2,200
Views
48
CrossRef citations to date
0
Altmetric
Review Article

Autotransporter-based cell surface display in Gram-negative bacteria

, &
Pages 109-123 | Received 28 Feb 2013, Accepted 07 May 2013, Published online: 16 Jul 2013

References

  • Adams TM, Wentzel A, Kolmar H. (2005). Intimin-mediated export of passenger proteins requires maintenance of a translocation-competent conformation. J Bacteriol 187:522–33
  • Barnard TJ, Dautin N, Lukacik P, et al. (2007). Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nat Struct Mol Biol 14:1214–20
  • Barnard TJ, Gumbart J, Peterson JH, et al. (2012). Molecular basis for the activation of a catalytic asparagine residue in a self-cleaving bacterial autotransporter. J Mol Biol 415:128–42
  • Becker S, Michalczyk A, Wilhelm S, et al. (2007). Ultrahigh-throughput screening to identify E. coli cells expressing functionally active enzymes on their surface. Chembiochem 8:943–49
  • Becker S, Schmoldt HU, Adams TM, et al. (2004). Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol 15:323–9
  • Becker S, Theile S, Heppeler N, et al. (2005). A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Lett 579:1177–82
  • Bernstein HD. (2007). Are bacterial ‘autotransporters' really transporters? Trends Microbiol 15:441–7
  • Berthiaume F, Rutherford N, Mourez M. (2007). Mutations affecting the biogenesis of the AIDA-I autotransporter. Res Microbiol 158:348–54
  • Binder U, Matschiner G, Theobald I, Skerra A. (2010). High-throughput sorting of an anticalin library via EspP-mediated functional display on the Escherichia coli cell surface. J Mol Biol 400:783–802
  • Biondo R, da Silva FA, Vicente EJ, et al. (2012). Synthetic phytochelatin surface display in Cupriavidus metallidurans CH34 for enhanced metals bioremediation. Environ Sci Technol 46:8325–32
  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, et al. (2012). Engineering the third wave of biocatalysis. Nature 485:185–94
  • Brandon LD, Goldberg MB. (2001). Periplasmic transit and disulfide bond formation of the autotransported Shigella protein IcsA. J Bacteriol 183:951–8
  • Casali N, Konieczny M, Schmidt MA, Riley LW. (2002). Invasion activity of a Mycobacterium tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun 70:6846–52
  • Celik N, Webb CT, Leyton DL, et al. (2012). A bioinformatic strategy for the detection, classification and analysis of bacterial autotransporters. PLoS One 7:e43245
  • Dalbey RE, Kuhn A. (2012). Protein Traffic in Gram-negative bacteria - how exported and secreted proteins find their way. FEMS Microbiol Rev 36:1023–45
  • Daugherty PS. (2007). Protein engineering with bacterial display. Curr Opin Struc Biol 17:474–80
  • Dautin N, Bernstein HD. (2007). Protein secretion in Gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61:89–112
  • Dautin N, Bernstein HD. (2011). Residues in a conserved alpha-helical segment are required for cleavage but not secretion of an Escherichia coli serine protease autotransporter passenger domain. J Bacteriol 193:3748–56
  • Dertzbaugh MT. (1998). Genetically engineered vaccines: an overview. Plasmid 39:00–13
  • Desvaux M, Dumas E, Chafsey I, Hebraud M. (2006). Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure. FEMS Microbiol Lett 256:1–15
  • Desvaux M, Parham NJ, Henderson IR. (2004). The autotransporter secretion system. Res Microbiol 155:53–60
  • Desvaux Ml, Scott-Tucker A, Turner SM, et al. (2007). A conserved extended signal peptide region directs posttranslational protein translocation via a novel mechanism. Microbiology 153:59–70
  • Detzel C, Maas R, Jose J. (2011). Autodisplay of nitrilase from Alcaligenes faecalis in E. coli yields a whole cell biocatalyst for the synthesis of enantiomerically pure (R)-mandelic acid. Chemcatchem 3:719–25
  • Detzel C, Maas R, Tubeleviciute A, Jose J. (2012). Autodisplay of nitrilase from Klebsiella pneumoniae and whole-cell degradation of oxynil herbicides and related compounds. Appl Microbiol Biotechnol 97:4887--96
