, Al-Ghonaium A, Day-Good NK, Holland SM, Gallin JI, Chapel H, Speert DP, Rodriguez-Gallego C, Colino E, Garty BZ, Roifman C, Hara T, Yoshikawa H, Nonoyama S, Domachowske J, Issekutz AC, Tang M, Smart J, Zitnik SE, Hoarau C, Kumararatne DS, Thrasher AJ, Davies EG, Bethune C, Sirvent N, de Ricaud D, Camcioglu Y, Vasconcelos J, Guedes M, Vitor AB, Rodrigo C, Almazán F, Méndez M, Aróstegui JI, Alsina L, Fortuny C, Reichenbach J, Verbsky JW, Bossuyt X, Doffinger R, Abel L, Puel A, Casanova JL. (2010). Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine (Baltimore), 89, 403–425.
  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085–2088.
  • Randhawa AK, Shey MS, Keyser A, Peixoto B, Wells RD, de Kock M, Lerumo L, Hughes J, Hussey G, Hawkridge A, Kaplan G, Hanekom WA, Hawn TR; South African Tuberculosis Vaccine Initiative Team. (2011). Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in South African infants. PLoS Pathog, 7, e1002174.
  • Ranjan P, Bowzard JB, Schwerzmann JW, Jeisy-Scott V, Fujita T, Sambhara S. (2009). Cytoplasmic nucleic acid sensors in antiviral immunity. Trends Mol Med, 15, 359–368.
  • Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA. (2010). The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol, 11, 395–402.
  • Ratner AJ, Aguilar JL, Shchepetov M, Lysenko ES, Weiser JN. (2007). Nod1 mediates cytoplasmic sensing of combinations of extracellular bacteria. Cell Microbiol, 9, 1343–1351.
  • Reith W, Mach B. (2001). The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol, 19, 331–373.
  • Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ. (2009). HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science, 323, 1057–1060.
  • Roy N, Mahadevan MS, McLean M, Shutler G, Yaraghi Z, Farahani R, Baird S, Besner-Johnston A, Lefebvre C, Kang X. (1995). The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell, 80, 167–178.
  • Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K, Dube PH, Xiang Y, Bose S. (2009). Activation of innate immune antiviral responses by Nod2. Nat Immunol, 10, 1073–1080.
  • Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S. (2005). Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol, 6, 1087–1095.
  • Sauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA. (2010). Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe, 7, 412–419.
  • Schröder NW, Heine H, Alexander C, Manukyan M, Eckert J, Hamann L, Göbel UB, Schumann RR. (2004). Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses. J Immunol, 173, 2683–2691.
  • Schroder K, Tschopp J. (2010). The inflammasomes. Cell, 140, 821–832.
  • Sepulveda FE, Maschalidi S, Colisson R, Heslop L, Ghirelli C, Sakka E, Lennon-Duménil AM, Amigorena S, Cabanie L, Manoury B. (2009). Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity, 31, 737–748.
  • Seya T, Matsumoto M. (2002). A lipoprotein family from Mycoplasma fermentans confers host immune activation through Toll-like receptor 2. Int J Biochem Cell Biol, 34, 901–906.
  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. (1999). MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med, 189, 1777–1782.
  • Shimizu T, Kida Y, Kuwano K. (2005). A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-κ B through TLR1, TLR2, and TLR6. J Immunol, 175, 4641–4646.
  • Shinkai K, McCalmont TH, Leslie KS. (2008). Cryopyrin-associated periodic syndromes and autoinflammation. Clin Exp Dermatol, 33, 1–9.
  • Slim R, Mehio A. (2007). The genetics of hydatidiform moles: new lights on an ancient disease. Clin Genet, 71, 25–34.
  • Sotolongo J, España C, Echeverry A, Siefker D, Altman N, Zaias J, Santaolalla R, Ruiz J, Schesser K, Adkins B, Fukata M. (2011). Host innate recognition of an intestinal bacterial pathogen induces TRIF-dependent protective immunity. J Exp Med, 208, 2705–2716.
  • Strober W, Kitani A, Fuss I, Asano N, Watanabe T. (2008). The molecular basis of NOD2 susceptibility mutations in Crohn’s disease. Mucosal Immunol, 1 Suppl 1, S5–S9.
  • Strohmeier GR, Fenton MJ. (1999). Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect, 1, 709–717.
  • Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, Bertin J, Coyle AJ, Galán JE, Askenase PW, Flavell RA. (2006). Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity, 24, 317–327.
  • Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B. (2006). The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat Immunol, 7, 156–164.
  • Takeda K, Akira S. (2005). Toll-like receptors in innate immunity. Int Immunol, 17, 1–14.
  • Takeda K, Kaisho T, Akira S. (2003). Toll-like receptors. Annu Rev Immunol, 21, 335–376.
  • Takeuchi O, Akira S. (2010). Pattern recognition receptors and inflammation. Cell, 140, 805–20.
  • Takeuchi O, Hoshino K, Akira S. (2000). Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol, 165, 5392–5396.
  • Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. (2001). Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol, 13, 933–940.
  • Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. (2002). Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol, 169, 10–14.
  • Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW. (2009). ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr Biol, 19, 1255–1263.
  • Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, Flavell RA, Girardin SE, Godzik A, Harton JA, Hoffman HM, Hugot JP, Inohara N, Mackenzie A, Maltais LJ, Nunez G, Ogura Y, Otten LA, Philpott D, Reed JC, Reith W, Schreiber S, Steimle V, Ward PA. (2008). The NLR gene family: a standard nomenclature. Immunity, 28, 285–287.
