1,439
Views
54
CrossRef citations to date
0
Altmetric
Review Article

Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions

Pages 411-451 | Received 22 Jul 2013, Accepted 15 Oct 2013, Published online: 07 Mar 2014

References

  • Agarwal L, Purohit HJ. (2013). Genome sequence of Rhizobium lupini HPC(L) isolated from saline soil, Kutch (Gujarat). Genome Announcements 1:e00071–12
  • Aguilar OM, Grasso DH. (1991). The product of the Rhizobium meliloti ilvC gene is required for isoleucine and valine synthesis and nodulation of alfalfa. J Bacteriol 173:7756–64
  • Alfano JR, Kahn ML. (1993). Isolation and characterization of a gene coding for a novel aspartate aminotransferase from Rhizobium meliloti. J Bacteriol 175:4186–96
  • Ali H, Niel C, Guillaume JB. (1981). The pathways of ammonium assimilation in Rhizobium meliloti. Arch Microbiol 129:391–4
  • Allaway D, Lodwig EM, Crompton LA, et al. (2000). Identification of alanine dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroids. Mol Microbiol 36:508–15
  • Allison SL, Phillips AT. (1990). Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida. J Bacteriol 172:5470–6
  • Alloing G, Travers I, Sagot B, et al. (2006). Proline betaine uptake in Sinorhizobium meliloti: characterization of Prb, an Opp-like ABC transporter regulated by both proline betaine and salinity stress. J Bacteriol 188:6308–17
  • Appels MA, Haaker H. (1991). Glutamate oxaloacetate transaminase in pea root nodules. Participation in a malate/aspartate shuttle between plant and bacteroid. Plant Physiol 95:740–7
  • Arcondéguy T, Huez I, Fourment J, Kahn D. (1996). Symbiotic nitrogen fixation does not require adenylylation of glutamine synthetase I in Rhizobium meliloti. FEMS Microbiol Lett 145:33–40
  • Arcondéguy T, Huez I, Tillard P, et al. (1997). The Rhizobium meliloti PII protein, which controls bacterial nitrogen metabolism, affects alfalfa nodule development. Genes Develop 11:1194–206
  • Ashraf M, Iram A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200:535–46
  • Barbour WM, Hattermann DR, Stacey G. (1991). Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl Environ Microbiol 57:2635–9
  • Barnett MJ, Fisher RF, Jones T, et al. (2001). Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–8
  • Barnett, MJ, Toman, CJ, Fisher, RF, Long, SR. (2004). A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci USA 101:16636–41
  • Barra L, Fontenelle C, Ermel G, et al. (2006). Interrelations between glycine betaine catabolism and methionine biosynthesis in Sinorhizobium meliloti strain 102F34. J Bacteriol 188:7195–204
  • Barra-Bily L, Pandey SP, Trautwetter A, et al. (2010). The Sinorhizobium meliloti RNA chaperone Hfq mediates symbiosis of S. meliloti and alfalfa. J Bacteriol 192:1710–18
  • Barra-Bily L, Fontenelle C, Jan G, et al. (2010a). Proteomic alterations explain phenotypic changes in Sinorhizobium meliloti lacking the RNA chaperone Hfq. J Bacteriol 192:1719–29
  • Barsomian GD, Urzainqui A, Lohman K, Walker GC. (1992). Rhizobium meliloti mutants unable to synthesize anthranilate display a novel symbiotic phenotype. J Bacteriol 174:4416–26
  • Batista S, Patriarca EJ, Taté R, et al. (2009). An alternative succinate (2- oxoglutarate) transport system in Rhizobium tropici is induced in nodules of Phaseolus vulgaris. J Bacteriol 191:5057–67
  • Bearson BL, Lee IS, Casey TA. (2009). Escherichia coli O157:H7 glutamate- and arginine- dependent acid-resistance systems protect against oxidative stress during extreme acid challenge. Microbiol 155:805–12
  • Becker A, Bergés H, Krol E, et al. (2004). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant-Microbe Interact 17:292–303
  • Berg G, Smalla K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13
  • Bergès H, Checroun C, Guiral S, et al. (2001). A glutamine-amidotransferase-like protein modulates FixT anti-kinase activity in Sinorhizobium meliloti. BMC Microbiol 1:6
  • Bobik C, Meilhoc E, Batut J. (2006). FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti. J Bacteriol 188:4890–902
  • Boncompagni E, Dupont L, Mignot T, et al. (2000). Characterization of a Sinorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. J Bacteriol 182:3717–25
  • Borthakur D, Lamb JW, Johnston AWB. (1987). Identification of two classes of Rhizobium phaseoli genes required for melanin synthesis, one of which is required for nitrogen fixation and activates the transcription of the other. Mol Gen Genet 207:155–60
  • Boscari A, Mandon K, Dupont L, et al. (2002). BetS is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. J Bacteriol 184:2654–63
  • Boscari A, Van de Sype G, Le Rudulier D, Mandon, K. (2006). Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation. Mol Plant- Microbe Interact 19:896–903
  • Boulter D, Jeremy JJ, Wilding M. (1966). Amino acids liberated into the culture medium by pea seedling roots. Plant Soil 24:121–7
  • Braeken K, Moris M, Daniels R, et al. (2006). New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14:45–54
  • Braeken K, Daniels R, Vos K, et al. (2008). Genetic determinants of swarming in Rhizobium etli. Microbiol Ecol 55:54–64
  • Bracken K, Fauvart M, Vercruysse M, et al. (2008a). Pleiotropic effects of a rel mutation on stress survival in Rhizobium etli CNPAF512. BMC Microbiol 8:219 . Available from: http://www.biomedcentral.com/1471-2180/8/219
  • Bravo A, Mora J. (1988). Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J Bacteriol 170:980–4
  • Brinkman AB, Ettema TJG, de Vos WM, van der Oost J. (2003). The Lrp family of transcriptional regulators. Mol Microbiol 48:287–94
  • Brown CM, Dilworth MJ. (1975). Ammonium assimilation by Rhizobium cultures and bacteroids. J Gen Microbiol 86:39–48
  • Buendía-Clavería AM, Moussaid A, Ollero FJ, et al. (2003). A purL mutant of Sinorhizobium fredii HH103 is symbiotically defective and altered in its lipopolysaccharide. Microbiol 149:1807–18