  • Dua M, Singh A, Sethunathan N, Johri A. (2002). Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–52
  • Dutta PR, Sui BQ, Nataro JP. (2003). Structure-function analysis of the enteroaggregative Escherichia coli plasmid-encoded toxin autotransporter using scanning linker mutagenesis. J Biol Chem 278:39912–20
  • Emsley P, Charles IG, Fairweather NF, Isaacs NW. (1996). Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381:90–2
  • Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA. (1993). Practical applications of engineering Gram-negative bacterial cell surfaces. Trends Biotechnol 11:6–10
  • Georgiou G, Stathopoulos C, Daugherty PS, et al. (1997). Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotech 15:29–34
  • Hagan CL, Silhavy TJ, Kahne D. (2011). Beta-barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80:189–210
  • Halter R, Pohlner J, Meyer TF. (1984). IgA protease of Neisseria gonorrhoeae: isolation and characterization of the gene and its extracellular product. EMBO J 3:1595–601
  • Hu YH, Liu CS, Hou JH, Sun L. (2009). Identification, characterization, and molecular application of a virulence-associated autotransporter from a pathogenic Pseudomonas fluorescens strain. Appl Environ Microbiol 75:4333–40
  • Ieva R, Bernstein HD. (2009). Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc Natl Acad Sci U S A 106:19120--5
  • Ieva R, Skillman KM, Bernstein HD. (2008). Incorporation of a polypeptide segment into the beta-domain pore during the assembly of a bacterial autotransporter. Mol Microbiol 67:188–201
  • Ieva R, Tian P, Peterson JH, Bernstein HD. (2011). Sequential and spatially restricted interactions of assembly factors with an autotransporter beta domain. Proc Natl Acad Sci U S A 108:E383–91
  • Ito K, Inaba K. (2008). The disulfide bond formation (Dsb) system. Curr Opin Struc Biol 18:450–8
  • Jain S, Goldberg MB. (2007). Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 189:5393–8
  • Johnson TA, Qiu J, Plaut AG, Holyoak T. (2009). Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease the structure of Haemophilus influenzae immunoglobulin A1 protease. J Mol Biol 389:559–74
  • Jong WS, Soprova Z, de Punder K, et al. (2012). A structurally informed autotransporter platform for efficient heterologous protein secretion and display. Microb Cell Fact 11:85
  • Jong WSP, Sauri A, Luirink J. (2010). Extracellular production of recombinant proteins using bacterial autotransporters. Curr Opin Biotechnol 21:646–52
  • Jong WSP, ten Hagen-Jongman CM, den Blaauwen T, et al. (2007). Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol Microbiol 63:1524–36
  • Jose J. (2006). Autodisplay: efficient bacterial surface display of recombinant proteins. Appl Microbiol Biotechnol 69:607–14
  • Jose J, Bernhardt R, Hannemann F. (2001). Functional display of active bovine adrenodoxin on the surface of E. coli by chemical incorporation of the [2Fe-2S] cluster. Chembiochem 2:95–701
  • Jose J, Bernhardt R, Hannemann F. (2002). Cellular surface display of dimeric Adx and whole cell P450-mediated steroid synthesis on E. coli. J Biotechnol 95:257–68
  • Jose J, Betscheider D, Zangen D. (2005). Bacterial surface display library screening by target enzyme labeling: identification of new human cathepsin G inhibitors. Anal Biochem 346:258–67
  • Jose J, Chung JW, Jeon BJ, et al. (2009). Escherichia coli with autodisplayed Z-domain of protein A for signal amplification of SPR biosensor. Biosens Bioelectron 24:1324–29
  • Jose J, Kramer J, Klauser T, et al. (1996). Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga(beta) autotransporter pathway. Gene 178:107–10
  • Jose J, Maas RM, Teese MG. (2012). Autodisplay of enzymes-Molecular basis and perspectives. J Biotechnol 161:92–103
  • Jose J, Meyer TF. (2007). The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 71:600–19
  • Jose J, Park M, Pyun J-C. (2010). E. coli outer membrane with autodisplayed Z-domain as a molecular recognition layer of SPR biosensor. Biosens Bioelectron 25:1225–8