  • Toma C, Higa N, Koizumi Y, Nakasone N, Ogura Y, McCoy AJ, Franchi L, Uematsu S, Sagara J, Taniguchi S, Tsutsui H, Akira S, Tschopp J, Núñez G, Suzuki T. (2010). Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-κB signaling. J Immunol, 184, 5287–5297.
  • Torrelles JB, Schlesinger LS. (2010). Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis (Edinb), 90, 84–93.
  • Travassos LH, Carneiro LA, Girardin SE, Boneca IG, Lemos R, Bozza MT, Domingues RC, Coyle AJ, Bertin J, Philpott DJ, Plotkowski MC. (2005). Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J Biol Chem, 280, 36714–36718.
  • Trinchieri G, Sher A. (2007). Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol, 7, 179–190.
  • Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, Sato S, Tsujimura T, Yamamoto M, Yokota Y, Kiyono H, Miyasaka M, Ishii KJ, Akira S. (2008). Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol, 9, 769–776.
  • Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y, Yamamoto M, Kato H, Sougawa N, Matsui H, Kuwata H, Hemmi H, Coban C, Kawai T, Ishii KJ, Takeuchi O, Miyasaka M, Takeda K, Akira S. (2006). Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat Immunol, 7, 868–874.
  • van Crevel R, Ottenhoff TH, van der Meer JW. (2002). Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev, 15, 294–309.
  • Veeranki S, Choubey D. (2012). Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol, 49, 567–571.
  • Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Mémet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL. (2004). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol, 5, 1166–1174.
  • Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD, Sitaraman SV, Neish AS, Uematsu S, Akira S, Williams IR, Gewirtz AT. (2007). Deletion of TLR5 results in spontaneous colitis in mice. J Clin Invest, 117, 3909–3921.
  • von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, Chrabieh M, Mustapha IB, Ghandil P, Camcioglu Y, Vasconcelos J, Sirvent N, Guedes M, Vitor AB, Herrero-Mata MJ, Aróstegui JI, Rodrigo C, Alsina L, Ruiz-Ortiz E, Juan M, Fortuny C, Yagüe J, Antón J, Pascal M, Chang HH, Janniere L, Rose Y, Garty BZ, Chapel H, Issekutz A, Maródi L, Rodriguez-Gallego C, Banchereau J, Abel L, Li X, Chaussabel D, Puel A, Casanova JL. (2008). Pyogenic bacterial infections in humans with MyD88 deficiency. Science, 321, 691–696.
  • Watanabe T, Asano N, Fichtner-Feigl S, Gorelick PL, Tsuji Y, Matsumoto Y, Chiba T, Fuss IJ, Kitani A, Strober W. (2010). NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway. J Clin Invest, 120, 1645–1662.
  • Welin A, Eklund D, Stendahl O, Lerm M. (2011). Human macrophages infected with a high burden of ESAT-6-expressing M. tuberculosis undergo caspase-1- and cathepsin B-independent necrosis. PLoS ONE, 6, e20302.
  • Welter-Stahl L, Ojcius DM, Viala J, Girardin S, Liu W, Delarbre C, Philpott D, Kelly KA, Darville T. (2006). Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell Microbiol, 8, 1047–1057.
  • Wilmanski JM, Petnicki-Ocwieja T, Kobayashi KS. (2008). NLR proteins: integral members of innate immunity and mediators of inflammatory diseases. J Leukoc Biol, 83, 13–30.
  • Wolf AJ, Arruda A, Reyes CN, Kaplan AT, Shimada T, Shimada K, Arditi M, Liu G, Underhill DM. (2011). Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria. J Immunol, 187, 6002–6010.
  • Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q, Yang X, Hong J, Songyang Z, Chen ZJ, Wang RF. (2011). NLRX1 negatively regulates TLR-induced NF-?B signaling by targeting TRAF6 and IKK. Immunity, 34, 843–853.
  • Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin J, Grant EP, Coyle AJ, Misaghi A, Hoffman HM, Gallo RL. (2009). NLRP3/cryopyrin is necessary for interleukin-1β (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem, 284, 12762–12771.
  • Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A. (2005). TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science, 308, 1626–1629.
  • Yonekura K, Maki-Yonekura S, Namba K. (2003). Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 424, 643–650.
  • Yu HB, Finlay BB. (2008). The caspase-1 inflammasome: a pilot of innate immune responses. Cell Host Microbe, 4, 198–208.
  • Yuk JM, Shin DM, Lee HM, Kim JJ, Kim SW, Jin HS, Yang CS, Park KA, Chanda D, Kim DK, Huang SM, Lee SK, Lee CH, Kim JM, Song CH, Lee SY, Hur GM, Moore DD, Choi HS, Jo EK. (2011). The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat Immunol, 12, 742–751.
  • Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC. (2011). CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell, 147, 868–880.
  • Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S. (2004). A toll-like receptor that prevents infection by uropathogenic bacteria. Science, 303, 1522–1526.
  • Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, von Bernuth H, Ku CL, Casrouge A, Zhang XX, Barreiro L, Leonard J, Hamilton C, Lebon P, Héron B, Vallée L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova JL. (2007). TLR3 deficiency in patients with herpes simplex encephalitis. Science, 317, 1522–1527.
  • Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F. (2011). The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature, 477, 596–600.
  • Zilbauer M, Dorrell N, Elmi A, Lindley KJ, Schüller S, Jones HE, Klein NJ, Núnez G, Wren BW, Bajaj-Elliott M. (2007). A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell Microbiol, 9, 2404–2416.
  • Zurawek M, Fichna M, Januszkiewicz-Lewandowska D, Gryczynska M, Fichna P, Nowak J. (2010). A coding variant in NLRP1 is associated with autoimmune Addison’s disease. Hum Immunol, 71, 530–534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.