  • Burnet MW, Goldman A, Message B, et al. (2000). The stachydrine catabolism region in Sinorhizobium meliloti encodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria. Gene 244:151–61
  • Capela D, Barloy-Hubler F, Gouzy J, et al. (2001). Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–82
  • Carlson TA, Guerinot ML, Chelm BK. (1985). Characterization of the gene encoding glutamine synthetase I (glnI) from Bradyrhizobium japonicum. J Bacteriol 162:698–703
  • Carlson TA, Martin GB, Chelm BK. (1987). Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. J Bacteriol 169:5861–6
  • Carter RA, Worsley PS, Sawers G, et al. (2002). The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF σ factor RpoI. Mol Microbiol 44:1153–66
  • Castillo A, Taboada H, Mendoza A, et al. (2000). Role of GOGAT in carbon and nitrogen partitioning in Rhizobium etli. Microbiol 146:1627–37
  • Cen Y, Bender GL, Trinick MJ, et al. (1982). Transposon mutagenesis in rhizobia which can nodulate both legumes and the nonlegume Parasponia. Appl Environ Microbiol 43:233–6
  • Charlier D, Glansdorff N. (2004). Biosynthesis of arginine and polyamines. In: Cohen G. editor. Escherichia coli and Salmonella: cellular and molecular biology. Module 3.6.1.10, EcoSal http://www.ecosal.org. Washington, DC: ASM Press
  • Chaudhary S, Dudeja SS, Sharma HR, et al. (1999). Proline dehydrogenase activity of mungbean rhizobia and their proline prototrophs in relation to their efficiency in symbiotic association. Ind J Exp Biol 37:1234–40
  • Chen J, Cheng C, Xia Y, et al. (2011). Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiol 157:3150–61
  • Chen W-M, Prell J, James EK, et al. (2012). Biosynthesis of branched-chain amino acids is essential for effective symbiosis between betarhizobia and Mimosa pudica. Microbiol 158:1758–66
  • Chien C-T, Rupp R, Beck S, Orser CS. (1991). Proline auxotrophic and catabolic mutants of Rhizobium leguminosarum biovar viciae strain C1204b are unaffected in nitrogen fixation. FEMS Microbiol Lett 77:299–302
  • Chiurazzi M, Iaccarino M. (1990). Transcriptional analysis of the glnB-glnA region of Rhizobium leguminosarum biovar viciae. Mol Microbiol 4:1727–35
  • Cho K, Winans SC. (1996). The putA gene of Agrobacterium tumefaciens is transcriptionally activated in response to proline by an Lrp-like protein and is not autoregulated. Mol Microbiol 22:1025–33
  • Cho B-K, Federowicz S, Part Y-S, et al. (2012). Deciphering the transcriptional regulatory logic of amino acid metabolism. Nature Chem Biol 8:65–71
  • Choudhury B, Azad P, Kalita MC. (2010). Variability in symbiotic effectiveness of native rhizobia in acid stress. Curr Microbiol 61:85–91
  • Collins CM, D’Orazio SEF. (1993). Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol Microbiol 9:907–13
  • Corbino KA, Barrick JE, Lim J, et al. (2005). Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 6:R70 . Available from: http://genomebiology.com/2005/6/8/R70
  • Cunin R, Glansdorff N, Piérard A, Stalon V. (1986). Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–52
  • Das SK, Gautam US, Chakrabartty PK, Singh A. (2006). Characterization of a symbiotically defective serine auxotroph of Mesorhizobium ciceri. FEMS Microbiol Lett 263:244–51
  • Das SK, Gautam US, Sandhu KV, et al. (2010). Mutation in the lysA gene impairs the symbiotic properties of Mesorhizobium ciceri. Arch Microbiol 192:69–77
  • Davalos M, Fourment J, Lucas A, et al. (2004). Nitrogen regulation in Sinorhizobium meliloti probed with whole genome arrays. FEMS Microbiol Lett 241:33–40
  • Day DA, Poole PS, Tyerman SD, Rosendahl L. (2001). Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell Mol Life Sci 58:61–71
  • de Bruijn FJ, Rossbach S, Schneider M, et al. (1989). Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J Bacteriol 171:1673–82
  • de las Nieves Peltzer M, Roques N, Poinsot V, et al. (2008). Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway. Mol Plant-Microbe Interact 21:1232–41
  • Desbrosses GG, Kopka J, Udvardi MK. (2005). Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant- microbe interactions. Plant Physiol 137:1302–18
  • Dessaux Y, Petit A, Tempé J, et al. (1986). Arginine catabolism in Agrobacterium strains: role of the Ti plasmid. J Bacteriol 166:44–50
  • D’Hooghe I, Vander Wauven C, Michiels J, et al. (1997). The arginine deiminase pathway in Rhizobium etli: DNA sequence analysis and functional study of the arcABC genes. J Bacteriol 179:7403–9
  • Díaz R, Vargas-Lagunas C, Villalobos MA, et al. (2011). argC orthologs from Rhizobales show diverse profiles of transcriptional efficiency and functionality in Sinorhizobium meliloti. J Bacteriol 193:460–72
  • Dilworth MJ, Carson KC, Giles RGF, et al. (1998). Rhizobium leguminosarum bv. viciae produces a novel cyclic trihydroxamate siderophore, vicibactin. Microbiol 144:781–91
  • Dixon R, Kahn D. (2004). Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–31
  • Djordjevic MA. (2004). Sinorhizobium meliloti metabolism in the root nodule: A proteomic perspective. Proteomics 4:1859–72
  • Djordjevic MA, Chen HC, Natera S, et al. (2003). A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. Mol Plant-Microbe Interact 16:508–24
  • Domínguez-Ferreas A, Pérez-Arnedo R, Becker A, et al. (2006). Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188:7617–25
  • Donald RGK, Ludwig RA. (1984). Rhizobium sp. strain ORS571 ammonium assimilation and nitrogen fixation. J Bacteriol 158:1144–51
  • Dunn MF. (1998). Tricarboxylic acid cycle and anaplerotic enzymes in rhizobia. FEMS Microbiol Rev 22:105–23
  • Dunn MF, Cruz A, Girard L, Mora J. (2010). Regulación de enzimas para la síntesis de arginina en Sinorhizobium meliloti. In: Resumenes del XXVIII Congreso Nacional de Bioquímica (abstracts on CD-ROM)