  • Jose J, von Schwichow S. (2004). Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars. Chembiochem 5:491–9
  • Junker M, Besingi RN, Clark PL. (2009). Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol Microbiol 71:1323–32
  • Junker M, Schuster CC, McDonnell AV, et al. (2006). Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proc Natl Acad Sci U S A 103:918–23
  • Kaessler A, Olgen S, Jose J. (2011). Autodisplay of catalytically active human hyaluronidase hPH-20 and testing of enzyme inhibitors. Eur J Pharm Sci 42:139–47
  • Khan S, Mian HS, Sandercock LE, et al. (2011). Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. J Mol Biol 413:985–1000
  • Kjaergaard K, Hasman H, Schembri MA, Klemm P. (2002). Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system. J Bacteriol 184:4197–204
  • Klauser T, Kramer J, Otzelberger K, et al. (1993). Characterization of the Neisseria IgA(beta) core: the essential unit for outer-membrane targeting and extracellular protein secretion. J Mol Biol 234:579–93
  • Klauser T, Pohlner J, Meyer TF. (1990). Extracellular transport of Cholera-toxin B-subunit using Neisseria IgA protease beta-domain: conformation-dependent outer-membrane translocation. EMBO J 9:1991–9
  • Klauser T, Pohlner J, Meyer TF. (1992). Selective extracellular release of Cholera toxin-B subunit by Escherichia coli: dissection of Neisseria IgA-beta-mediated outer-membrane transport. EMBO J 11:2327–35
  • Ko H-J, Park E, Song J, et al. (2012). Functional cell surface display and controlled secretion of diverse agarolytic enzymes by Escherichia coli with a novel ligation-independent cloning vector based on the autotransporter YfaL. Appl Environ Microbiol 78:3051–8
  • Konieczny MPJ, Benz I, Hollinderbaumer B, et al. (2001). Modular organization of the AIDA autotransporter translocator: the N-terminal beta(1)-domain is surface-exposed and stabilizes the transmembrane beta(2)-domain. Antonie Van Leeuwenhoek 80:19–34
  • Konieczny MPJ, Suhr M, Noll A, et al. (2000). Cell surface presentation of recombinant (poly-) peptides including functional T-cell epitopes by the AIDA autotransporter system. FEMS Immunol Med Microbiol 27:321–32
  • Kostakioti M, Stathopoulos C. (2006). Role of the alpha-helical linker of the C-terminal translocator in the biogenesis of the serine protease subfamily of autotransporters. Infect Immun 74:4961–9
  • Kramer U, Rizos K, Apfel H, et al. (2003). Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains. Infect Immun 71:1944–52
  • Kranen E, Steffan N, Maas R, et al. (2011). Development of a whole cell biocatalyst for the efficient prenylation of indole derivatives by autodisplay of the aromatic prenyltransferase FgaPT2. Chemcatchem 3:1200–7
  • Kuroda K, Ueda M. (2011). Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9
  • Lee SY, Choi JH, Xu ZH. (2003). Microbial cell-surface display. Trends Biotechnol 21:45–52
  • Leo JC, Grin I, Linke D. (2012). Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc London, Ser B 367:1088–01
  • Letley DP, Rhead JL, Bishop K, Atherton JC. (2006). Paired cysteine residues are required for high levels of the Helicobacter pylori autotransporter VacA. Microbiology 152:1319–25
  • Leyton DL, de Luna MD, Sevastsyanovich YR, et al. (2010). The unusual extended signal peptide region is not required for secretion and function of an Escherichia coli autotransporter. FEMS Microbiol Lett 311:133–9
  • Leyton DL, Rossiter AE, Henderson IR. (2012). From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10:213–25
  • Leyton DL, Sevastsyanovich YR, Browning DF, et al. (2011). Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins. J Biol Chem 286:42283–91
  • Li CK, Zhu YR, Benz I, et al. (2008). Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. Biotechnol Bioeng 99:485–90
  • Lum M, Morona R. (2012). IcsA autotransporter passenger promotes increased fusion protein expression on the cell surface. Microb Cell Fact 11:20
  • Marin E, Bodelon G, Fernandez LA. (2010). Comparative analysis of the biochemical and functional properties of C-terminal domains of autotransporters. J Bacteriol 192:5588–602
  • Maurer J, Jose J, Meyer TF. (1997). Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J Bacteriol 179:794–804
  • Maurer J, Jose J, Meyer TF. (1999). Characterization of the essential transport function of the AIDA-I autotransporter and evidence supporting structural predictions. J Bacteriol 181:7014–20
  • May KL, Morona R. (2008). Mutagenesis of the Shigella flexneri autotransporter IcsA reveals novel functional regions involved in IcsA biogenesis and recruitment of host neural Wiscott-Aldrich syndrome protein. J Bacteriol 190:4666–76
  • McCormick ML, Gaut JP, Lin T-S, et al. (1998). Electron paramagnetic resonance detection of free tyrosyl radical generated by myeloperoxidase, lactoperoxidase, and horseradish peroxidase. J Biol Chem 273:32030–7
  • Meng G, Spahich N, Kenjale R, et al. (2011). Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J 30:3864–74
  • Munoz-Gutierrez I, Oropeza R, Gosset G, Martinez A. (2012). Cell surface display of a beta-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J Ind Microbiol Biot 39:1141–52
  • Natale P, Bruser T, Driessen AJM. (2008). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane: distinct translocases and mechanisms. BBA-Rev Biomembranes 1778:1735–56
  • Nhan N, de Valdivia E, Gustavsson M, et al. (2011). Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb Cell Fact 10:22
  • Nicolay T, Lemoine L, Lievens E, et al. (2012). Probing the applicability of autotransporter based surface display with the EstA autotransporter of Pseudomonas stutzeri A15. Microb Cell Fact 11:158
  • Nishimura K, Tajima N, Yoon Y-H, et al. (2010). Autotransporter passenger proteins: virulence factors with common structural themes. J Mol Med 88:451–8
  • Ohnishi Y, Nishiyama M, Horinouchi S, Beppu T. (1994). Involvement of the COOH-terminal pro-sequence of Serratia marcescens serine protease in the folding of the mature enzyme. J Biol Chem 269:32800–6
  • Oliver DC, Huang G, Fernandez RC. (2003a). Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter. J Bacteriol 185:489–95
  • Oliver DC, Huang G, Nodel E, et al. (2003b). A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol 47:1367–83
  • Oomen CJ, van Ulsen P, Van Gelder P, et al. (2004). Structure of the translocator domain of a bacterial autotransporter. EMBO J 23:1257–66
  • Otto BR, Sijbrandi R, Luirink J, et al. (2005). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. J Biol Chem 280:17339–45
  • Park M, Jose J, Pyun JC. (2010). Hypersensitive immunoassay by using Escherichia coli outer membrane with autodisplayed Z-domains. Enzyme Microb Technol 46:309–14
  • Park M, Jose J, Thömmes S, et al. (2011). Autodisplay of streptavidin. Enzyme Microb Technol 48:307–11
  • Petermann K, Vordenbäumen S, Pyun J-C, et al. (2010). Autodisplay of 60-kDa Ro/SS-A antigen and development of a surface display enzyme-linked immunosorbent assay for systemic lupus erythematosus patient sera screening. Anal Biochem 407:72–8
  • Peterson JH, Szabady RL, Bernstein HD. (2006). An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex. J Biol Chem 281:9038–48
  • Peterson JH, Tian P, Ieva R, et al. (2010). Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. Proc Natl Acad Sci U S A 107:17739–44
  • Pohlner J, Halter R, Beyreuther K, Meyer TF. (1987). Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325:458–62
  • Purdy GE, Fisher CR, Payne SM. (2007). IcsA surface presentation in Shigella flexneri requires the periplasmic chaperones DegP, Skp, and SurA. J Bacteriol 189:5566–73
  • Ramesh B, Sendra VG, Cirino PC, Varadarajan N. (2012). Single-cell characterization of autotransporter-mediated Escherichia coli surface display of disulfide bond-containing proteins. J Biol Chem 287:38580–9
  • Renn JP, Clark PL. (2008). A conserved stable core structure in the passenger domain beta-helix of autotransporter virulence proteins. Biopolymers 89:420–7