  • Durán S, Calderón J. (1995). Role of glutamine transaminase-ω-amidase pathway and glutaminase in glutamine degradation in Rhizobium etli. Microbiol 141:589–95
  • Durán S, Du Pont G, Huerta-Zepeda A, Calderón J. (1995). The role of glutaminase in Rhizobium etli: studies with a new mutant. Microbiol 141:2883–9
  • Durán S, Sánchez-Lineares L, Huerta-Saquero A, et al. (1996). Identification of two glutaminases in Rhizobium etli. Biochem Genet 34:453–65
  • Encarnación S, Calderón J, Gelbard AS, et al. (1998). Glutamine biosynthesis and the utilization of succinate and glutamine by Rhizobium etli and Sinorhizobium meliloti. Microbiol 144:2629–38
  • Errey JC, Blanchard JS. (2005). Functional characterization of a novel ArgA from Mycobacterium tuberculosis. J Bacteriol 187:3039–44
  • Espín G, Moreno S, Wild M, et al. (1990). A previously unrecognized glutamine synthetase expressed in Klebsiella pneumoniae from the glnT locus of Rhizobium leguminosarum. Mol Gen Genet 223:513–16
  • Espín G, Moreno S, Guzman J. (1994). Molecular genetics of the glutamine synthetases in Rhizobium species. Crit Rev Microbiol 20:117–23
  • Evans DJ, Jones R, Woodley PR, et al. (1991). Nucleotide sequence and genetic analysis of the Azotobacter chroococcum nifUSVWZM cluster, including a new gene (nifP) which encodes a serine acetyl transferase. J Bacteriol 173:5457–69
  • Ferriéres L, Francez-Charlot A, Gouzy J, et al. (2004). FixJ-regulated genes evolved through promoter duplication in Sinorhizobium meliloti. Microbiol 150:2335–45
  • Ferraioli S, Taté R, Caputo E, et al. (2001). The Rhizobium etli argC gene is essential for arginine biosynthesis and nodulation in Phaseolus vulgaris. Mol Plant-Microbe Interact 14:250–4
  • Ferraioli S, Taté R, Cermola M, et al. (2002). Auxotrophic mutant strains of Rhizobium etli reveal new nodule development phenotypes. Mol Plant-Microbe Interact 15:501–10
  • Fischer H-M. (1994). Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–86
  • Fitzmaurice AM, O'Gara F. (1993). A Rhizobium meliloti mutant, lacking a functional γ- aminobutyrate (GABA) bypass, is defective in glutamate catabolism and symbiotic nitrogen fixation. FEMS Microbiol Lett 10:195–202
  • Forrai T, Vinsze E, Bánfalvi Z, et al. (1983). Localization of symbiotic mutations in Rhizobium meliloti. J Bacteriol 153:635–43
  • Fougère F, Le Rudulier D. (1990). Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. J Gen Microbiol 136:157–63
  • Fujihara S, Harada Y. (1989). Fast-growing root nodule bacteria produce a novel polyamine, aminobutylhomospermidine. Biochem Biophys Res Comm 165:659–66
  • Fujihara S, Yoneyama T. (1993). Effects of pH and osmotic stress on cellular polyamine contents in the soybean rhizobia Rhizobium fredii P220 and Bradyrhizobium japonicum A1017. Appl Environ Microbiol 59:1104–9
  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K. (1994). The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol 35: 1261–5
  • Gage DJ. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300
  • Gao J-L, Weissenmayer B, Taylor AM, et al. (2004). Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol Microbiol 53:1757–70
  • Gao, M, Barnett MJ, Long SR, Tiplitski M. (2010). Role of Sinorhizobium meliloti global regulator Hfq in gene regulation and symbiosis. Mol Plant-Microbe Interact 23:355–65
  • George MLC, Robert FM. (1991). Autoregulatory response of Phaseolus vulgaris L. to symbiotic mutants of Rhizobium leguminosarum bv. phaseoli. Appl Environ Microbiol 57:2687–92
  • Goldmann A, Lecoeur L, Message B, et al. (1994). Symbiotic plasmid genes essential to the catabolism of proline betaine, or stachydrine, are also required for efficient nodulation by Rhizobium meliloti. FEMS Microbiol Lett 115:305–12
  • González V, Santamaría RI, Bustos P, et al. (2006). The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–9
  • Haag AF, Arnold MFF, Myka KK, et al. (2013). Molecular insights into bacteroid development during Rhizobium-legume symbiosis. FEMS Microbiol Rev 37:364–83
  • Hamana K, Minamisawa K, Matsuzaki S. (1990). Polyamines in Rhizobium, Bradyrhizobium, Azorhizobium and Agrobacterium. FEMS Microbiol Lett 71:71–6
  • Harrison J, Jamet A, Muglia CI, et al. (2005). Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti. J Bacteriol 187:168–74
  • Hellweg C, Pühler A, Weidner S. (2009). The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 9:37
  • Hosie AHF, Allaway D, Jones MA, et al. (2001). Solute- binding protein-dependent ABC transporters are responsible for solute efflux in addition to solute uptake. Mol Microbiol 40:1449–59
  • Hosie AHF, Allaway D, Galloway CS, et al. (2002). Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family. J Bacteriol 184:4071–80
  • Huerta-Saquero A, Calderón-Flores A, Díaz-Villaseñor A, et al. (2004). Regulation of transcription and activity of Rhizobium etli glutaminase A. Biochim Biophys Acta 1673:201–7
  • Huerta-Zepeda A, Durán S, Du Pont G, Calderon J. (1996). Asparagine degradation in Rhizobium etli. Microbiol 142:1071–6
  • Huerta-Zepeda A, Ortuño L, Du Pont G, et al. (1997). Isolation and characterization of Rhizobium etli mutants altered in degradation of asparagine. J Bacteriol 179:2068–72
  • Jebbar M, Sohn-Bösser L, Bremer E, et al. (2005). Ectoine-induced proteins in Sinorhizobium meliloti include an ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism. J Bacteriol 187:1293–304
  • Jelesko JG, Lara JC, Leigh JA. (1993). Rhizobium meliloti mutants with decreased DAHP synthase activity are sensitive to exogenous tryptophan and phenylalanine and form ineffective nodules. Mol Plant-Microbe Interact 6:135–43
  • Jiménez-Zurdo JI, van Dillewijn P, Soto MJ, et al. (1995). Characterization of a Rhizobium meliloti proline dehydrogenase mutant altered in nodulation efficiency and competitiveness on alfalfa roots. Mol Plant-Microbe Interact 6:492–8