  • Renn JP, Junker M, Besingi RN, et al. (2012). ATP-independent control of autotransporter virulence protein transport via the folding properties of the secreted protein. Chem Biol 19:287–96
  • Rizos K, Lattemann CT, Bumann D, et al. (2003). Autodisplay: efficacious surface exposure of antigenic UreA fragments from Helicobacter pylori in Salmonella vaccine strains. Infect Immun 71:6320–8
  • Rosenau F, Tommassen J, Jaeger K-E. (2004). Lipase-specific foldases. Chembiochem 5:152–61
  • Rossiter AE, Leyton DL, Tveen-Jensen K, et al. (2011). The essential beta-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J Bacteriol 193:4250–3
  • Roussel-Jazede V, Van Gelder P, Sijbrandi R, et al. (2011). Channel properties of the translocator domain of the autotransporter Hbp of Escherichia coli. Mol Membr Biol 28:157–69
  • Ruiz-Olvera P, Ruiz-Pérez F, Sepulveda NsV, et al. (2003). Display and release of the Plasmodium falciparum circumsporozoite protein using the autotransporter MisL of Salmonella enterica. Plasmid 50:12–27
  • Ruiz-Perez F, Henderson IR, Leyton DL, et al. (2009). Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J Bacteriol 121:6571–83
  • Ruiz-Perez F, Henderson IR, Nataro JP. (2010). Interaction of FkpA, a peptidyl-prolyl cis/trans isomerase with EspP autotransporter protein. Gut Microbes 1:339–44
  • Ruiz-Perez F, Leon-Kempis R, Santiago-Machuca A, et al. (2002). Expression of the Plasmodium falciparum immunodominant epitope (NANP)(4) on the surface of Salmonella enterica using the autotransporter MisL. Infect Immun 70:3611–20
  • Rutherford N, Charbonneau ME, Berthiaume F, et al. (2006). The periplasmic folding of a cysteineless autotransporter passenger domain interferes with its outer membrane translocation. J Bacteriol 188:4111–16
  • Rutherford N, Mourez M. (2006). Surface display of proteins by Gram-negative bacterial autotransporters. Microb Cell Fact 5:22
  • Sauri A, Oreshkova N, Soprova Z, et al. (2011). Autotransporter beta-domains have a specific function in protein secretion beyond outer-membrane targeting. J Mol Biol 412:553–67
  • Sauri A, Soprova Z, Wickstrom D, et al. (2009). The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology 155:3982–91
  • Sawa J, Heuck A, Ehrmann M, Clausen T. (2010). Molecular transformers in the cell: lessons learned from the DegP protease-chaperone. Curr Opin Struc Biol 20:253–8
  • Schultheiss E, Paar C, Schwab H, Jose J. (2002). Functional esterase surface display by the autotransporter pathway in Escherichia coli. J Mol Catal B: Enzym 18:89–97
  • Schultheiss E, Weiss S, Winterer E, et al. (2008). Esterase autodisplay: enzyme engineering and whole-cell activity determination in microplates with pH sensors. Appl Environ Microbiol 74:4782–91
  • Schumacher SD, Hannemann F, Teese MG, et al. (2012). Autodisplay of functional CYP106A2 in Escherichia coli. J Biotechnol 161:104--12
  • Schumacher SD, Jose J. (2012). Expression of active human P450 3A4 on the cell surface of Escherichia coli by Autodisplay. J Biotechnol 161:113–20
  • Sevastsyanovich YR, Leyton DL, Wells TJ, et al. (2012). A generalised module for the selective extracellular accumulation of recombinant proteins. Microb Cell Fact 11:69
  • Sijbrandi R, Urbanus ML, ten Hagen-Jongman CM, Bernstein HD, et al. (2003). Signal Recognition Particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J Biol Chem 278:4654–9
  • Skillman KM, Barnard TJ, Peterson JH, et al. (2005). Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Mol Microbiol 58:945–58
  • Smith GP. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–17
  • Soprova Z, Sauri A, van Ulsen P, et al. (2010). A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. J Biol Chem 285:38224–33
  • Suzuki T, Lett MC, Sasakawa C. (1995). Extracellular transport of VirG protein in Shigella. J Biol Chem 270:30874–80
  • Szabady RL, Peterson JH, Skillman KM, Bernstein HD. (2005). An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc Natl Acad Sci U S A 102:221–6
  • Tajima N, Kawai F, Park SY, Tame JR. (2010). A novel intein-like autoproteolytic mechanism in autotransporter proteins. J Mol Biol 402:645–56