  • Jiménez-Zurdo JI, García-Rodríguez FM, Toro N. (1997). The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa. Mol Microbiol 23:85–93
  • Jiménez-Zurdo JI, Valverde C, Becker A. (2013). Insights into the noncoding RNome of nitrogen-fixing endosymbiotic α-proteobacteria. Mol Plant-Microbe Interact 26:160–7
  • Kahn ML, Kraus J, Sommerville JE. (1985). A model of nutrient exchange in the Rhizobium- legume symbiosis. In: Evans H, Bottemley P, Newton WE editors. Nitrogen fixation research progress. New York: M. J. Nijhoff. pp. 193–9
  • Kaneko T, Nakamura Y, Sato S, et al. (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–8
  • Karunakaran R, Ramachandran VK, Seaman JC, et al. (2009). Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 191:4002–14
  • Kerppola TK, Kahn ML. (1988). Symbiotic phenotypes of auxotrophic mutants of Rhizobium meliloti 104A14. J Gen Microbiol 134:913–19
  • Kerppola TK, Kahn ML. (1988a). Genetic analysis of carbamoylphosphate synthesis in Rhizobium meliloti 104A14. J Gen Microbiol 134:921–9
  • Kim BH, Gadd GM. (2008). Bacterial physiology and metabolism. Cambridge, UK: Cambridge University Press
  • Kim C-H, Kuykendall LD, Shah KS, Keister DL. (1988). Induction of symbiotically defective auxotrophic mutants of Rhizobium fredii HH303 by transposon mutagenesis. Appl Environ Microbiol 54:423–7
  • King ND, O'Brian MR. (1997). Identification of the lrp gene in Bradyrhizobium japonicum and its role in regulation of δ-aminolevulinic acid uptake. J Bacteriol 179:1828–31
  • King ND, O’Brian MR. (2001). Evidence for direct interaction between Enzyme INtr and aspartokinase to regulate bacterial oligopeptide transport. J Biol Chem 276:21311–16
  • King ND, Hojnacki D, O’Brian MR. (2000). The Bradyrhizobium japonicum proline biosynthesis gene proC is essential for symbiosis. Appl Environ Microbiol 66:5469–71
  • Koch M, Delmotte N, Rehrauer H, et al. (2010). Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Mol Plant-Microbe Interact 23:784–90
  • Kondorosi A, Sváb Z, Kiss GB, Dixon RA. (1977). Ammonia assimilation and nitrogen fixation in Rhizobium meliloti. Mol Gen Genet 151:221–6
  • Kouchi H, Fukai K, Kihara A. (1991). Metabolism of glutamate and aspartate in bacteroids isolated from soybean root nodules. J Gen Microbiol 137:2901–10
  • Kretovich WL, Karikina TI, Weinova MK, et al. (1981). The synthesis of aspartic acid in Rhizobium lipini bacteroids. Plant Soil 61:145–56
  • Krishnan N, Becker DF. (2005). Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor. Biochem 44:9130–9
  • Krol E, Becker A. (2004). Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 272:1–17
  • Kumar A, Vij N, Randhawa GS. (2003). Isolation and symbiotic characterization of transposon Tn5-induced arginine auxotrophs of Sinorhizobium meliloti. Indian J Exp Biol 41:1198–204
  • Kumar S, Bourdès A, Poole P. (2005). De novo alanine synthesis by bacteroids of Mesorhizobium loti is not required for nitrogen transfer in determinate nodules of Lotus corniculatus. J Bacteriol 187:5493–5
  • Kummer RM, Kuykendall LD. (1989). Symbiotic properties of amino acid auxotrophs of Bradyrhizobium japonicum. Soil Biol Biochem 21:779–82
  • Kuo Y-H, Lambien F, Ikegami F, Van Parijs R. (1982). Isoxazolin-5-ones and amino acids in root exudates of pea and sweet pea seedlings. Plant Physiol 70:1283–9
  • Kuykendall JD, Hunter WJ. (1995). Symbiotic ineffectiveness of trpCD deletion mutants of Bradyrhizobium japonicum. Soil Biol Biochem 27:1035–9
  • Lafay B, Bullier E, Burdon JJ. (2006). Bradyrhizobia isolated from nodules of Parasponia (Ulmaceae) do not constitute a separate coherent lineage. Int J Syst Evol Microbiol 56: 1013–18
  • Lee J, Michael AJ, Martynowski D, et al. (2007). Phylogenetic diversity and the structural basis of substrate specificity in the β/α-barrel fold basic amino acid decarboxylases. J Biol Chem 282:27115–25
  • Lee KB, De Backer P, Aono T, et al. (2008). The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 9:271
  • Lewis TA, Gonzalez R, Botsford JL. (1990). Rhizobium meliloti glutamate synthase: cloning and initial characterization of the glt locus. J Bacteriol 172:2413–20
  • Li Y, Parsons R, Day DA, Bergersen FJ. (2002). Reassessment of major products of N2 fixation by bacteroids from soybean root nodules. Microbiol 148:1959–66
  • Limsunwun K, Jones PG. (2000). Spermidine acetyltransferase is required to prevent spermidine toxicity at low temperatures in Escherichia coli. J Bacteriol 182:5373–80
  • Lodwig EM, Hosie AHF, Bourdès A, et al. (2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722–6
  • Lodwig E, Kumar S, Allaway D, et al. (2004). Regulation of L-alanine dehydrogenase in Rhizobium leguminosarum bv. viciae and its role in pea nodules. J Bacteriol 186:842–9
  • López JC, Grasso DH, Frugier F, et al. (2001). Early symbiotic responses induced by Sinorhizobium meliloti ilvC mutants in alfalfa. Mol Plant-Microbe Interact 14:55–62
  • López-Guerrero MG, Ormeño-Orrillo E, Acosta JL, et al. (2012). Rhizobial extrachromosomal replicon variability, stability and expression in natural niches. Plasmid 68:149–58
  • López-Lara IM, Gao J-L, Soto MJ, et al. (2005). Phosphorus-free membrane lipids of Sinorhizobium meliloti are not required for symbiosis with alfalfa but contribute to inreases cell yields under phosphorus-limiting conditions of growth. Mol Plant-Microbe Interact 18:973–82
  • Loprasert S, Whangsuk W, Dubbs JM, et al. (2007). HpdR is a transcriptional activator of Sinorhizobium meliloti hpdA, which encodes a herbicide-tagreted 4-hydroxyphenylpyruvate dioxygenase. J Bacteriol 189:3660–4
  • Lu C-D. (2006). Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechnol, 70:261–72
  • MacLean AM, White CE, Fowler JE, Finan TM. (2009). Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Mol Plant-Microbe Interact 22:1116–27
  • Mandon K, Pauly N, Boscari A, et al. (2009). ROS in the legume-Rhizobium symbiosis. In: del Río LA, Puppo A eds. Reactive oxygen species in plant signaling. Berlin Heidelberg: Springer-Verlag. pp. 135–47
  • Marc F, Weigel P, Legrain C, et al. (2000). Characterization and kinetic mechanisms of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms. Eur J Biochem 267:5217–26
  • Martin GB, Chapman KA, Chelm BK. (1988). Role of the Bradyrhizobium japonicum ntrC gene product in differential regulation of the glutamine synthetase II gene (glnII). J Bacteriol 170:5452–9
  • Martin GB, Thomashow MF, Chelm BK. (1989). Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. J Bacteriol 171:5638–45
  • Mauchline TH, Fowler JE, East AK, et al. (2006). Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci USA 103:17933–8
  • McGinnis SD, O'Brian MR. (1995). The rhizobial hemA gene is required for symbiosis in species with deficient δ-aminolevulinic acid uptake activity. Plant Physiol 108:1547–52
  • McLaughlin W, Singh I, Ahmad MH. (1987). Characterization of Tn5-induced symbiotically defective mutants of cowpea rhizobia. FEMS Microbiol Lett 41:331–6
  • Mendz GL, Hazell SL. (1996). The urea cycle of Helicobacter pylori. Microbiol 142:2959–67
  • Michel-Reydellet N, Kaminski PA. (1999). Azorhizobium caulinodans PII and GlnK proteins control nitrogen fixation and ammonia assimilation. J Bacteriol 181:2655–8
  • Miksch G, Eberhardt U. (1994). Regulation of urease activity in Rhizobium meliloti. FEMS Microbiol Lett 120:149–54
  • Milcamps A, de Bruijn FJ. (1999). Identification of a novel nutrient-deprivation-induced Sinorhizobium meliloti gene (hmgA) involved in the degradation of tyrosine. Microbiol 145:935–47
  • Milcamps A, Struffi P, de Bruijn FJ. (2001). The Sinorhizobium meliloti nutrient-deprivation- induced tyrosine degradation gene hmgA is conrolled by a novel member of the arsR family of regulatory genes. Appl Environ Microbiol 67:2641–8
  • Miller KJ, Wood JM. (1996). Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–36
  • Mishima E, Hosokawa A, Imaizumi-Anraku H, et al. (2008). Requirement for Mesorhizobium loti ornithine transcarbamoylase for successful symbiosis with Lotus japonicus as revealed by an unexpected long-range genome deletion. Plant Cell Physiol 49:301–13
  • Mormann S, Lömker A, Rückert C, et al. (2006). Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 7:205
  • Moris M, Braeken K, Schoeters E, et al. (2005). Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J Bacteriol 187:5460–9
  • Muglia C, Comai G, Spegazzini E, et al. (2008). Glutathione produced by Rhizobium tropici is important to prevent early senescence in common bean nodules. FEMS Microbiol Lett 286:191–8
  • Mulley G, White JP, Karunakaran R, et al. (2011). Mutation of GOGAT prevents pea bacteroid formation and N2 fixation by globally downregulating transport of organic nitrogen sources. Mol Microbiol 80:149–67
  • Nandasena KG, O’Hara GW, Tiwari RP, et al. (2007). Mesorhizobium ciceri biovar biserrulae, a novel biovar nodulating the pasture legume Biserrula pelecinus L. Int J Syst Evol Microbiol 57:1041–5
  • Natera V, Sobrevals L, Fabra A, Castro S. (2006). Glutamate is involved in acid stress response in Bradyrhizobium sp. SEMIA 6144 (Arachis hypogaea L.) microsymbiont. Curr Microbiol 53:479–82
  • Newman JD, Schultz BW, Noel KD. (1992). Dissection of nodule development by supplementation of Rhizobium leguminosarum biovar phaseoli purine auxotrophs with 4- aminoimidazole-5-carboxamide riboside. Plant Physiol 99:401–8
  • Newman JD, Rosovitz MJ, Noel KD. (1995). Requirement for rhizobial production of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) for infection of bean. Mol Plant-Microbe Interact 8:407–14
  • Nichik MM, Yerko VN, Klts SY, et al. (1995). Rhizobium mutants with changed nitrogen and cold resistance and leucine auxotrophy. In: Tikhonovich IA, Provorov NA, Romanov, VI, Newton WE eds. Nitrogen fixation: fundamentals and applications. Dordrecht: Kluwer Academic Publishers. pp. 412
  • Noel TC. (1998). Interaction of Rhizobium leguminosarum tryptophan and adenosine auxotrophs with host plants and non-legumes. PhD Thesis, University of Calgary
  • O’Gara F, Manian S, Meade J. (1984). Isolation of an Asm-mutant of Rhizobium japonicum defective in symbiotic N2-fixation. FEMS Microbiol Lett 24:241–5
  • Okazaki S, Hattori Y, Saeki K. (2007). The Mesorhizobium loti purB gene is involved in infection thread formation and nodule development in Lotus japonicus. J Bacteriol 189:8347–52
  • Oldroyd GED, Murray JD, Poole PS, Downie JA. (2011). The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–44
  • Olivares J, Bedmar EJ, Sanjuán J. (2013). Biological nitrogen fixation in the context of global change. Mol Plant-Microbe Interact 26:486–94
  • Ortuño-Olea L, Durán-Vargas S. (2000). The L-asparagine operon of Rhizobium etli contains a gene encoding an atypical asparaginase. FEMS Microbiol Lett 189:177–82
  • Pandey SP, Minesinger BK, Kumar J, Walker GC. (2011). A highly conserved protein of unknown function in Sinorhizobium meliloti affects sRNA regulation similar to Hfq. Nuc Acids Res 39:4691–708
  • Parker G, Walshaw D, O’Rourke K, et al. (2001). Evidence for redundancy in cysteine biosynthesis in Rhizobium leguminosaum RL3841: analysis of a cysE gene encoding serine acetyltransferase. Microbiol 147:2553–60
  • Patriarca EJ, Chiurazzi M, Manco G, et al. (1992). Activation of the Rhizobium leguminosarum glnII gene by NtrC is dependent on upstream DNA sequences. Mol Gen Genet 234:337–45
  • Patten CL, Blakney AJC, Coulson TJD. (2013). Activity, distribution and function of indole-3- acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 39:395–415