  • Valls M. (2000). Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–5
  • Valls M, de Lorenzo V, Gonzalez-Duarte R, Atrian S. (2000). Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. J Inorg Biochem 79:219–23
  • van Bloois E, Winter RT, Kolmar H, Fraaije MW. (2011). Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol 29:79–86
  • van den Berg B. (2011). Crystal structure of a full-length autotransporter. J Mol Biol 396:627–33
  • Van Gerven N, Sleutel M, Deboeck F, et al. (2009). Surface display of the receptor-binding domain of the F17a-G fimbrial adhesin through the autotransporter AIDA-I leads to permeability of bacterial cells. Microbiology 155:468–76
  • Veiga E, de Lorenzo V, Fernandez LA. (2003a). Autotransporters as scaffolds for novel bacterial adhesins: surface properties of Escherichia coli cells displaying Jun/Fos dimerization domains. J Bacteriol 185:5585–90
  • Veiga E, de Lorenzo V, Fernandez LA. (2003b). Neutralization of enteric coronaviruses with Escherichia coli cells expressing single-chain Fv-autotransporter fusions. J Virol 77:13396–8
  • Veiga E, de Lorenzo V, Fernandez LA. (2004). Structural tolerance of bacterial autotransporters for folded passenger protein domains. Mol Microbiol 52:1069–80
  • Velarde JJ, Nataro JP. (2004). Hydrophobic residues of the autotransporter EspP linker domain are important for outer membrane translocation of its passenger. J Biol Chem 279:31495–504
  • Volokhina EB, Grijpstra J, Stork M, et al. (2011). Role of the periplasmic chaperones Skp, SurA, and DegQ in outer membrane protein biogenesis in Neisseria meningitidis. J Bacteriol 193:1612–21
  • Voulhoux R, Bos MP, Geurtsen J, et al. (2003). Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262–5
  • Wagner JK, Heindl JE, Gray AN, et al. (2009). Contribution of the periplasmic chaperone Skp to efficient presentation of the autotransporter IcsA on the surface of Shigella flexneri. J Bacteriol 191:815–21
  • Wentzel A, Christmann A, Adams T, Kolmar H. (2001). Display of passenger proteins on the surface of Escherichia coli K-12 by the enterohemorrhagic E. coli Intimin EaeA. J Bacteriol 183:7273–84
  • Wilhelm S, Gdynia A, Tielen P, et al. (2007a). The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol 189:6695–703
  • Wilhelm S, Rosenau F, Becker S, et al. (2007b). Functional cell-surface display of a lipase-specific chaperone. Chembiochem 8:55–60
  • Wilhelm S, Rosenau F, Kolmar H, Jaeger K-E. (2011). Autotransporters with GDSL passenger domains: molecular physiology and biotechnological applications. Chembiochem 12:1476–85
  • Wilhelm S, Tommassen J, Jaeger KE. (1999). A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977–86
  • Xin KW, Chow VTK, Alonso S. (2010). Exploring the versatility of the autotransporter BrkA for the presentation of Enterovirus 71 vaccine candidates at the surface of attenuated Bordetella pertussis. Procedia Vaccinol 2:66–72
  • Yang TH, Kwon M-A, Song JK, et al. (2010). Functional display of Pseudomonas and Burkholderia lipases using a translocator domain of EstA autotransporter on the cell surface of Escherichia coli. J Biotechnol 146:126–9
  • Yang TH, Pan JG, Seo YS, Rhee JS. (2004). Use of Pseudomonas putida EstA as an anchoring motif for display of a periplasmic enzyme on the surface of Escherichia coli. Appl Environ Microbiol 70:6968–76
  • Yen YT, Tsang C, Cameron TA, et al. (2010). Importance of conserved residues of the serine protease autotransporter beta-domain in passenger domain processing and beta-barrel assembly. Infect Immun 78:3516–28
  • Zhai Y, Zhang K, Huo Y, et al. (2011). Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the beta-domain pore. Biochem J 435:577–87
  • Zhu C, Ruiz-Perez F, Yang Z, et al. (2006). Delivery of heterologous protein antigens via hemolysin or autotransporter systems by an attenuated ler mutant of rabbit enteropathogenic Escherichia coli. Vaccine 24:3821–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.