  • Pauly N, Pucciariello C, Mandon K, et al. (2006). Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis. J Exp Bot 57:1769–76
  • Perez-Galdonat R, Kahn, ML. (1994). Effects of organic acids and low pH on Rhizobium meliloti 104A14. Microbiol 140:1231–5
  • Phillips DA, Sande ES, Vriezen JAC, et al. (1998). A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl Environ Microbiol 64:3954–60
  • Pii Y, Crimi M, Cremonese G, et al. (2007). Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21
  • Piñero S, Rivera J, Romero D, et al. (2007). Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis- associated stress resistance. J Mol Microbiol Biotechnol 13:35–44
  • Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. (2008). Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. Mol Plant-Microbe Interact 21:219–31
  • Prell J, Poole P. (2006). Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14:161–8
  • Prell J, White JP, Bourdes A, et al. (2009). Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids. Proc Natl Acad Sci USA 106:12477–82
  • Prell J, Bourdès A, Karumakaran R, et al. (2009a). Pathway of γ- aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis. J Bacteriol 191:2177–86
  • Prell J, Bourdès A, Kumar S, et al. (2010). Role of symbiotic auxotrophy in the Rhizobium-legume symbiosis. Plos One 5:11
  • Puskás IG, Nagy ZB, Keleman JZ, et al. (2004). Wide-range transcriptional modulating effect of ntrR under microaerobosis in Sinorhizobium meliloti. Mol Gen Genomics 272:275–89
  • Ramachandran VK, East AK, Karunakaran R, et al. (2011). Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12:R106 . Available from: http://genomebiology.com/2011/12/10/R106
  • Ramón-Maiques S, Marina A, Gil-Ortiz F, et al. (2002). Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase family, during catalysis. Structure 10:329–42
  • Randhawa GS, Hassani R. (2002). Role of rhizobial biosynthetic pathways of amino acids, nucleotide bases and vitamins in symbiosis. Ind J Exp Biol 40:755–64
  • Rastogi VK, Watson RJ. (1991). Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J Bacteriol 173:2879–87
  • Rawn JD. (1989). Biochemistry. Burlington North Carolina: Neil Patterson Publishers
  • Reid CJ, Walshaw DL, Poole PS. (1996). Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons. Microbiol 142:2603–12
  • Reitzer L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–76
  • Resendis-Antonio O, Hernández M, Salazar E, et al. (2011). Systems biology of bacterial nitrogen fixation: high-throughput technology and its integrative description with constraint-based modeling. BMC Syst Biol 5:120
  • Richter M, Wilms W, Scheffer F. (1968). Determination of root exudates in a sterile continuous flow culture. II. Short-term and long-term variations of exudation intensity. Plant Physiol 43:1747–54
  • Roccillo PM, Muglia CI, de Bruijn FJ, et al. (2000). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolereance. J Bacteriol 182:1748–53
  • Rogers NJ, Carson KC, Glenn AR, et al. (2001). Alleviation of aluminum toxicity to Rhizobium leguminosarum bv. viciae by the hydroxamate siderophore vicibactin. BioMetals 14:59–66
  • Rossi M, Defez R, Chiurazzi M, et al. (1989). Regulation of glutamine synthetase isoenzymes in Rhizobium leguminosarum biovar viciae. J Gen Microbiol 135:629–37
  • Rojas-Jiménez K, Sohlenkamp C, Geiger O, et al. (2005). A CIC chloride channel homolog and ornithine-containing membrane lipids of Rhizobium tropici CIAT899 are involved in symbiotic efficiency and acid tolerance. Mol Plant-Microbe Interact 18:1175–85
  • Rüberg S, Tian Z-X, Krol E, et al. (2003). Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression. J Biotechnol 106:255–68
  • Sadowsky MJ, Rostas K, Sista PW, et al. (1986). Symbiotically defective histidine auxotrophs of Bradyrhizobium japonicum. Arch Microbiol 144:334–9
  • Sagot B, Gaysinski M, Mehiri M, et al. (2010). Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria. Proc Natl Acad Sci USA 107:12652–7
  • Salminen SO, Streeter JG. (1990). Factors contributing to the accumulation of glutamate in Bradyrhizobium japonicum bacteroids under microaerobic conditions. J Gen Microbiol 136:2119–26
  • Sanjuán-Pinilla JM, Muñoz S, Nogales J, et al. (2002). Involvement of the Sinorhizobium meliloti leuA gene in activation of nodulation genes by NodD1 and luteolin. Arch Microbiol 178:36–44
  • Sankaranarayanan R, Cherney MM, Garen C, et al. (2010). The molecular structure of ornithine acetyltransferase from Mycobacterium tuberculosis bound to ornithine, a competitive inhibitor. J Mol Biol 397:679–90
  • Sarma AD, Emerich DW. (2006). A comparative proteomic evaluation of culture grown vs nodule isolated Bradyrhizobium japonicum. Proteomics 6:3008–28
  • Scherrer A, Dénarié J. (1971). Symbiotic properties of some auxotrophic mutants of Rhizobium meliloti and or their prototrophic revertants. Plant Soil 1971:39–45
  • Schindler U, Sans N, Schröder J. (1989). Ornithine cyclodeaminase from octopine Ti plasmid Ach5: identification, DNA sequence, enzyme properties, and comparison with gene and enzyme from nopoline Ti plasmid C58. J Bacteriol 171:847–54
  • Schlüter A, Nohlen M, Krämer M, et al. (2000). The Rhizobium leguminosarum bv. viciae glnD gene, encoding a uridylyltransferase/uridylyl-removing enzyme, is expressed in the root nodule but is not essential for nitrogen fixation. Microbiol 146:2987–96
  • Schneider BL, Reitzer L. (2012). Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. J Bacteriol 194:4080–8
  • Schneider J, Wendisch VF. (2011). Biotechnological production of polyamines in bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91:17–30
  • Schrell A, Alt-Moerbe J, Lanz T, Schroeder J. (1989). Arginase of Agrobacterium Ti plasmid C58. DNA sequence, properties, and comparison with eucaryotic enzymes. Eur J Biochem 184:635–41
  • Schwibbert K, Marin-Sanguino A, Bagyan I, et al. (2011). A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ Microbiol 13:1973–94
  • Sen D, Appunu C, Singh RK. (2008). Regulation of urease in Bradyrhizobium colonizing green gram (Vigna radiata (L.) Wilczek). Ind J Exp Biol 46:846–51
  • Serraj R, Shelp BJ, Sinclair TR. (1998). Accumulation of γ-aminobutyric acid in nodulated soybean in response to drought stress. Physiol Plantarum 102:79–86
  • Shah P, Swiatlo E. (2008). A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 68:4–16
  • Sharma P, Yadav AS. (2012). Symbiotic characterization of mutants defective in proline dehydrogenase in Rhizobium sp. cajanus under drought stress condition. Eur J Exp Biol 2:206–16
  • Shatters RG, Liu Y, Kahn ML. (1993). Isolation and characterization of a novel glutamine synthetase from Rhizobium meliloti. J Biol Chem 268:469–75
  • Shaw FL. (2011). From prediction to function: Polyamine biosynthesis and formate metabolism in the α- and ɛ-Proteobacteria. PhD Thesis, University of East Anglia
  • Shaw FL, Elliott KA, Kinch LN, et al. (2010). Evolution and multifarious horizontal transfer of an alternative biosynthetic pathway for the alternative polyamine sym-homospermidine. J Biol Chem 285:14711–23
  • Smith LT, Pocard J-A, Bernard T, Le Rudulier, D. (1988). Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol 170:3142–9
  • So J.-S, Hodgson ALM, Haugland R, et al. (1987). Transposon-induced symbiotic mutants of Bradyrhizobium japonicum: isolation of two gene regions essential for nodulation. Mol Gen Genet 207:15–23
  • Sobrero P, Valverde C. (2012). The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 38:276–99
  • Sobrevals L, Müller P, Fabra A, Castro S. (2006). Role of glutathione in the growth of Bradyrhizobium sp. (peanut microsymbiont) under different environmental stresses and in symbiosis with the host plant. Can J Microbiol 52:609–16
  • Somerville JE, Shatters RG, Kahn ML. (1989). Isolation, characterization and complementation of Rhizobium meliloti 104A14 mutants that lack glutamine synthetase II activity. J Bacteriol 171:5079–86
  • Soto MJ, Zorzano A, García-Rodriguez FM, et al. (1994a). Identification of a novel Rhizobium meliloti nodulation efficiency nfe gene homolog of Agrobacterium orithine cyclodeaminase. Mol Plant-Microbe Interact 7:703–7
  • Soto MJ, van Dillewijn P, Olivares J, Toro N. (1994b). Ornithine cyclodeaminase activity in Rhizobium meliloti. FEMS Microbiol Lett 119:209–14
  • Soto MJ, Jiménez-Zurdo JI, van Dillewijn P, Toro N. (2000). Sinorhizobium meliloti putA gene regulation: a new model within the family Rhizobiaceae. J Bacteriol 182:1935–41
  • Spaepen S, Vanderleyden J, Remans R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:1–24
  • Stefânia da Silva Batista J, Hungria M. (2012). Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. J Proteomics 75:1211–19
  • Steele HL, Vinuesa P, Warner D. (2003). A leucine biosynthesis mutant of Rhizobium tropici CIAT899 which survives at pH 3.5. Biol Fertil Soils 38:84–8
  • Straub PF, Reynolds PHS, Althomsons S, et al. (1996). Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonicum. Appl Environ Microbiol 62:221–9
  • Swamynathan SK, Singh A. (1992). Rhizobium meliloti purine auxotrophs are nod+ but defective in nitrogen fixation. J Genet 71:11–21
  • Tabor CW, Tabor H. (1985). Polyamines in microorganism. Microbiol Rev 49:81–99
  • Taté R, Riccio A, Iaccarino M, Patriarca EJ. (1997). A cysG mutant strain of Rhizobium etli pleiotropically defective in sulfate and nitrate assimilation. J Bacteriol 179:7343–50
  • Taté R, Riccio A, Caputo R, et al. (1999). The Rhizobium etli metZ gene is essential for methionine biosynthesis and nodulation of Phaseolus vulgaris. Mol Plant- Microbe Interact 12:24–34
  • Taté R, Riccio A, Caputo E, et al. (1999a). The Rhizobium etli trpB gene is essential for an effective symbiotic interaction with Phaseolus vulgaris. Mol Plant-Microbe Interact 12:926–33
  • Taté R, Mandrich L, Spinosa MR, et al. (2001). The Rhizobium GstI protein reduces the NH+4 assimilation capacity of Rhizobium leguminosarum. Mol Plant-Microbe Interact 14:823–31
  • Taté R, Ferraioli S, Filosa S, et al. (2004). Glutamine utilization by Rhizobium etli. Mol Plant-Microbe Interact 17:720–8
  • Taté R, Cermola M, Riccio A, et al. (2012). Glutathione is required by Rhizobium etli for glutamine utilization and symbiotic effectiveness. Mol Plant-Microbe Interact 25:331–40
  • Terakado-Tonooka J, Fujihara S. (2008). Involvement of polyamines in the root nodule regulation of soybeans (Glycine max). Plant Root 2:46–53
  • Terpolilli JJ, Hood GA, Poole PS. (2012). What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Adv Microbiol Physiol 60:325–89
  • Todd JD, Wexler M, Sawers G, et al. (2002). RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiol 148:4059–71
  • Toffanin A, Cadahia E, Imperial J, et al. (2002). Characterization of the urease gene cluster from Rhizobium leguminosarum bv. viciae. Arch Microbiol 177:290–8
  • Tolin S, Arrigoni G, Moscatiello R, et al. (2013). Quantitative analysis of the naringenin-inducible proteome in Rhizobium leguminosarum by isobaric tagging and mass spectrometry. Proteomics 13:1961–72
  • Torres-Quesada O, Oruezabal RI, et al. (2010). The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa. BMC Microbiol 10:71. Available from: http://www.biomedcentral.com/1471-2180/10/71
  • Tuskada S, Aono T, Akiba N, et al. (2009). Comparative genome-wide transciptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions. Appl Environ Microbiol 75:5037–46
  • Udvardi M, Poole PS. (2013). Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64:781–805
  • van Dillewijn P, Soto MJ, Villadas PJ, Toro N. (2001). Construction and environmental release of a Sinorhizobium meliloti strain genetically modified to be more competitive for alfalfa nodulation. Appl Environ Microbiol 67:3860–5
  • van Egeraat AWSM. (1975). The possible role of homoserine in the development of Rhizobium leguminoarum in the rhizosphere of pea seedlings. Plant Soil 42:381–6
  • Vargas MC, Encarnación S, Dávalos A, et al. (2003). Only one catalase, KatG, is detectable in Rhizobium etli, and is encoded along with OxyR on a plasmid replicon. Microbiol 149:1163–76
  • Vauclare P, Bligny R, Gout E, Widmer F. (2013). An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study. FEMS Microbiol Lett 343:49–56
  • Vences-Guzmán MA, Guan Z, Ormeño-Orillo E, et al. (2011). Hydroxylated ornithine lipids increase stress tolerance in Rhizobium tropici CIAT899. Mol Microbiol 79:1496–514
  • Vercruysse M, Fauvart M, Beullens S, et al. (2011). A comparative transcriptome analysis of Rhizobium etli bacteroids: specific gene expression during symbiotic growth. Mol Plant-Microbe Interact 24:1553–61
  • Vercruysse M, Fauvart M, Jans A, et al. (2011a). Stress response regulators identified through genome-wide transcriptome analysis of the (p)ppGpp-dependent response in Rhizobium etli. Genome Biol 12:R17 . Available from: http://genomebiology.com/2011/12/2/R17
  • Vessey JK. (1994). Measurement of nitrogenase activity in legume root nodules: in defense of the acetylene reduction assay. Plant Soil 158:151–62
  • Villaseñor T, Brom S, Dávalos A, et al. (2011). Housekeeping genes essential for pantothenate biosynthesis are plasmid-encoded in Rhizobium etli and Rhizobium leguminosarum. BMC Microbiol 11:66
  • Vissers S, Legrain C, Wiame J-M. (1986). Control of a futile urea cycle by arginine feedback inhibition of ornithine carbamoyltransferase in Agrobacterium tumefaciens and Rhizobia. Eur J Biochem 159:507–11
  • Voet D, Voet JG. (1995). Biochemistry. 2nd ed. New York: John Wiley & Sons
  • Vriezen JAC, de Bruijn FJ, Nüsslein K. (2013). Identification and characterization of a NaCl- responsive genetic locus involved in survival during desiccation in Sinorhizobium meliloti. Appl Environ Microbiol 79:5693–700
  • Walshaw DL. (1995). The general amino acid permease of Rhizobium leguminosarum biovar viciae. PhD Thesis, University of Reading
  • Walshaw DL, Poole PS. (1996). The general L-amino acid permease of Rhizobium leguminosarum is an ABC uptake system that also influences efflux of solutes. Mol Microbiol 21:1239–52
  • Walshaw DL, Wilkinson A, Mundy M, et al. (1997). Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum. Microbiol 143:2209–21
  • Watanabe A, Ideawa K, Iriguchi M, et al. (2002). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–97
  • Waters JK, Hughes BL, Purcell LC, et al. (1998). Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids. Proc Natl Acad Sci USA 95:12038–42
  • Watson JD, Baker TA, Bell SP, et al. (2008). Molecular biology of the gene. 6th ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
  • Watson RJ, Rastogi VK, Chan Y-K. (1993). Aspartate transport in Rhizobium meliloti. J Gen Microbiol 139:1315–23
  • Weissenmayer B, Gao J-L, López-Lara IM, Geiger O. (2002). Identification of a gene required for the biosynthesis of ornithine-derived lipids. Mol Microbiol 45:721–33
  • Wells SE, Kuykendall LD. (1983). Tryptophan auxotrophs of Rhizobium japonicum. J Bacteriol 156:1356–8
  • Wells DH, Long SR. (2002). The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Mol Microbiol 43:1115–27
  • White CE, Gavina JMA, Morton R, et al. (2012). Control of hydroxyproline catabolism in Sinorhizobium meliloti. Mol Microbiol 85:1133–47
  • White J, Prell J, James EK, Poole P. (2007). Nutrient sharing between symbionts. Plant Physiol 144:604–14
  • Whitehead LF, Tyerman SD, Day DA. (2001). Polyamines as potential regulators of nutrient exchange across the peribacteroid membrane in soybean root nodules. Aust J Plant Physiol 28:675–81
  • Wood JM, Bremer E, Csonka LN, et al. (2001). Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol Part A 130:437–60
  • Wood M. (1995). A mechanism of aluminum toxicity to soil bacteria and possible ecological implications. Plant Soil 171:63–9
  • Xu Y, Lebedan B, Glansdorff N. (2007). Surprising arginine biosynthesis: a reapprasial of the enzymology and evolution of the pathway in microorganisms. Microbiol Mol Biol Rev 71:36–47
  • Yadav AS. (2007). Auxotrophy in rhizobia revisited. Ind J Microbiol 47:279–88
  • Yadav AS, Vashishat RK, Kuykendall LD, Hashem FM. (1998). Biochemical and symbiotic properties of histidine-requiring mutants of Rhizobium leguminosarum biovar trifolii. Lett Appl Microbiol 26:22–6
  • Yap SF, Lim ST. (1983). Response of Rhizobium sp. UMKL 20 to sodium chloride stress. Arch Microbiol 135:224–8
  • Yaryura PM, León M, Correa OS, et al. (2008). Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 56:625–32
  • Young JP, Crossman LC, Johnston AWB, et al. (2006). The genome of Rhizobium leguminosarum has recognizable core and accessory elements. Genome Biol 7:R34
  • Yurgel SN, Kahn ML. (2008). A mutant GlnD nitrogen sensor protein leads to a nitrogen-fixing but ineffective Sinorhizobium meliloti symbiosis with alfalfa. Proc Natl Acad Sci USA 105:18958–63
  • Yurgel SN, Rice J, Mulder M, Kahn ML. (2010). GlnB/GlnK PII proteins and regulation of the Sinorhizobium meliloti Rm1021 nitrogen stress response and symbiotic function. J Bacteriol 192:2473–81
  • Yurgel SN, Rice J, Kahn ML. (2012). Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins. Mol Plant-Microbe Interact 25:355–62
  • Yurgel SN, Rice J, Kahn ML. (2013). Transcriptome analysis of the role of GlnD/GlnBK in nitrogen stress adaptation by Sinorhizobium meliloti Rm1021. Plos One 8:e58028
  • Zhao H, Li M, Fang K, et al. (2012). In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction. Plos One 7:e31287
  • Zheng L, White RH, Cash VL, et al. (1993). Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.